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 The transmission expansion planning (TEP) problem primarily aims to 

determine the appropriate number and location of additional lines required to 

meet the increasing power demand at the lowest possible investment cost 

while meeting the operation constraints. Most of the research in the past 

solved the TEP problem using the direct current (DC) model instead of the 

alternating current (AC) model because of its non-linear and non-convex 

nature. In order to improve the effectiveness of solving the AC transmission 

expansion planning (ACTEP) problem, a modified version of the differential 

evolution (DE) is proposed in this paper. The main idea of the modification 

is to limit the randomness of the mutation process by focusing on the first, 

second, and third-best individuals. To prove the effectiveness of the 

suggested method, the ACTEP problem considering fuel costs is solved in 

the Graver 6 bus system and the IEEE 24 bus system. Moreover, the result of 

each system is compared to the original DE algorithm and state-of-the-art 

methods such as the one-to-one-based optimizer (OOBO), the artificial 

hummingbird algorithm (AHA), the dandelion optimizer (DO), the tuna 

swarm optimization (TSO), and the chaos game optimization (CGO). The 

results show that the proposed algorithm is more effective than the original 

DE algorithm by 1.86% in solving the ACTEP problem. 
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1. INTRODUCTION 

Transporting electricity from the producing resources to the consumer is the primary function of a 

power transmission system. However, the integration of renewable energy resources and the expected growth 

in load demand have placed stress on the power transmission network in recent years [1]. Numerous methods 

have been researched to address this issue. Nevertheless, for the long-term planning horizon, transmission 

expansion planning is one of the most appropriate approaches. The primary goal of the transmission 

expansion planning (TEP) problem is to determine the location and number of additional lines that should be 

added to the power system with the minimum investment cost while meeting the power system operation 

constraints. 

In general, there are two major models used to solve the TEP problem: the direct current (DC) and 

alternating current (AC) models. The DC power flow (PF) is used in the DC model and is known as a 

linearized version of the AC PF [2]. Since the TEP problem is a non-linear and large-scale combinatorial 

optimization problem, the number of viable solutions grows with the system size. Therefore, the DC model 

has been used as a simple version of the AC model in many studies in the past [3]–[8] to decrease the 

complexity of the TEP problem. However, there are three factors that affect the accuracy of the TEP problem 
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using DC model. Firstly, the system voltage on all buses is fixed at 1 p.u., leading to an unacceptable value 

for the AC system. Secondly, the thermal limit of the transmission line may be exceeded because the reactive 

power flow is not taken into account. Thirdly, it is hard to evaluate the power loss of a system using a DC 

model [9]. In order to increase the accuracy of the TEP problem, many studies have solved the TEP problem 

using the AC model in recent years. The multistage technique is normally applied for solving AC 

transmission expansion planning (ACTEP) problem [9]–[13]. Although these studies have successfully given 

the optimal solution for the ACTEP problem, a huge amount of simulation time is required. Moreover, 

solving the ACTEP problem using a multistage technique required a highly reliable algorithm because the 

final optimal solution is dependent on the previous optimal solution. Therefore, finding an effective 

technique for addressing the ACTEP problem is an important goal for research groups. On the other hand, the 

above issues can be solved by applying the ACOPF formulation, which is allowed to solve the ACTEP 

problem in a single stage, as presented in study [14]. The load-shedding process is considered in this 

approach and serves as a penalty value to eliminate the unrealistic transmission topologies. Based on the 

load-shedding strategy, the AC optimal power flow (ACOPF) formulation is widely applied in the papers 

[15]–[17] for solving the ACTEP problem. Paper [16] compares the meta-heuristic algorithm approach to 

addressing the ACTEP problem with mathematical optimization-based approaches. The dynamic TEP 

problem using the ACOPF formulation is addressed in study [17] utilizing a meta-heuristic approach in large-

scale systems.  

