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 As cyber threats and network complexity grow, it is crucial to implement 

effective intrusion detection systems (IDS) to safeguard sensitive data and 

infrastructure. Traditional methods often struggle to identify sophisticated 

attacks, necessitating advanced approaches like machine learning (ML) and 

deep learning (DL). This study explores the application of ML and DL 

algorithms in IDS. Feature selection techniques, such as correlation and 

variance analysis, were employed to identify key factors contributing to 

accurate classification. Tools like WEKA and MATLAB supported data  

pre-processing and model development. Using the UNSW-NB15 and  

NSL-KDD datasets, the study highlights the superior performance of random 

forest (RF) and multi-layer perceptron (MLP) algorithms. RF ensemble 

decision trees and MLP multi-layered architecture enable accurate attack 

detection, demonstrating the potential of these advanced techniques for 

enhanced network security. 
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1. INTRODUCTION 

The rapid growth in data, technology, and smart devices has significantly increased reliance on 

internet-connected systems, which are now integral to various aspects of daily life [1]–[3]. As a result, 

ensuring the integration and preservation of data online has become a critical requirement for any system 

operating in an online environment. Network administrators face increasing challenges in maintaining 

security and shielding data against malware and cyberattacks [2], [3]. The ever-evolving variety and 

sophistication of these threats necessitate a continuous enhancement of security systems to ensure data 

confidentiality, integrity, and seamless accessibility. 

Artificial intelligence has played a pivotal role in anomaly detection by employing classification 

techniques. Widely available datasets like UNSW-NB15, NSL-KDD, CICIDS2017, and KDD-Cup’99 

(KDDCUP99) have significantly contributed to the evaluation of machine learning (ML) algorithms and 

advancement of a cybersecurity measures [4], [5]. Deep learning (DL) techniques often outperform shallow 

methods when aggregating several learning models. This method permits the discovery and exploitation of 

strengths in each model. Therefore, classification accuracy increases and complex attack patterns can be 

detected better [6]–[8]. 

The difficulty in intrusion detection lies in high-dimensional, imbalanced dataset, which reduces 

classification accuracy and results in high computational cost [9]–[11]. Moreover, traditional ML solutions 
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do not generalize well to diverse attack types, especially zero-day attacks [12], [13]. This paper aims to 

address these limitations by utilizing feature selection methods and hybrid ML-DL models to improve 

detection accuracy and decrease false positives. 

Given the high volume of access attempts within networks, effective logging of activities is vital. 

This can be achieved through software, hardware, or a combination of both. Intrusion detection needs robust 

approaches, including the exploitation of constantly updated network services and databases, to stay aligned 

with the increasing diversity of attacks. This also requires knowledge in both intrusion and anomaly detection 

[14]. The progression of malicious methods highlights the necessity for security systems that not only support 

confidentiality, integrity, and accessibility but also guarantee operational continuity over accurate logging of 

network activities. This comprises consistent updates to network servers and databases and tailoring 

configurations to align with specific security objectives [15]. 

The primary goal of this study is to enhance the detection of intrusions in computer networks 

through the use of ML and DL-based algorithms. Precisely, we seek to optimize characteristic selection, 

contrast the behavior of ML and DL algorithms and propose an efficient model that detects the different 

categories of network attacks. 

Designing an intrusion detection system classically involves four necessary steps [4]. These include: 

a. Data collection by gathering detailed network traffic information, including traffic type, host, protocol, 

and other relevant details. 

b. Feature extraction by filtering the collected data to retain only the most relevant features for analysis. 

c. Data analysis to evaluate the selected features to determine whether the data represents normal traffic or a 

potential attack. 

d. Action implementation that takes appropriate measures based on the analysis results, such as issuing 

alerts to administrators or mitigating threats by blocking network ports or halting operations temporarily. 

e. Feature selection and extraction are crucial steps in data cleansing for intrusion detection systems (IDS). 

Approaches such as ML-based filtering or ensemble learning are commonly employed. Ensemble 

learning, which collections predictions from several algorithms, has recognized effective in improving 

accuracy and accomplishing better results [15]. 

This research adds to the literature by assessing and comparing the performance of traditional ML 

versus DL for intrusion detection. We use correlation based and variance feature selection mechanisms to 

improve classification accuracy. Second, we evaluate our solutions on two publicly known datasets, UNSW-

NB15 and NSL-KDD, and show that DL based models, notably MLP and random forest (RF) outstrip their 

traditional counterparts from detection accuracy and F1-score perspectives. 

