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 Detection of malicious nodes in the internet of things (IoT) network 

consumes power, which is one of the main constraints of the IoT network 

performance. To evaluate the energy-security trade-off for malicious node 

detection, this paper proposes an Arduino-based system for dependent 

malicious nodes (DMN) detection. The experimental work using Arduino 

and radio frequency (RF) modules was implemented to detect dependent 

malicious nodes in an IoT network. The detection algorithms were evaluated 

in terms of energy efficiency. The experiment comprises a coordinator node 

with five sensor nodes and varying malicious nodes. The results assess the 

detection algorithms in terms of distinguishing between normal and 

malicious behaviors and their impact on energy efficiency. The experiment 

demonstrated that the detection system could identify the malicious nodes. 

Additionally, the effect of increasing the number of sensors or malicious 

nodes on the suggested detection algorithm’s energy usage is evaluated. 
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1. INTRODUCTION 

The internet of things (IoT) emerges as a prominent technology reshaping the digital landscape, 

facilitating seamless communication among myriad interconnected nodes via a shared network [1], [2].  

With its versatility, IoT finds applications across various domains, notably in enhancing target detection 

within military and security domains [3]. Specifically, wireless sensor networks (WSNs) are deployed to 

monitor potential targets, known as target-detection WSNS (TD-WSNs), wherein sensor nodes collect data 

on target activities [4]–[6]. The gathered data is centralized at a central entity (CE) responsible for 

determining the target’s status. However, the presence of malicious nodes can compromise detection 

accuracy by injecting false data [7]. As is often known, IoT devices are powered by batteries; however, 

changing and recharging them may be costly and tedious [8]. Thus, power consumption is a crucial factor 

that affects IoT system performance [9], [10]. The presence of a malicious entity may impact both the 

performance of the IoT network and the power consumption of all participating nodes. Identifying malicious 

nodes is critical for system and network operation [11]; thus, it is vital to discover unusual behavior in IoT 

devices and develop adaptive and creative anomaly detection algorithms or methods for detecting hazardous 

nodes [12]. Our proposed architecture includes several distributed nodes that broadcast their decisions 

depending on the target status to the central authority via time division multiple access (TDMA) scheduling. 

The central authority collects these decisions and applies the K-of-N rule to determine the global state of the 

target [13]. 

https://creativecommons.org/licenses/by-sa/4.0/
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A sophisticated form of malicious nodes, termed dependent malicious nodes (DMNs), has garnered 

recent attention [7], [14]–[16]. DMNs adjust their attack strategy based on others’ performance, making 

detection challenging. These nodes listen to sensing results from other nodes, altering their own data to 

influence global decisions only when necessary [17], [18]. A study in [19] emphasizes the importance of the 

number of nodes a DMN can hear. To detect DMNs in TD-WSNs utilizing a TDMA reporting style, a 

scheme is proposed to change reporting orders and monitor node performance. Nodes showing divergent 

performance when reporting order changes are identified as DMNs. While this scheme shows promise, it 

primarily addresses binary target states, whereas practical applications often involve multiple states. Another 

study extends this scheme to multistate TD-WSNs [13]. 

Balbudhe et al. [20] proposed a project that intends to reduce industrial energy consumption by 

increasing IoT for remote energy parameter monitoring systems. The system includes a microcontroller, 

global positioning system (GPS) and global system for mobile communications (GSM) system, smart meter, 

internet of things device, and current transformer (CT). The project’s purpose is to remove excessive human 

labor required for energy audits while also providing a complete energy monitoring solution. The study [21] 

aims to develop an industrial internet of things (IIoT) and edge computing based system for monitoring 

energy use in a manufacturing floor using wireless and wired energy meters. The system uses the message 

queuing telemetry transport (MQTT) protocol to deliver data at a one-minute interval, which is saved on a 

database server and analyzed by an edge instance to extract analytical metrics, focusing on kilowatt-hour 

(kWh) for comparison analysis. The study found that deactivating data processing reduced central 

processing unit (CPU) utilization but maintained constant memory usage, suggesting the system could 

improve corporate edge–fog computing technologies for remote applications. The study in [22] used  

energy monitoring (EnerMon), an internet of things long range (LoRa) system, to track power use and  

waste in multiple places. The investigation discovered wasteful power use in auditoriums, pool heaters, 

water pumps, and electric boilers, stressing the need for more effective and efficient energy management 

systems.  