The optimization methods for solving TEP problem can be divided into two basic approaches: 

mathematical and meta-heuristic. In a mathematical approach, the TEP problem is solved by using linear 

programming (LP) [18], branch and bound (B&B) [19], and bender decomposition (BD) [12]. In general, the 

solution is successfully given by using a mathematical approach in a short time. Although this approach is 

effective in a small-scale problem, the convergence process may be a weakness in a large-scale problem. On 

the other hand, meta-heuristic algorithms are powerful at solving large-scale problems. However, the 

generation, evaluation, and selection of candidates in the population follow a logical rule [15]. Thus, a huge 

simulation time is required even for small-scale problems. Another challenge for the researcher when using 

meta-heuristic algorithms is the initial parameters. Some papers applied meta-heuristic algorithms with initial 

parameters for solving the TEP problem, such as particle swarm optimization (PSO) [14], improved zebra 

optimization algorithm (IZOA) [20], and social spider (SS) [7]. Besides, the TEP problem is solved using 

meta-heuristic algorithms without initial parameters, which can be listed as: symbiotic organisms search 

(SOS) [3], Kepler optimization algorithm (KOA) [5]. Basically, the above algorithms were successfully 

applied to solving the simplified TEP problem. On the other hand, many studies modified the initial method 

to handle the complex TEP problem. In [15], the hybridization between differential evolution algorithm and 

population based incremental learning algorithm called DE-PBILc is proposed for solving the ACTEP 

problem, considering the fuel cost of generation. The proposed algorithm has a high convergency rate. 

However, the required control parameters of the DE-PBILc algorithm are very huge, while the differential 

evolution (DE) algorithm requires only two parameters. The improvement of the binary bat algorithm 

(IBBA) is proposed in [21] for solving both static and dynamic ACTEP problems. However, the simulation 

time of the proposed algorithm is huge, even with a small system. Based on the literature review, the existing 

optimization algorithms are able to solve the ACTEP problem. However, they require several control 

parameters and huge simulation times, which increase the algorithm’s complexity and computation cost. 

Therefore, developing an efficiency optimization method for solving the ACTEP problem is still an open 

question for many studies. 

Based on the above analyses, a new modification of the differential evolution algorithm called MDE 

is proposed in this work to handle the ACTEP problem in the scenario of fuel cost consideration. The DE 

algorithm is known for its direct parallel search feature based on mutation and crossover processes. 

Moreover, the efficiency of the DE method in solving the TEP problem is proven in [22], [23]. However, the 

optimality and convergency speed of this algorithm may be a problem because of the randomness in the 

mutation process, which can be improved by focusing on the best individuals at each interaction. Therefore, 

the new individual at the mutation process is created based on the characteristics of the best individual 

instead of three random individuals in the population in this modification. The efficiency of the proposed 

MDE algorithm is proved in two well-known models: the Graver 6 bus system and the IEEE 24 bus system. 

Moreover, the results of the MDE method are compared with the original DE [24] and five different methods: 

the one-to-one-based optimizer (OOBO) [25], the artificial hummingbird algorithm (AHA) [26], the 

dandelion optimizer (DO) [27], the tuna swarm optimization (TSO) [28], and the chaos game optimization 

(CGO) [29]. 
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2. MATHEMATICAL FORMULATION 

2.1.  Objective function 

The objective function of the ACTEP problem included the investment costs of addition lines and 

generation fuel costs as in [15] is presented in this section. This objective function can be calculated as (1): 

 
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝐶𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑐𝑖𝑗 × 𝑛𝑖𝑗𝑛𝑖𝑗 ∈ 𝛺 + 8760 × ∑ (𝛼𝑘 × 𝑃𝑘)∀𝑘∈𝑁𝑔𝑒𝑛

× 𝐶𝐹𝑘 ;  ∀𝑖, 𝑗 ∈ 𝑁𝑏𝑢𝑠;  𝑖 ≠ 𝑗 (1) 

 

where 𝑐𝑖𝑗  and 𝑛𝑖𝑗 are the cost and number of additional lines that need to be added to the power system. 𝛼𝑘, 

𝑃𝑘, and 𝐶𝐹𝑘 are the generation cost ($/MWh), the total active power of generation, and the capacity factor of 

the generator at node 𝑘, respectively. 𝛺, 𝑁𝑏𝑢𝑠, and 𝑁𝑔𝑒𝑛 are the set of candidate lines, the set of all system 

buses, and the set of all generator buses, respectively. 

 

2.2.  Constraints 

2.2.1. Equation constraints 

The AC PF equation constraints of the ACTEP problem are described in (2)-(7), which contain the 

power balancing equation for both active and reactive power, as well as the power flow in branches. 

Equations (2) and (3) provide the active and reactive power balances 

 

𝑃(𝑉, 𝜃) + 𝑃𝐷 = 𝑃𝐺  (2) 

 

𝑄(𝑉, 𝜃) + 𝑄𝐷 = 𝑄𝐺 + 𝑞𝑠  (3) 

 

The equation (4) presents the active power flow. 