The focus of this study is to improve security breach detection in computer networks with ML and 

DL algorithms. In particular, we want to assess their effectiveness on the UNSW-NB15 and NSL-KDD 

datasets, so that their detection rate is maximized and the computational overhead is also minimized. These 

initiatives illustrate how security issues are changing over time. ML and DL are an integral part in combating 

these threats. Learning from new data allows them to react to and detect new and advanced cyber-attacks 

even if they are merely nominal tools in doing so. The remainder of the paper is organized as: section 2 

presents related works, section 3 describes the method, section 4 presents the results and discussion, and 

section 5, finally we conclude with the discussion and the future work. 

 

 

2. RELATED WORKS 

The growing density and complexity of network attacks, combined with the growing capabilities of 

cybercriminals, have made securing networks a critical importance for organizations. Effective disruptions of 

networks and websites by hackers highlight the persistent need for reliable IDS. These progressions in 

hacking methods have further underlined the implication of IDS in modern cybersecurity [16]–[18]. 

This study contributes to the field by evaluating and comparing the performance of traditional ML 

algorithms against DL methods for intrusion detection. It focuses on how these models perform on standard 

datasets such as UNSW-NB15 and NSL-KDD. The findings provide insights into the effectiveness of 

different approaches in detecting network intrusions. It also observes how accuracy can be enhanced by 

exploiting advanced feature extraction methods. To provide a complete comparison, the research uses two 

noticeable datasets, concentrating on preprocessing processes that show an essential role in improving 

detection accuracy. 

Numerous studies have explored the use of artificial intelligence-based approaches for IDS, 

particularly leveraging ML and DL techniques. We present an up-to-date structured review of recent papers, 

addressing the analysis of methodology, results, strengths, and limitations. 

a. A study in [6] offered a hybrid learning method that was parametric and non-parametric classifier 

combination for IDS. This method achieved a considerable improvement of detection accuracy and ability 

of reducing false positives, particularly on unbalanced corpus as UNSW-NB15. 
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b. One more work in [7], preferred ensemble based DL models for IoT IDS. However, by combining CNNs 

and RNNs the system had increased precision and recall, but it was computationally expensive. 

c. In [8], presented a systematic literature review on the DL techniques for cyber threat detection in IoT 

networks. It drew attention to the value of feature extraction and temporal modeling, and indicated 

circumstances in which DL can surpass classical ML. 

d. In [9], also suggested improving IDS using DL and data augmentation techniques. Their approach 

enhanced the detection of minority classes albeit at the cost of model complexity. 

e. Comparison of binary and multi-class classification performance of ML & DL models was studied in 

[10]. The results showed that deep models, such as MLP and LSTM, obtained better performance 

(accuracy and F1-score) than conventional classifiers. 

f. Reference [11] performed in-depth analysis of ML techniques for class imbalance in IDS. Methods 

including SMOTE and cost-sensitive learning were indicated to improve accuracy on under-represented 

attack types. 

g. The unsupervised learning for the detection of the zero-day attacks is also proposed in [12]. The model 

was effective in detecting anomalies, however operational problems were due to the fact that it was 

required to tune thresholds. 

h. A critical review in [13], presented AI-based IDS solutions, highlighting the importance of the adaptive 

and scalable solutions. It pointed out that the DL models are very powerful, but they are data hungry and 

big labeled datasets do not exist. 

i. In [18], the ANNs were used to classify network intrusion on the NSL-KDD dataset. Their model was 

able to detect HDP with 95% accuracy. This approach worked reasonably well but had difficulty with 

high dimensional features and generalization to new types of attack. 

j. Reference [19] presented a two-stage model based on decision tree algorithms for network intrusion 

detection although the CICIDS2017 achieved a classification accuracy of 92.6% that was better than the 

existing methods. But it was computationally heavy and was not scalable in real-time applications. 

k. Reference [20] presented an analysis of several ML-based IDS models, specializing in decision trees (DT) 

with the UGR'16 dataset. DT achieved more than 94% accuracy for correctly classifying new content, 

implying resilience to known attacks at the cost of its inability to recognize zero-day attacks. 

l. Reference [21] proposed the DEHO model for the detection distributed denial-of-service (DDoS) attacks 

in cloud. DEHO achieved better accuracy than other classifiers on four datasets. Its hybrid architecture 

was beneficial to the detection but demanded a long training time. 

m. In [22], designed a stacked LSTM with autoencoder encryption to enhance DL functionality in intrusion 

detection. Although the model decreased the amount of errors in predicting, and made traffic decisions 

more accurate, it lacked interpretability, and cost too much to deploy. 