Abba et al. [23] have developed a low-cost autonomous sensor interface for a smart IoT-based 

irrigation monitoring and control system. The system senses the environment and reacts based on sensed 

data, allowing for dynamic system management without human intervention. A microcontroller receives 

signals from soil sensors, turning off relay circuits controlling the water pump. The data is sent to a cloud 

for user viewing. Maintaining moisture levels between 100% and 400% is crucial for efficient irrigation. 

Kanakaris et al. [24] presents an IoT system that monitors temperature and luminosity in a data center 

using MQTT. It analyzes power consumption by Wemos, a firmware application in C, and uploads data to 

the NodeRed MQTT Broker. The NodeMCU serves as a station between routers and nodes, receiving data 

from Wemos and loaded onto Raspberry Pi 2. The system displays real-time data, including power usage 

and missed packets, and prevents retransmissions to extend battery life. The system demonstrated 

comparable power consumption performance over 21 iterations. The platform designed in  [25] manages 

solar-powered wireless sensor nodes in industrial IoT applications, focusing on low-cost voltage sensor 

accuracy. It checks and analyzes Arduino prototypes. The experiment focuses on sensor accuracy and 

voltage-related metrics. The solution improves the efficiency of solar power generation and offers optimal 

IIoT operation settings. The results indicate that it can properly estimate solar panel production. This paper 

elaborates on the previous studies [19], [13] by conducting a practical testbed using Arduino nodes and 

radio frequency (RF) modules. The main objectives of the experiment are to assess various dependent 

malicious nodes’ impact on target-detection wireless sensor networks, explore effective parameters 

influencing TD-WSN performance, and evaluate the energy efficiency of a malicious detection algorithm 

proposed in the work conducted in [13]. Abedin et al. [26] offer an energy-efficient technique for 

scheduling the duty cycles of various sensors in green internet of things (Green-IoT) systems. The 

algorithm operates in three phases: on-duty, pre-off duty, and off-duty. On-duty devices have full 

functionality, whereas pre-off devices have reduced computational capabilities. Off-duty states conserve 

energy in a variety of ways, including hibernation, sleep, and power-down. The suggested energy-efficient 

algorithm successfully schedules the duty cycle of numerous sensors and appliances, resulting in fewer 

devices and higher service quality. Another study in [27] demonstrates long range wide area network 

(LoRaWAN)’s appropriateness for low-power, long-range networks, establishing it as a feasible protocol 

for Internet of Things applications. It minimizes transmission time, data rate, and bit error rate while 

optimizing battery life, spreading factor (SF), and bandwidth (BW). 

 

 

2. METHOD 

The proposed system architecture comprises three primary parts: sensor nodes, RF communication 

links, and a coordinator, as shown in Figure 1(a) and 1(b). In this experimental setup, the system consists of 
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five nodes in total: four normal and one malicious node. Each node makes its decision based on the sensed 

data and communicates it to the coordinator node via RF wireless communication. The coordinator is 

responsible for aggregating and analyzing these decisions and identifying potential malicious behavior. In the 

following sections, the structure of the main types of nodes, sensor nodes, malicious nodes, and the 

coordinator, is explained in detail. 

 

 

  
(a) (b) 

 

Figure 1. The proposed system architecture (a) system model (b) implemented model 

 

 

2.1.  Sensor nodes 

The normal sensor node consists of Arduino Uno, a pushbutton, and an RF transceiver as shown in 

Figure 2(a) and 2(b). Arduino Uno is used as the main microcontroller for the sensor node. Instead of using 

a sensor to sense the target, we have used push buttons and LEDs to indicate the target status as present or 

absent. The red color indicates the target is present while the green color indicates that the target is absent. 

The RF transceiver is used to send a node’s local decision every communication round to the coordinator. We 

have used RF24Ln as an RF transceiver model in this experiment. 