 

𝑃𝑖(𝑉, 𝜃) =  𝑉𝑖 ∑ 𝑉𝑗[𝑔𝑖𝑗cos𝜃𝑖𝑗 + 𝑏𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗]𝑖,𝑗𝜖𝑁𝑏𝑢𝑠
 (4) 

 

The reactive power flow is shown in (5). 

 

𝑄𝑖(𝑉, 𝜃) =  𝑉𝑖 ∑ 𝑉𝑗[𝑔𝑖𝑗sin𝜃𝑖𝑗 + 𝑏𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗]𝑖,𝑗𝜖𝑁𝑏𝑢𝑠
  (5) 

 

The complex power flow in both terminals is proposed in (6) and (7). 

 

𝑆𝑖𝑗
𝑓𝑟𝑜𝑚

= √(𝑃𝑖𝑗
𝑓𝑟𝑜𝑚

)
2

+ (𝑄𝑖𝑗
𝑓𝑟𝑜𝑚

)
2
  (6) 

 

𝑆𝑖𝑗
𝑡𝑜 = √(𝑃𝑖𝑗

𝑡𝑜)
2

+ (𝑄𝑖𝑗
𝑡𝑜)

2
 (7) 

 

2.2.2. Inequation constraints 

Equations (8)-(14) depict the ACTEP problem's inequality constraints, which include active/reactive 

generating power, voltage, shunt compensation, installation circuits, and power flow in branches. The 

allowed active and reactive generations are presented in (8) and (9). 

 

𝑃𝐺
𝑚𝑖𝑛  ≤ 𝑃𝐺 ≤  𝑃𝐺

𝑚𝑎𝑥 (8) 

 

𝑄𝐺
𝑚𝑖𝑛  ≤ 𝑄𝐺 ≤  𝑄𝐺

𝑚𝑎𝑥  (9) 

 

The voltage amplitude is presented in (10). 

 

𝑉𝑖
𝑚𝑖𝑛  ≤  𝑉𝑖  ≤  𝑉𝑖

𝑚𝑎𝑥  (10) 

 

The limitation of shunt compensation is proposed in (11). 

 

𝑞𝑠
𝑚𝑖𝑛  ≤  𝑞𝑠  ≤  𝑞𝑠

𝑚𝑎𝑥  (11) 

 

The maximum number of additional lines at each right-of-way is presented in (12). 

 
0 ≤  𝑛𝑖𝑗 ≤  𝑛𝑖𝑗

𝑚𝑎𝑥
 (12) 
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The equations (13) and (14) introduce the transmission line capacity. 

 

𝑆𝑓𝑟𝑜𝑚  ≤  𝑆𝑚𝑎𝑥 (13) 

 

𝑆𝑡𝑜  ≤  𝑆𝑚𝑎𝑥  (14) 

 

where 𝑃𝐺 , 𝑃𝐺
𝑚𝑖𝑛, 𝑃𝐺

𝑚𝑎𝑥 , 𝑄𝐺 , 𝑄𝐺
𝑚𝑖𝑛, 𝑄𝐺

𝑚𝑎𝑥, 𝑃𝐷, and 𝑄𝐷 are the exiting, minimum, and maximum vectors of 

active and reactive power of the generator and load demand, respectively. 𝑞𝑠, 𝑞𝑠
𝑚𝑖𝑛, 𝑞𝑠

𝑚𝑎𝑥 are the exiting, 

minimum, and maximum of shunt compensation, respectively. The calculation of 𝑔𝑖𝑗, 𝑏𝑖𝑗 , 𝑃𝑖𝑗
𝑓𝑟𝑜𝑚

, 𝑃𝑖𝑗
𝑡𝑜, 

𝑄𝑖𝑗
𝑓𝑟𝑜𝑚

, and 𝑄𝑖𝑗
𝑡𝑜 can be found in [13]. 𝑉𝑖, 𝑉𝑖

𝑚𝑖𝑛, and 𝑉𝑖
𝑚𝑎𝑥 are the exiting, minimum, and maximum of 

voltage, respectively. 𝑛𝑖𝑗, 𝑛𝑖𝑗
𝑚𝑎𝑥  and 𝑆𝑚𝑎𝑥 are the addition, maximum number of new lines, and maximum 

capacity of each branch. 