n. In study [23], presents the UNSW-NB15 dataset which has also emerged as a popular target for 

benchmarking network. One of the most important benefits of this dataset is that it covers a variety of 

modern attack types from real network traffic by up-to-date tools and provides a more realistic 

environment than older datasets such as KDD99. It's also packed with well-designed capabilities to make 

training and evaluating machine learning models easy. But one of the most significant flaws is the class 

imbalance in the dataset, which might bias learning algorithms and decrease the detection performance 

regarding minority attack types. Furthermore, the dataset has been generated in 2015 and therefore may 

not adequately represent the most recent threat landscapes and more advanced cyber-attacks occurring in 

more recent years. 

o. In reference [24], the KDDCUP99, the NSL-KDD, and UNSW-NB15 datasets were analyzed in internet 

of things (IoT) contexts using DL. 3. It also highlighted that the more recent datasets, for example, 

UNSW-NB15 have more valid evaluations than for example KDDCUP99. 

p. Authors in [25] proposed a guidelines for training based on KDD-Cup'99 and NSL-KDD dataset for 

training of anomaly-based IDS. While valuable, these datasets are now believed less relevant to the way 

modern attacks operate. 

The literature survey shows a clear migration toward the deployment of DL-based IDS especially 

with the use of both hybrid architecture and ensemble methods. These models are generally better than 

classical ML algorithms in the detection accuracy, precision and F1-score specifically when trained with 

recent datasets as UNSW-NB15. But there are still some limitations such as huge computational cost, no 

interpretation and poor effects for imbalanced data. The recent literature highlights that data augmentation, 

feature selection and unsupervised learning are crucial to dealing with these problems. Future work will look 

into coping with real-time adaptation, lightweight DL models, and cross-dataset generalization in an effort to 

achieve a complete adaptability against incoming threats. 
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3. METHOD 

The efficiency of ML and DL algorithms for intrusion detection is investigated in this paper with 

two well-known benchmark datasets: UNSW-NB15 and NSL-KDD [23], [24], both usually applied in 

network security research under controlled experimental conditions. These datasets capture a diversity of 

network activities and attack types. The research applies to a combination of ML models and DL techniques, 

such as RF and MLP. To enhance classification performance, the datasets underwent preprocessing, and 

feature selection techniques were employed to identify the most significant attributes. 

UNSW-NB15 dataset is a benchmark commonly used in cybersecurity research for assessing IDS. 

Founded at the Australian Center for Cyber Security in 2015 to overcome the limitations of legacy datasets 

including NSL-KDD and KDDCUP99, mainly in expressive modern network behaviors and diverse attack 

scenarios [23]–[26]. The dataset simulates realistic network traffic, blending normal activities and numerous 

modern attack patterns, to evaluate IDS models effectively. Where the dataset structure as: 

The dataset contains 49 features representing various network attributes such as IP addresses, ports, 

protocols, packet sizes, and timestamps. 

It comprises approximately 2.5 million records, divided into normal traffic and attack traffic. 

It includes a range of attack categories that reflect real-world scenarios, such as: 

a. Fuzzers: sending random inputs to discover vulnerabilities. 

b. Analysis: port scanning and other probing techniques. 

c. Backdoors: unauthorized access through covert channels. 

d. Denial of service (DoS): overwhelming a network or server with traffic. 

e. Exploits: using software vulnerabilities to compromise systems. 

f. Generic: platform-agnostic attacks, like password cracking. 

g. Reconnaissance: gathering information for potential future attacks. 

h. Shellcode: malicious code designed to exploit vulnerabilities in software to execute unauthorized 

commands on a target system. 

i. Worms: self-replicating malware spreading across networks. 

UNSW-NB15 key attributes are the attack-cat: specifies the type of attack in the dataset (e.g., DoS, Exploit), 

label: specifies whether the record is normal (0) or an attack (1), and distribution: the dataset has an almost 

equal balance between normal and attack traffic to reduce bias in classification. 

Figure 1 presents the dataset, which consists of 2,540,044 records along with two classification 

tools: attack-cat and label. The 'delay' attribute indicates the presence of a defect, with a value of 0 for normal 

records and 1 for defective records. The general classification can be performed using either or both of the 

classification tools, leading to identical classification results. In our research, the UNSW-NB15 attribute is 

identified as the most important feature. 

 

 

 
 

Figure 1. Percentage distribution of records in the UNSW-NB15 dataset 

 

 

A detailed overview of the dataset's features is provided in Figure 2. NSL-KDD dataset is a widely 

used resource for evaluating IDS. It is derived from the KDDCUP99 dataset and addresses several issues 

present in the original version by removing redundant records [1], [25]. This modification results in a more 

balanced dataset and minimizes bias that classifiers might otherwise develop. 