 

 

  
(a) (b) 

 

Figure 2. Sensor nodes (a) normal sensor node (b) malicious node 
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2.2.  Malicious nodes 

The malicious node consists of Arduino Uno, LEDs, and RF transceivers. Arduino Uno is used as 

the main microcontroller of the malicious node. The LED is used to indicate the output of the target status as 

present or absent. The red color indicates the target is present, while the green color indicates that the target 

is absent. The RF transceiver is used to send a malicious decision to the coordinator during every 

communication round. The malicious node could be either static (independent) or dynamic (dependent). The 

static malicious nodes could further appear as independent always-one (IAO), independent always-zero 

(IAZ), or independent always-false (IAF). Pseudo-codes of Algorithm 1 show these malicious types’ of 

functions, respectively. 

Algorithm 1 yields the behavior of an independent malicious sensing node. The IAO node sends a state 

of the present target regarding the actual sensing, yielding a high false alarm probability but a high detection 

probability when the target is present. In contrast, the IAZ node sends an absent target where the system 

generates no false alarms. Yet, it has poor detection since the target is continually ignored. In Algorithm 1, the 

node tries to flip the true target status by IAF node sending an incorrect state, and this is the most disruptive 

tactic. 

 

Algorithm 1. Independent malicious node types 
1: if Mtype == lo then ▷ Always-One type 

2: Decision ← 1 

3: else if Mtype == lz then ▷ Always-Zero Type 
4: Decision ← 0 

5: else if Mtype == lf then ▷ Always-False Type 
6: Decision ← False Decision 

7: end if 

 

Similarly, the dynamic malicious nodes may act as dependent always-one (DAO), dependent always- 

zero (DAZ), or dependent always-false (DAF). Pseudo-codes 4 to 6 show the function of these malicious types, 

respectively. The Algorithms 2, 3, and 4 demonstrate the behavior of a dependent malicious node based on 

always-one, always-zero, and always-false, in which this node decides to send one or zero only when its 

decision can influence the global decision taken by the coordinator, and send the wrong decision only when it 

can impact the outcome. By adopting this behavior, the node acts maliciously selectively to avoid detection. 

In our experimental scenarios, various numbers and types of malicious nodes have been used. For the previous 

algorithms, initialization should be started by defining: the number of nodes 𝑁, 𝑇𝑎𝑟𝑔𝑒𝑡𝑠𝑡𝑎𝑡𝑢𝑠, 𝑇𝑟𝑢𝑒𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 

𝐹𝑎𝑙𝑠𝑒𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑀𝑜𝑟𝑑𝑒𝑟 , 𝑀𝑡𝑦𝑝𝑒, and 𝑅𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 . 

 

Algorithm 2. DAO malicious node types 
 

1: if Mtype == DAO then  

2:   if Morder ≤ 
𝑁

2
 then  

3: Decision ← 1 

4:   else 

5: s ← 0 

6: for i = 1 to Modrder − 1 do 

7: if Rx-Decision[i − 1] == TRUE-Decision then 

8: s ← s + 1 

9: end if 

10: end for 

11: if True-Decision == 0 and s > 
𝑁

2
 then 

12: Decision ← True-decision 

13: else 

14: Decision ← 1 

15: end if 

16: end if 

17: end if 

 

2.3.  Coordinator 

The coordinator node consists of an Arduino Mega and an RF transceiver. Arduino Mega is used as 

the main microcontroller of the coordinator node. The coordinator node’s main task is to receive the nodes’ 

local decisions to make global decisions. In addition, the coordinator node is responsible for detecting and 

identifying malicious nodes. As shown in Algorithm 5, after initialization, the coordinator sends a beacon 

message to the selected node, including the node identifier. Hence, all nodes identify the order and return their 
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decision to the coordinator. A decision buffer is updated with fresh decision values. The coordinator then 

checks if all nodes have been contacted before proceeding to the next round. After completing the maximum 

number of rounds, the malicious node detection mechanism is enabled, where there is a shuffle in the nodes’ 

order for the next turn. Finally, reporting is resumed. 