 

 

3. OPTIMIZATION METHOD 

3.1.  Modified differential evolution algorithm 

The differential evolution algorithm is first presented in [25]. The main idea of this algorithm is 

based on the evolution process. This algorithm is known as the effective method for solving the TEP problem 

due to its direct parallel search strategy. In this algorithm, each characteristic of a new individual is inherited 

from the previous individual or from the individual created from the mutation process. In the mutation 

process, a new individual is created based on the characteristics of three random individuals in the 

population. This process can be described as: 

 

𝑣𝑚 = 𝑥𝑎
𝑖𝑛𝑖 + 𝐹 × (𝑥𝑏

𝑖𝑛𝑖 − 𝑥𝑐
𝑖𝑛𝑖)  (15) 

 

where 𝑣𝑚 is the new individual created in the mutation process, 𝑥𝑎
𝑖𝑛𝑖, 𝑥𝑏

𝑖𝑛𝑖, and 𝑥𝑐
𝑖𝑛𝑖 are the three random 

individuals in the initial population. 𝐹 is the mutation factor, which is in the range [0, 2]. Although the DE 

algorithm successfully solves the TEP problem [22], [23], the optimization may not be guaranteed because of 

the randomness of the mutation process. Therefore, a new equation based on the three best individuals is 

suggested in this study to replace (15). This equation is expressed as: 

 

𝑣𝑚 = 𝑥𝑏𝑒𝑠𝑡
𝑖𝑛𝑖 + 𝐹 × (𝑥𝑏

𝑖𝑛𝑖 − 𝑥𝑐
𝑖𝑛𝑖) (16) 

 

The difference between (15) and (16) is the 𝑥𝑏𝑒𝑠𝑡
𝑖𝑛𝑖 , which is the random choice of the first, second, and third 

elite individuals (𝑥𝑏𝑒𝑠𝑡
𝑖𝑛𝑖,1𝑠𝑡

, 𝑥𝑏𝑒𝑠𝑡
𝑖𝑛𝑖,2𝑛𝑑

, 𝑥𝑏𝑒𝑠𝑡
𝑖𝑛𝑖,3𝑟𝑑

). 

The proposed equation not only improves the exploitation strategy of DE algorithms but also avoids 

the local optimal solution by randomly selecting first, second, and third-best individuals, as presented in 

Figure 1. In this figure, the search space of the suggested algorithm focuses on the three best individuals who 

enhance the exploitation process over the previous approach. In addition, the exploration method may be 

guaranteed by the random selection of these three best individuals. 

Applying the proposed MDE to solve the ACTEP problem can be described in the steps: 

Step 1: Read data from the chosen system and choose the control specified parameters of the MDE method: 

max iter, pop-size (𝑃𝑜𝑝), 𝐹, and 𝐶𝑟. 

Step 2: Generating the random initial population (17): 

 

𝑥𝑖
𝑖𝑛𝑖 = 𝑙𝑏 + 𝑟𝑎𝑛𝑑 × (𝑢𝑏 − 𝑙𝑏), 𝑖 = 1, … 𝑃𝑜𝑝  (17) 

 

where 𝑃𝑜𝑝 is the maximum number of individuals in the population. 𝑢𝑏 and 𝑙𝑏 are the upper bound 

and lower bound of ACTEP problem. These values are described in (18)-(19). 

 

𝑙𝑏 = [𝑥1
𝑚𝑖𝑛,𝑙𝑖𝑛𝑒 … 𝑥𝛺

𝑚𝑖𝑛,𝑙𝑖𝑛𝑒 , 𝑥1
𝑚𝑖𝑛,𝑣𝑜𝑙 … 𝑥𝑁𝑔𝑒𝑛

𝑚𝑖𝑛,𝑣𝑜𝑙 , 𝑥1
𝑚𝑖𝑛,𝑔𝑒𝑛

… 𝑥𝑁𝑔𝑒𝑛

𝑚𝑖𝑛,𝑔𝑒𝑛
] (18) 

 

𝑢𝑏 = [𝑥1
𝑚𝑎𝑥,𝑙𝑖𝑛𝑒 … 𝑥𝛺

𝑚𝑎𝑥,𝑙𝑖𝑛𝑒 , 𝑥1
𝑚𝑎𝑥,𝑣𝑜𝑙 … 𝑥𝑁𝑔𝑒𝑛

𝑚𝑎𝑥,𝑣𝑜𝑙 , 𝑥1
𝑚𝑎𝑥,𝑔𝑒𝑛

… 𝑥𝑁𝑔𝑒𝑛

𝑚𝑎𝑥,𝑔𝑒𝑛
] (19) 