The NSL-KDD dataset contains 41 attributes, along with a class attribute that categorizes the type of 

connection between two records (i.e. Normal and Abnormal (attack) traffic). Table 1 illustrates the 

percentage distribution of records in this database (i.e. # indicate the number of records, where % indicate the 

percentage of records overall). It includes both normal and abnormal (attack) records, which are classified 

into five categories [24]–[26]: 
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a. normal traffic. 

b. Dos: attempts to make the device unavailable to its users. 

c. Probe: efforts to gather information to identify potential vulnerabilities. 

d. User 2 root (U2R): unauthorized access to the system is obtained. 

e. Remote to local (R2L): the attacker gains unauthorized access from a remote machine. 

The NSL-KDD dataset consists of 41 features and one class attribute which characterizes each 

instance as normal/ one of various attack types as shown in Figure 3. These features are grouped into three 

categories: basic features, Content features, and Traffic features (for more details please read [24], [25]). 

Feature extraction is a predictive technique that reduces the number of input variables during model 

development. By eliminating irrelevant or redundant features, this process simplifies the model architecture. 

As a result, computational efficiency improves, and the model becomes more effective at identifying 

meaningful patterns in the data. It is especially beneficial when working with ML models that process large 

datasets. Feature extraction helps identify the most significant features that are strongly correlated with the 

target variable [23], [27]. 

 

 

 
 

Figure 2. Features of the UNSW-NB15 dataset 

 

 

Table 1. Percentage distribution of records in the NSL-KDD dataset 
NSL-KDD Record Type KDDTrain+ (Training Set) KDDTest+ (Testing Set) Combined 

# % # % # % 

Normal 67,343 53.46 9,711 43.08 77,054 51.88 
Dos 45,927 36.45 8,456 37.01 54,383 36.62 

Probe 11,656 9.25 873 3.87% 12,529 8.44 

R2L 995 0.79 3,249 15.02 4,244 2.86 
U2R 52 0.04 255 1.02 307 0.21 

 

 

 
 

Figure 3. Features of the NSL-KDD dataset 

 

 

In this research, correlation, coefficients and variance are used to select the most relevant features 

for each dataset. Variance quantifies the extent to which feature values deviate from the mean. It serves as an 

indicator of how much the values differ from one another and from the average. A high variance indicates 

that the values are spread across a broader range, whereas a low variance suggests that the values are 

clustered near the mean. The formula for variance is given by (1). 

 

𝐶𝑂𝑋(𝑥) = 1/𝑛∑ (𝑥𝑖 − 𝑥)𝑛
𝑖=0  (1) 

 

where: x is the arithmetic mean of n values, Xi is the number of samples. 

In this research, variance is employed to determine which features show the greatest spread 

(variation) in their values. Features with higher variance are generally more effective in differentiating 
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between various classes. The coefficient of correlation measures the degree of linear association between two 

or more variables and aids prediction of one variable on the basis of another. When two variables are strongly 

correlated, knowing one can help predict the other. If the two variables are identical, only one parameter is 

needed to represent both, as the second parameter does not provide additional information. The correlation 

coefficient is defined by the following (2). 

 

𝐶𝑜𝑟𝑟(𝑥, 𝑦) =
𝐶𝑜𝑣(𝑥,𝑦)

𝑎𝑥.𝑎𝑦
 (2) 

 

where, Cov(x,y) is the covariance between x and y, ax represents the standard deviation of x, and ay is the 

standard deviation of y. 

In this study, the coefficient of correlation is utilized to estimate the impact magnitude of features on 

the target variable. Features with a higher absolute correlation coefficient (closer to 1 or -1) are more likely to 

be valuable for classification purposes. In this research, the adjustment and correlation coefficient methods 

were practical to the NSL-KDD and UNSW-NB15 datasets to classify the most important features linked to 

the target classes. This process is vital for improving classification accuracy and decreasing the 

computational load throughout the ML process. 

The following steps were followed in the feature extraction process: 

a. The variance for each feature was computed to assess its distribution across the dataset. 

b. The correlation coefficient was calculated between each feature and the target variable to evaluate the 

linear relationship. 

c. Based on the calculated variance and correlation values, the features most relevant to the classification 

task were selected. 