 

Algorithm 3. DAZ malicious node types 
1: if Mtype == DAZ then  

2:   if Morder ≤ 
𝑁

2
 then  

3: Decision ← 0 

4:   else 

5: s ← 0 

6: for i = 1 to Morder − 1 do 

7: if Rx-Decision[i − 1] == TRUE-Decision then 

8: s ← s + 1 

9: end if 

10: end for 

11: if True-Decision == 1 and s > 
𝑁

2
 then 

12: Decision ← True-decision 

13: else 

14: Decision ← 0 

15: end if 

16: end if 

17: end if 

 

Algorithm 4. DAF malicious node types 
1: if Mtype == DAF then 

2: if Morder ≤ 
𝑁

2
 then 

3: Decision ← False-Decision 

4: else 

5: s ← 0 

6: for i = 1 to Morder − 1 do 

7: if Rx-Decision[i − 1] == TRUE-Decision then 

8: s ← s + 1 

9: end if 

10: end for 

11: if True-Decision == 0 and s > 
𝑁

2
 then 

12: Decision ← True-Decision 

13: else if True-Decision == 1 and s > 
𝑁

2
 then 

14: Decision ← True-Decision 

15: else 

16: Decision ← False-Decision 

17: end if 

18: end if 

19: end if 

 

Algorithm 5. Coordinator 
1: Initialization:  

Define Number of Nodes (N ), Max Iteration (Tmax), Initial Iteration (Tn = 0), index 

2: Start Reporting 

3: while Tn < Tmax do 

4: for index = 0 to N − 1 do 

5: Send message to node with data.ID 

6: Receive decision from the node 

7: end for 

8: if index > (N-1) then 

9: Proceed to the next round 

10: Reset index 

11: Tn ← Tn + 1 

12: end if 

13: if Tn ≥ Tmax then 

14: Perform malicious node detection 

15: Shuffle the order of nodes for the next turn 

16: Tn ← 0 

17: Resume Reporting 

18: end if 

19: end while 
 

 

In Algorithm 6, the malicious node type is identified by calculating the probability of one for each 

node. There are three main categories: independent malicious, dependent malicious, and normal node. The 

node is classified as a dependent malicious node if the current probability value is greater than the previous 
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value plus a threshold value or less than the previous value minus the threshold. If this condition is met, then 

the probability magnitude determines the dependent malicious, whether it’s dependent always one, dependent 

always zero, or dependent always false. If the condition is not met, then the node is classified as an 

independent malicious node. Also, the magnitude of the likelihood defines the Independent malicious node 

type, which is the same as the dependent malicious. The node is considered a normal node if the behavior is 

within an acceptable range around the target probability H0. 

 

Algorithm 6. Malicious detection 
1: Initialization:  

Define: σ=0, Threshold (∆), Max Iterations (Tmax), Target Probability (H0), Independent 

One (IO), Independent-Zero (Iz), Independent-False (If), Dependent One (Do), Dependent 

Zero (Dz), Dependent False (Df), Number of Nodes (Nm) 

2: for each node i in N do 

3:   for each round j up to Tmax do 

4: Calculate new value of σ 

5: σ ← σ + D buff[j][i] 

6: Estimate Pi,n 

7: if Pi,n > (Pi,n,temp + ∆) or Pi,n < (Pi,n,temp − ∆) then 

8: if Pi,n == 0 then 

9: Dz ← Dz + Sn 

10: else if Pi,n == 1 then 

11: Do ← Do + Sn 

12: else 

13: Df ← Df + Sn 

14: end if 

15: else 

16: if Pi,n == 0 then 

17: lz ← lz + Sn 

18: else if Pi,n == 1 then 

19: I0 ← I0 + Sn 

20: else if (H0 − ∆) ≤ Pi,n ≤ (H0 + ∆) then 

21: If ← If + Sn 

22: else 

23: Nm ← Nm + Sn 

24: end if 

25: end if 

26: end for 

27: end for 

 

 

3. RESULTS AND DISCUSSION 

In this section, the performance of the proposed malicious detection algorithm is assessed. The 

evaluation process considers the accuracy of dependent malicious node detection and the energy cost associated 

with the detection process. The required energy consumption for successful detection is measured to evaluate 

the energy efficiency (EE) of the system. The evaluation included experiments conducted with different 

numbers of sensors and different malicious nodes. 