 

where 𝑥𝑚𝑖𝑛,𝑙𝑖𝑛𝑒 , 𝑥𝑚𝑎𝑥,𝑙𝑖𝑛𝑒 , 𝑥𝑚𝑖𝑛,𝑣𝑜𝑙, 𝑥𝑚𝑎𝑥,𝑣𝑜𝑙, 𝑥𝑚𝑖𝑛,𝑔𝑒𝑛 and 𝑥𝑚𝑎𝑥,𝑔𝑒𝑛 are the lower and upper bounds 

of candidate transmission lines voltages and active generators output, respectively. 
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Step 3: Run the AC PF for all initial individuals and check the AC constraints based on the fitness value. The 

fitness value is calculated following (20): 

 

𝑓𝑖𝑡 = 𝐶𝑡𝑜𝑡𝑎𝑙 + 𝑘𝑝 × ∑ 𝑃𝑝𝑒𝑛
𝐺 + 𝑘𝑞 ×  ∑ 𝑄𝑝𝑒𝑛

𝐺 + 𝑘𝑠 ×  ∑ 𝑆𝑝𝑒𝑛
𝐵 + 𝑘𝑣 ×  ∑ 𝑉𝑝𝑒𝑛  (20) 

 

where 𝑃𝑝𝑒𝑛
𝐺 , 𝑄𝑝𝑒𝑛

𝐺 , 𝑆𝑝𝑒𝑛
𝐵 , and 𝑉𝑝𝑒𝑛 are the penalty values of the generation active power, reactive 

power, power flow in branches, and voltage, respectively. 𝑘𝑝, 𝑘𝑞, 𝑘𝑠, and 𝑘𝑣 are the penalty factors, 

respectively, which are set of 106. 

Step 4: Evaluate the population and point out first, second and third elite individuals (𝑥𝑏𝑒𝑠𝑡
𝑖𝑛𝑖,1𝑠𝑡 , 𝑥𝑏𝑒𝑠𝑡

𝑖𝑛𝑖,2𝑛𝑑, 𝑥𝑏𝑒𝑠𝑡
𝑖𝑛𝑖,3𝑟𝑑). 

Step 5: Create the mutation individual based on the mutation process using the proposed (16). 

Step 6: Generate the new individual based on the crossover (𝐶𝑟) factor. This process can be described by (21): 

 

𝑥𝑖
𝑛𝑒𝑤 = {

𝑣𝑖𝑗
𝑚 , 𝑟 < 𝐶𝑟 | | 𝑗 = 𝑗0

𝑥𝑖𝑗
𝑖𝑛𝑖 , 𝑒𝑙𝑠𝑒

  (21) 

 

where 𝐶𝑟 is the crossover factor, which is the random value in the range [0, 1]. 𝑗0 is the random value 

in the range [1, 𝑃𝑜𝑝]. 

Step 7: Run AC PF and calculate the fitness value of the new individual following the (20). 

Step 8: Selected the individual for the new population by (22): 

 

𝑥𝑖
𝑖𝑛𝑖+1 = {

𝑥𝑖
𝑛𝑒𝑤 , 𝑓𝑖𝑡(𝑥𝑖

𝑛𝑒𝑤) <  𝑓𝑖𝑡(𝑥𝑖
𝑖𝑛𝑖)

𝑥𝑖
𝑖𝑛𝑖 , 𝑒𝑙𝑠𝑒

  (22) 

 

Step 9: Examine the stop condition. If the maximum iteration is reached, go to the next step. Otherwise, go to 

step 4.  

Step 10: Stop and print out the optimal solution. 

 

 

Global Optimal 

Solution

Optimal SolutionOptimal Solution

The search space of the original 

equation (15)

The search space of the proposed 

equation (16)

The search space of the 

proposed equation (16)

The search space of the 

proposed equation (16)

 
 

Figure 1. The search space of the proposed MDE algorithm 

 

 

4. SIMULATION RESULTS 

The evaluation of the proposed MDE algorithm for solving the ACTEP problem is performed in this 

section. Two systems are used in this section, including the Graver 6 bus system and the IEEE 24 bus system. 
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In each system, the static ACTEP problem considering fuel cost with shunt compensation integration is 

solved using the MDE algorithm. Moreover, a comparison of the proposed method with other methods such 

as DE [24], OOBO [25], AHA [26], DO [27], TSO [28], and CGO [29] is performed to prove its 

effectiveness for solving the mentioned problem. The program is performed in a MATLAB environment, 

running on a computer with an Intel® Core TM i5-12500H CPU at 3.10 GHz and 16 GB of RAM. The AC 

power flow is calculated using the MATPOWER [30] toolbox. The optimal solution of all methods is given 

after 30 trials. The control parameters of each algorithm are presented in Table 1. 