Artificial intelligence (AI) is a field of computer science motivated on emerging techniques that 

allow machines to achieve tasks classically requiring human intelligence. ML, a key factor of AI, enables 

computer systems to learn straight from data, examples, and experiences. Using programmed algorithms, ML 

analyzes input data to predict output values, continuously improving and optimizing its processes to enhance 

performance and develop intelligence over time [28]. This study applies both traditional ML and DL 

algorithms for classifying network intrusions. Some of the algorithms used include: 

a. K-nearest neighbors (KNN), a simple algorithm to classify a dataset based on the classification of its 

nearest neighbors [5]. 

b. RF, a classification algorithm that creates a collection of DT and uses majority voting for the final 

prediction [29]. 

c. DT, a decision tree is a flow chart-like tree structure, where each node stands for a feature, and each leaf 

represents a class label [30]. 

d. Naïve Bayes (NB), a probabilistic classifier based on Bayes' theorem [31]. 

e. MLP, a DL model composed of several layers of neurons: input, hidden, and output layers where each 

neuron in these layers is applied activation function to capture complex patterns [32]. 

f. Long short-term memory (LSTM), a type of recurrent neural network (RNN) that is well-suited to 

learning from sequences of data, due to its ability to retain information over sequences [33]. 

Measuring classification accuracy alone is insufficient to assess the performance of each class 

individually [34]. Therefore, the confusion matrix index will be computed for the dataset using the 

correlation matrix as in Figure 4. 

 

 

 
 

Figure 4. Correlation matrix 

 

 

The correlation matrix is a tool used to evaluate classifications by assessing their ability to correctly 

categorize samples, i.e., determining the correct class to which a sample belongs. When comparing predicted 

classifications with actual classifications, four possible outcomes can occur: 

a. True positive (TP), where both the actual and predicted classifications are positive. 

b. False positive (FP), real class is negative, but predicted is positive.  

c. False negative (FN), the object’s classification is positive while the predicted is less than 0.5. 

d. True negative (TN), where both the actual and predicted classifications are negative. 
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By analyzing these outcomes, the following performance metrics are calculated: 

a. Accuracy, that commonly used measure of overall classifier performance, calculated using (3). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁+𝑇𝑃

𝑇𝑁+𝑇𝑃+𝐹𝑁+𝐹𝑃
 (3) 

 

b. Recall measures how well the model is able to find positive samples. It is the number of true positive 

predictions divided by the total number of actual positives. The recall is calculated as in (4). 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑜𝑡𝑎𝑙𝐴𝑐𝑡𝑢𝑎𝑙𝑌𝑒𝑠
 (4) 

 

c. Precision is a statistic that measures the fraction of the model's positive predictions that are correct. It 

refers to the number of true positive cases divided by the sum of true positive and false positive cases. 

The precision is computed using (5). 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑜𝑡𝑎𝑙𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑑𝑌𝑒𝑠
 (5) 

 

d. F1 Score is the metrics that used to assess the performance of a classification model, particularly in 

situations with imbalanced class distributions. It takes into account both false positive and false negative 

errors, offering a balanced assessment. The F1 Score is calculated using the following (6). 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2∗𝑝𝑟𝑒𝑐∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐+𝑟𝑒𝑐𝑎𝑙𝑙
 (6) 

 

For this analysis, the data was split into training and testing data 80:20 % to provide sufficient data 

for training models, but also to allow a robust evaluation phase. Furthermore, 10-fold cross validation was 

adopted in training models to further improve model generalization ability and to minimize the over fitting. 

This method requires each example in the dataset to be used to both train and validate the model multiple 

times; hence, giving a more reliable estimate of model performance in the presence of various types of 

attacks. The hyper-parameters of all models were grid searched over the training set, and the final testing was 

performed on the test set. All results were averaged over three independent experiments with three different 

random seeds for checking consistency of results. 

Figure 5 demonstrates a flowchart exactness the methodology used in this research. The process 

begins with data cleaning, which is vital before applying any algorithms to precise database anomalies. This 

includes addressing lost values based on their nature and adapting textual data into numerical format to 

decrease computational weight. Data normalization, and significant step scales the feature values to a range 

of [0, 1], further dropping computational demands. The UNSW-NB15 and NSL-KDD datasets were 

originally exported into Excel for organized visualization, basic analysis, and preprocessing. Missing values 

and duplicates were controlled to prevent bias or negative impacts on the classifier. In Excel, attack types 

were encoded into numerical values to facilitate easier classification with selected classifiers. 