 

3.1.  Performance of the detection algorithm 

The performance of the detection algorithm 6 is evaluated for each node individually. The performance 

is measured in terms of the P1 value, which according to [19] calculated using 1. 

 

𝑃1 =
∑ 𝑙𝑖 𝑇

𝑖=1

𝑇
 (1) 

 

where l denotes the local decision of a node at round i, and T is the maximum number of rounds. Two scenarios 

are considered. In the first scenario, we consider three normal sensor nodes and two malicious nodes with one 

IAF and IAZ. Note that the target status is set to 0, false-alarm probability of the target is 0.2. The performance 

of each node is plotted in Figure 3. Since the target is assumed absent and the false-alarm is 0.2, it is expected 

that the value of P1 of normal nodes will be nearly 0.2; otherwise, the node will be identified as malicious. 

It is clear from this figure that Node 1, 2, and 3 are behaving normally, however, Nodes 4 and 5 demonstrated 

malicious behavior. Specifically, the P1 value due to Node 5 is 0, indicating that the node is IAZ, while the P1 

value due to Node 4 is nearly 0.8, indicating that this node is malicious or IAF. 

In the second scenario, nodes 3 and 4 act as DAZ and DAF; respectively, while other nodes are kept 

normal. Then the performance of all nodes is plotted in Figure 4. It is clear from this figure that Nodes 1, 2, 

and 5 have almost identical performance. On the other hand, Nodes 3 and 4 have abnormal behavior. 
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Figure 3. Performance of nodes in terms of P1 at every 100 rounds (3 normal nodes and two malicious with 

IAZ and IAF) 

 

 

 
 

Figure 4. Performance of nodes regarding P1 at every 100 rounds (3 normal nodes and two malicious with 

DAZ and DAF) 

 

 

3.2.  Impact of the number of nodes on EE 

In the first measurement set, we study the impact of increasing the number of nodes on the energy 

consumption of the coordinator. As shown in Figure 5, the energy consumption increased from about  

0.75 Wh at three nodes to 2 Wh at five nodes. On the other hand, it seems that the number of malicious 

nodes has no significant impact on energy consumption. This is clear for both three and five-node scenarios. 

 

 

 
 

Figure 5. Number of malicious nodes versus energy consumption at three and five nodes scenarios 
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3.3.  Impact of using malicious detection on EE 

Next, we study the impact of using a malicious detection algorithm on the EE. Figure 6 shows the 

energy consumption of the three and five-node scenarios: one with the malicious detection algorithm and the 

other without. It is clear that when there is a small number of nodes (e.g., three nodes scenario) there is a 

negligible difference in energy consumption with and without the presence of a malicious detection algorithm. 

However, when the number of nodes increased to five nodes, the malicious detection algorithm increased 

energy consumption from 1 to 1.3 Wh, which is about 30%. 

 

 

 
 

Figure 6. Number of sensor nodes versus energy consumption with and without malicious detection 

algorithms 

 

 

4. CONCLUSION 

In this paper, an experimental study was conducted to evaluate the performance of the malicious node 

detection and identification algorithms proposed in previous research. The primary objective was to assess both 

the accuracy and energy efficiency of these algorithms within an IoT Network. The experimental setup 

included one coordinator and five sensor nodes, with various numbers and types of malicious nodes introduced 

to simulate realistic attack scenarios. The results demonstrated that the detection algorithm was effective in 

distinguishing between normal and malicious nodes, successfully identifying both the presence and type of 

malicious behavior. Additionally, the energy efficiency of the algorithm was evaluated, with the analysis 

revealing how its energy consumption varied with changes in network configurations specifically when 

increasing the number of malicious nodes or the total number of sensor nodes. These findings offer valuable 

insights into the scalability and practical deployment of the proposed method in larger or more dynamic 

WSN environments. The results validate the algorithm’s effectiveness in terms of both accuracy and energy 

efficiency. Future enhancements could focus on improving detection speed and testing the algorithm under a 

broader range of operational and environmental conditions. 
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