 

 

Table 1. The operation parameters of used algorithms 
Method Parameter 
MDE 𝐹=[0.2,0.8], 𝐶𝑟=0.6, 𝑃𝑜𝑝=60 

DE 𝐹=[0.2,0.8], 𝐶𝑟=0.6, 𝑃𝑜𝑝=60 

OOBO 𝑃𝑜𝑝=60 
AHA 𝑃𝑜𝑝 =60 
AHA 𝑃𝑜𝑝 =60 
TSO 𝛼=0.7, 𝑧=0.05, 𝑃𝑜𝑝=60 

CGO 𝑃𝑜𝑝 =60 

 

 

4.1.  The Graver 6 bus system 

This system contains 6 buses, 15 rights-of-ways, and 3 generators, with maximum power generation 

and total load demand of 1100 MW, 760 MW, and 152 MVAr, respectively. The allowed number of addition 

lines in each rights-of-ways is 4. The detail data for this system can be found in [15]. In order to calculate the 

fuel cost, the capacity factors, the operating costs of each generator, and the limit of shunt compensation are 

set as in [15]. The maximum interactions (max iter) of all methods in this system are 150. The simulation 

results of the ACTEP problem of this system are given in Table 2. Observed from this table, total cost 

obtained by using the proposed MDE algorithm is 30,395.36×103$, including additional line investment 

costs (250×103$) and generator fuel costs (30,145.36×103$). This value is lower than the solution given by 

OOBO (30,399.16×103$), AHA (30,464.63×103$), and TSO (30,399.79×103$), respectively. The solutions 

given by the MDE, DE, DO, and CGO methods are equal. However, the convergency rate of the DO 

algorithm is 96.7%, which is lower than the MDE algorithm. Although the solution given by the CGO 

method is the same as the MDE method, the simulation time of the CGO method is 228.26 s, which is higher 

than that of the MDE method (149.88 s). The result obtained by the proposed MDE method is not much 

different compared to the original DE method because the size and the search space of the considered system 

are quite small. In addition, the convergence curve of all used methods and the results of the ACTEP problem 

after 30 trials are shown in Figures 2. According to Figure 2(a), the convergence speed of the MDE technique 

is faster than that of the original DE technique based on the proposed equation. Moreover, the results 

achieved after 30 trials of the MDE method are more stable than other methods, as shown in  

Figure 2(b). The new addition lines and total active generation found by the suggested MDE algorithm are 

equal to the DE-PBILc [15] algorithm. Thus, the total cost given by the MDE algorithm is very close to the 

compared algorithm.  

 

 

Table 2. The results of ACTEP problem in Graver 6 bus system 
 MDE DE OOBO AHA DO TSO CGO DE-PBILc [15] 

Addition lines 𝑙2−3 = 2 

𝑙3−5 = 3 

𝑙2−6 = 2 

𝑙4−6 = 3 

𝑙2−3 = 2 

𝑙3−5 = 3 

𝑙2−6 = 2 

𝑙4−6 = 3 

𝑙2−3 = 2 

𝑙3−5 = 3 

𝑙2−6 = 2 

𝑙4−6 = 3 

𝑙2−3 = 2 

𝑙3−5 = 3 

𝑙2−6 = 2 

𝑙4−6 = 3 

𝑙2−3 = 2 

𝑙3−5 = 3 

𝑙2−6 = 2 

𝑙4−6 = 3 

𝑙2−3 = 2 

𝑙3−5 = 4 

𝑙2−6 = 2 

𝑙4−6 = 4 

𝑙2−3 = 2 

𝑙3−5 = 3 

𝑙2−6 = 2 

𝑙4−6 = 3 

𝑙2−3 = 2 

𝑙3−5 = 3 

𝑙2−6 = 2 

𝑙4−6 = 3 

No. addition lines 10 10 10 10 10 12 10 10 

Total generation (MW) 766.51 766.51 766.58 766.81 766.51 765.64 766.51 766.51 

Total shunt compensation (MVAr) 193.14 192.22 177.45 157.9 194.16 184.49 193.14 191.03 

Lines addition cost (103 $) 250 250 250 250 250 300 250 250 

Fuel cost (103 $) 30,145.36 30,145.36 30,149.16 30,214.63 30,145.36 30,099.79 30,145.36 30,145.32 

Worst cost (103 $) 30,399.8 30,396.4 31,355.3 30,979.5 30,670.8 31,879 31,015 _ 

Mean cost (103 $) 30.395.61 30,395.48 30,497.16 30,390.05 30,480.24 30,802.83 30,513.53 _ 