Feature extraction, a serious step in building an AI model, reduces the dimensionality of high-

dimensional data, alleviating the computational burden and simplifying the model. This step is dynamic since 

increased complexity can negatively affect training and testing times, thus impacting the accuracy of 

intrusion detection. Feature selection, based on correlation coefficients, was used to identify the most 

relevant features for the task. These steps constitute the preliminary data preprocessing phase, which is 

crucial for reducing processing and classification time while enhancing classification accuracy. Irrelevant 

features can often have a detrimental effect on classification algorithms. 

After feature selection, ML algorithms, specifically the MLP and LSTM networks, were applied for 

classification. The results were then compared with those from previous studies using assessment metrics for 

both datasets. The classifiers were adjusted with specific parameters, which might be attuned depending on 

the results and comparisons. 

Hyperparameters of the machine learning and deep learning models were adjusted to maximize  

the performance through a carefully designed tuning process. Grid search with cross-validation 

(GridSearchCV) was used to search over a broad set of hyperparameters values for each method. Among 

the hyperparameters to be tuned were number of trees and maximum depth for RF model, regularization and 

learning rate for logistic regression, number of hidden layers, activation function and learning rate for MLP 

model, and sequence length and memory units for LSTM model. The best settings were selected by 

validation accuracy in 10-fold cross-validation. Early stopping was also used in training to avoid overfitting 

and computation cost. This fine-tuning strategy guaranteed all the models underwent the fine-tuning in full 
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to achieve best detection performance and generalization ability. The hyperparameters experimented for 

each algorithm are: 

a. RF: Number of trees=120, learning rate=0.01 

b. Logistic regression: Number of iterations=100, maximum depth of decision tree=default 

c. LSTM: Activation function=tanh 

The 10-fold cross-validation was used to determine the optimal performing configurations according 

to validation accuracy. Finally, early stopping was also used during training to avoid overfitting and to save 

computation burden. The structured tuning procedure was designed to obtain the best detection performance 

and generalization ability for all models. All the experiments were run on: MATLAB R2021a and WEKA 3.9 

(PHE-RS) in an Intel Core I7 Processor and RAM 16 GB, where the average CPU usage varied on a range of 

60–85%, and the memory was approximately 3.5 and 4.2 GB (according to the model). Windows 11 Pro was 

the operating system. 

 

 

 
 

Figure 5. Workflow box diagram 

 

 

4. RESULTS AND DISCUSSION 

This section delivers an outline of the research methodology and the results obtained. The research 

compared the intrusion detection accuracy of the NSL-KDD and UNSW-NB15 datasets using ML and DL 

algorithms. Weka and MATLAB software were employed at numerous steps of the classification and feature 

extraction processes. The performance is measured first on a Naïve Bayes tool as a baseline algorithm, 

because of its annotation simplicity and runtime. We compare later models against this base model to 

evaluate how it improves detection in terms of accuracy, precision, recall, F1-score. Data preprocessing in 

Excel played an essential role in standardizing the data format. This step was essential for reducing 

processing and classification time, while also improving accuracy, as irrelevant features can negatively affect 

performance. The preprocessing phase involved: 

a. Numerical encoding of attack types that converting attack types into numerical codes facilitated accurate 

classification. In this study, attacks were encoded in two stages: first, the main attack types were encoded, 

followed by the sub-attack types for more detailed identification. Normal records were encoded as 0 and 

attack records as 1 in both datasets. The study focused on binary classification. 

b. Feature reduction can increase computational time and reduce classification accuracy, making feature 

reduction necessary. This research used mathematical relationships to calculate feature correlations and 

identify unnecessary features. This process included: 
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˗ Identifying redundant features via variance calculation, where features with zero variance, meaning 

those that remained unchanged across the dataset, were discarded. 

˗ This was done using the variance formula in MATLAB with the variable function, where value 

represents the selected feature column. The variance results for the UNSW-NB15 dataset are 

presented in Table 2. 

The reason for us to choose the ML and DL models, namely KNN, RF, MLP, LSTM, is due to the 

following several considerations specific to intrusion detection problems: 

a. RF was selected due to its strength in dealing with high-dimensional data and overfitting avoidance and 

reasonable performance in multiclass classification tasks. It proves to be especially useful in the areas of 

cybersecurity, where the analysis of the importance of features is also a requirement. 

b. MLP was chosen as a baseline deep learning model that can be applied effectively on to structured 

records such as network traffic logs. It is flexible in tuning the hidden layers and activation functions, so 

it can accommodate complex relations among features. 

c. KNN was added as a simple non-parametric model that makes a solid baseline for the comparison with 

more sophisticated classifiers. 

d. LSTM networks were added to test if the temporal aspects of network traffic namely time sequential 

attack behaviors if captured as a trainer feature or not by the ML models, and if the presence of such by 

the ML Models improves the pre- diction of attacks or not. 