Best cost (103 $) 30,395.36 30,395.36 30,399.16 30,464.63 30,395.36 30,399.79 30,395.36 30,395.32 

Simulation time (s) 149.88 151.64 157.73 161.81 154.78 173.15 228.26 _ 

Convergency rate (%) 100 100 100 100 96.7 90 100 100 
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(a) (b) 

 

Figure 2. The result obtained by the proposed MDE method: (a) The convergence curve and (b) total cost of 

ACTEP problem in Graver 6 bus after 30 runs  

 

 

4.2.  The IEEE 24 bus system 

The chosen system has 24 buses, 10 generators, and 41 rights-of-way. The total values of load 

demand are 8,550 MW and 1,740 MVAr, with the maximum generation capacity being 10,215 MW. In each 

rights-of-ways, 4 is the maximum of additional circuits. The completed data for considered system can be 

seen in [20]. Similarly to the previous system, the shunt compensation limit, the capacity factors, and the 

operating costs of each generator are set following [15]. In this system, the maximum interaction is set at 500 

(max iter). Table 3 presents the simulation results of the considered problem in this system.  

 

 

Table 3. The results of ACTEP problem in IEEE 24 bus system 
 MDE DE OOBO AHA DO TSO CGO DE-PBILc [15] 

Addition lines 

𝑙1−2 = 1 

𝑙3−24 = 1 

𝑙4−9 = 1 

𝑙5−10 = 1 

𝑙6−10 = 3 

𝑙7−8 = 3 

𝑙10−12 = 1 

𝑙12−13 = 1 

𝑙15−21 = 1 

𝑙15−24 = 1 

𝑙14−23 = 1 

𝑙1−2 = 1 

𝑙1−3 = 1 

𝑙1−5 = 1 

𝑙2−6 = 1 

𝑙4−9 = 2 

𝑙5−10 = 1 

𝑙6−10 = 3 

𝑙7−8 = 2 

𝑙9−11 = 1 

𝑙9−12 = 1 

𝑙10−11 = 1 

𝑙10−12 = 1 

𝑙11−13 = 1 

𝑙15−16 = 2 

𝑙17−18 = 2 

𝑙21−22 = 1 

𝑙1−8 = 1 

𝑙6−7 = 1 

𝑙14−23 = 3 

𝑙1−2 = 1 

𝑙2−4 = 2 

𝑙3−24 = 1 

𝑙4−9 = 1 

𝑙5−10 = 1 

𝑙6−10 = 2 

𝑙7−8 = 2 

𝑙9−11 = 1 

𝑙10−12 = 2 

𝑙11−14 = 1 

𝑙12−13 = 2 

𝑙13−23 = 1 

𝑙14−16 = 1 

𝑙15−21 = 1 

𝑙15−24 = 1 

𝑙15−17 = 1 

𝑙14−23 = 1 

𝑙3−9 = 1 

𝑙3−24 = 1 

𝑙4−9 = 1 

𝑙5−10 = 1 

𝑙6−10 = 2 

𝑙7−8 = 2 

𝑙10−12 = 1 

𝑙12−13 = 1 

𝑙12−23 = 1 

𝑙15−16 = 1 

𝑙15−21 = 1 

𝑙6−7 = 1 

𝑙14−23 = 1 

𝑙3−24 = 1 

𝑙4−9 = 2 

𝑙5−10 = 1 

𝑙6−10 = 1 

𝑙10−12 = 1 

𝑙12−13 = 1 

𝑙13−23 = 1 

𝑙15−16 = 2 

𝑙15−21 = 2 

𝑙15−24 = 2 

𝑙6−7 = 1 

𝑙14−21 = 1 

𝑙1−2 = 3 

𝑙2−4 = 2 

𝑙3−24 = 2 

𝑙4−9 = 3 

𝑙5−10 = 1 

𝑙6−10 = 3 

𝑙7−8 = 1 

𝑙9−11 = 2 

𝑙10−11 = 1 

𝑙11−13 = 3 

𝑙11−14 = 1 

𝑙14−16 = 2 

𝑙15−24 = 3 

𝑙16−17 = 2 

𝑙17−18 = 1 

𝑙19−20 = 2 

𝑙2−8 = 3 

𝑙6−7 = 3 

𝑙16−23 = 3 

𝑙19−23 = 2 

𝑙1−2 = 1 

𝑙3−24 = 2 

𝑙4−9 = 2 

𝑙5−10 = 1 

𝑙6−10 = 3 

𝑙7−8 = 3 

𝑙8−9 = 3 

𝑙8−10 = 2 

𝑙9−11 = 1 

𝑙10−12 = 1 

𝑙11−13 = 1 

𝑙12−13 = 1 

𝑙12−23 = 1 

𝑙14−16 = 1 

𝑙15−21 = 3 

𝑙15−24 = 1 

𝑙16−17 = 1 

𝑙20−23 = 1 

𝑙1−8 = 1 

𝑙6−7 = 1 

𝑙16−23 = 1 

𝑙1−2 = 2 

𝑙4−9 = 1 

𝑙5−10 = 1 

𝑙6−10 = 2 

𝑙7−8 = 4 

𝑙10−11 = 1 

𝑙11−13 = 1 

𝑙15−21 = 1 

𝑙15−24 = 1 

𝑙14−23 = 2 

No. addition lines 16 27 22 15 16 43 32 16 

Total generation (MW) 8,725.97 8,762,14 8,740.1 8,754.32 8,728.56 8,748.08 8,697,77 8,731.68 

Total shunt compensation  

(MVAr) 

1,973.5 2,075.36 1,910.55 2,874.07 2,101.89 2,872.12 1,660.43 1,830.82 

Lines addition cost (106 $) 627 1138 1009 721 878 2034 1452 580 