Together, these models constitute the most comprehensive comparison of classical machine learning and 

recent deep learning approaches in the context of IDS to date.  
 

 

Table 2. Variance results for each feature in the UNSW-NB15 dataset 
FE. Var. FE. Var. FE. Var. FE. Var. FE. Var. 

1 0.3596 2 1.5859 3 0.2516 4 4.357 5 0.5839 

6 0.02548 7 0.6987 8 0.0808 9 0.0171 10 0.0968 

11 0.1202 12 0.8087 13 0.1322 14 5.205 15 1.5889 
16 5.2958 17 5.3695 18 0.2547 19 0.2598 20 0.0256 

21 0.2589 22 1.0259 23 0.0897 24 2.3698 25 8.3651 

26 0.2203 27 0.5259 28 0.0023 29 0 30 0 

31 0.0365 32 0.0027 33 5.2332 34 2.3658 35 0.3258 

36 0.2581 37 0.6523 38 0.0968 39 0 40 0.0702 

41 1.0056 42 0.1658 43 0.2365 44 0.8789 45 0.00364 

 

 

Table 2 shows that features 29, 30, and 39 have zero variance, meaning their values remain constant 

across the entire dataset and are the same for all records. As a result, these features can be removed from the 

classification process, helping to reduce computational load and classification time. Feature 29 represents the 

start time, feature 30 represents the end time, and feature 39 indicates whether the user is logged in (with a 

value of 1) or not (with a value of 0). After eliminating these features, the dataset is reduced, leaving 44 

features, along with the label indicating whether a record is normal or an attack. For the NSL-KDD dataset, 

the variance calculation results are shown in Table 3. 
 

 

Table 3. Variance results for each feature in the NSL-KDD dataset 
FE. Var. FE. Var. FE. Var. FE. Var. FE. Var. 

1 1.98 5 2.235 6 4.5026 7 3.1042 8 0.0203 
9 0.0013 10 0.862 11 0.0226 12 0.2467 13 52.847 

14 0.0024 15 4.4353 16 64.6676 17 0.4581 18 0.0023 

19 0.0046 20 0 21 0 22 0.0276 23 1.6522 
24 7.9321 25 0.0872 26 0.089 27 0.1732 28 0.1732 

29 0.1702 30 0.0672 31 0.0643 32 8.84296 33 1.2496 

34 0.1898 35 0.0487 36 0.938 37 0.0073 38 0.0746 
39 0.0794 40 0.1499 41 0.1607     

 

 

Table 3 indicates that features 20 and 21 have zero variance, meaning their values remain constant 

across all records in the dataset. As a result, these features can be removed without impacting the 

classification accuracy, thus reducing the dataset size. After this step, the number of features is reduced to 39 

(where feature 2 is the scr_port, feature 3 is the dst_ip and feature 4 is the dst_port). Feature 20 represents the 

number of commands issued in an FTP session, while feature 21 takes a value of 1 if a login to the hotlist 

occurs and 0 otherwise. Since both features have the same value for all records, removing them will not 

affect the classification process. 
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To identify correlated features, the correlation coefficient was calculated for each pair. The 

correlation coefficient ranges from -1 to 1, with values closer to 1 indicating a stronger correlation. The aim 

is to remove one feature from each highly correlated pair, as the presence of one feature makes the other 

redundant. Using the correlation coefficient formula and the MATLAB function corrcoef(a,b), the correlation 

coefficient for each pair was calculated. The following Table 4 presents the most correlated features, those 

with a correlation coefficient greater than 0.9, for the UNSW-NB15 and NSL-KDD datasets. 

Table 4 reveals several correlations between features for UNSW-NB15 dataset: feature 10 is 

correlated with feature 31, feature 11 with feature 32, feature 45 with features 44 and 42, feature 46 with 

features 43, 41, and 47, feature 8 with features 17 and 23, and feature 9 with features 18 and 24. As a result, 

one feature from each correlated pair can be removed. For example, the number of connections with the same 

source IP and destination service, feature 45, can be substituted for features 44 (number of connections with 

the same source IP) and 42 (number of connections with the same destination service) since the last two 

features are auxiliary for the former. The same reason also applies to any other correlated feature. Following 

this process, the UNSW-NB15 dataset is reduced to 33 features, along with the label indicating whether a 

record is normal or abnormal. 