Fuel cost (106 $) 62,533.73 63,216.84 62,727.32 63,251.84 63,297.56 62,726.41 62,401.65 62,582.97 

Worst cost (106 $) 63,652.05 66,376.91 67,410.85 65,244.51 68,204.26 67,561.41 65,663.34 _ 

Mean cost (106 $) 63,280.88 65,411.54 64,202.03 64,556.94 65,630.58 66,035.08 64,740.48 _ 

Best cost (106 $) 63,160.73 64,354.84 63,736.32 63,972.84 64,175.56 64,760.41 63,853.65 63,162.97 

Simulation time (s) 580.66 576.89 589.23 587.17 594.04 581.36 815.01 _ 

Convergency rate (%) 100 100 93.3% 76.7 76.7 66.7 56.7 70 
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Table 3 shown that the new lines investment cost found by DE-PBILc (580×106$) [15] method is 

smaller than the MDE (627×106$) method, but the fuel cost obtained by MDE method is 62,533.73×106$, 

which is lower than DE-PBILc (62,582.97×106$) [15] method. This fuel cost is optimized by the meta-

heuristic algorithm (MDE) instead of the interior point method as in the study [15]. Therefore, the result 

obtained by the suggested MDE algorithm is 63,160.73×106$, which is smaller than the DE, OOBO, AHA, 

DO, TSO, CGO, and DE-PBILc [15] algorithms by 1.86%, 0.9%, 1.27%, 1.58%, 2.47%, 1.08%, and 

0.0035%, respectively. Moreover, the MDE and DE are two techniques that have a 100% convergency rate 

after 30 trials, as shown in Figure 3. The convergence curve of all used methods in this system is presented in 

Figure 3(a). Observed from this Figure, the convergence speed of the proposed MDE algorithm is higher than 

the compared algorithms. In addition, the results given by the MDE method in 30 trials achieve high stability 

compared to others, as shown in Figure 3(b). 

 

 

 
(a) 

 

 
(b) 

 

 

Figure 3. Simulation results: (a) the convergence curve and (b) total cost of ACTEP problem in IEEE 24 bus 

after 30 runs  

 

 

5. CONCLUSION 

In this research, the modified DE algorithm is presented for solving the ACTEP problem 

considering fuel cost. The efficiency of the proposed technique is proven by solving this problem using the 

Graver 6 bus system and the IEEE 24 bus system. Moreover, the results found by the MDE algorithm in each 

system are compared with DE and other meta-heuristics. In the Graver 6 bus system, the solution given by 

the MDE method is similar to the DE, DO, and CGO methods. However, the convergence speed of the MDE 

method is faster than that of the other methods mentioned. In a more complex system, such as the IEEE 24 

bus system, the solution suggested by the MDE technique has a total cost lower by 1.86%, 0.9%, 1.27%, 

1.58%, 2.47%, and 1.08% compared to other techniques. In addition, the improvement of the proposed MDE 

algorithm is confirmed by the comparison with the original DE algorithm and the DE-PBLIc method in 

literature. Therefore, this algorithm can be applied to solve the ACTEP problem in large-scale systems (IEEE 

118 bus, IEEE 300 bus) and the complex TEP problems in our future works. 
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