 

 

Table 4. Correlated features in the UNSW-NB15and NSL-KDD datasets 
UNSW-NB15  NSL-KDD 

Feature pair Correlation coefficient  Feature pair Correlation coefficient 

(10,31) 0.9015  (13,16) 0.996 

(11,32) 0.9253  (12,16) 0.9006 

(8,17) 0.9906  (25,26) 0.9664 
(8,23) 0.9915  (25,38) 0.9041 

(9,18) 0.9934  (25,39) 0.9008 

(9,24) 0.9959  (26,38) 0.9997 
(44,45) 0.9742  (26,39) 0.921 

(42,45) 0.9698  (27,28) 0.9755 

(41,46) 0.9936  (27,40) 0.9852 
(43,46) 0.9956  (27,41) 0.931 

(46,47) 0.9041  (28,40) 0.98 

   (28,41) 0.9478 

   (33,34) 0.9044 

   (38,39) 0.945 

   (40,41) 0.9047 

 

 

Table 4 also reveals several correlations between features for NSL-KDD dataset, where feature 16 is 

highly correlated with features 12 and 13, allowing features 12 and 13 to be removed while retaining feature 

16. Similarly, feature 25 can replace features 26, 38, and 39; feature 28 can replace features 27, 40, and 41; 

and feature 33 can replace feature 34. For instance, feature 25 represents the percentage of retransmission 

attempts, which strongly correlates with feature 26, representing the percentage of connections to the same 

service and host. Since knowing the retransmission attempts provide sufficient information to infer successful 

connections, feature 26 becomes redundant. The same principle applies to the other correlated features. As a 

result, the retained features are 16, 25, 28, and 33, while the removed features are 12, 13, 26, 38, 39, 27, 40, 

and 41. This feature selection process reduces the dataset to 30 features. 

Following this preprocessing step, classification algorithms were applied to both datasets, with the 

results compared using the Weka software. The following Table 5 presents the accuracy results based on 

confusion matrix parameters for each dataset for the UNSW-NB15 and NSL-KDD datasets. Table 5 

demonstrates that all the classification algorithms produced strong performance, with the RF technique 

showing superior results on the UNSW-NB15 dataset, achieving the highest detection accuracy of 99.7% and 

an F1-score of 99%. Table 5 also shows that the DL model MLP achieved the highest performance on the 

NSL-KDD test set, with a detection accuracy of 98.9% and an F1-score of 99%. Overall, all classification 

algorithms delivered strong results, with performance metrics exceeding 90%. The following diagrams 

illustrate a comparison of performance metrics for both datasets. 

In general, we observe that both ML and DL based models were promising in detecting network 

intrusions. Nonetheless, RF shows the highest performance on the UNSW-NB15 dataset (99.7%), while MLP 

achieved the same result on NSL-KDD dataset (98.9%). The result indicates that model performance may 

differ based on dataset properties, e.g. feature distribution and attack diversity. The following Figure 6 

illustrates a comparison between algorithms on the x-axis (i.e. NB, KNN, RF, DT, MLP, and LSTM) of 

performance metrics in y-axis are divided into four sections (accuracy in Figure 6(a), recall in Figure 6(b), 

precision in Figure 6(c), and F1-score in Figure 6(d) for both datasets. 
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Figure 6 reveals that detection accuracy was high for both datasets, with the UNSW-NB15 dataset 

consistently outperforming the NSL-KDD dataset across all algorithms. A similar trend was observed for the 

Recall and Precision metrics. For the F1-score, the UNSW-NB15 dataset achieved higher values across all 

classification algorithms, except for the DL technique MLP, where both datasets reached an equal F1-score 

of 99%. The comparison with previous studies is summarized in Table 6. 

 

 

Table 5. Performance parameters for the UNSW-NB15 dataset 
Classification 

algorithm 
Accuracy Recall Precision F1-score 

UNSW-

NB15 

NSL-

KDD 

UNSW-

NB15 

NSL-

KDD 

UNSW-

NB15 

NSL-

KDD 

UNSW-

NB15 

NSL-

KDD 

NB 0.958 0.901 0.96 0.9 0.96 0.9 0.96 0.9 

KNN 0.974 0.953 0.98 0.95 0.98 0.95 0.98 0.95 
RF 0.997 0.978 0.99 0.98 0.99 0.98 0.99 0.98 

DT 0.985 0.977 0.99 0.98 0.98 0.98 0.98 0.98 

MLP 0.983 0.989 0.98 0.99 0.99 0.98 0.99 0.99 

LSTM 0.987 0.975 0.97 0.97 0.99 0.97 0.98 0.97 

 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 6. Comparison between algorithms on the x-axis of performance metrics in y-axis: (a) detection 

accuracy comparison, (b) recall value comparison, (c) precision value comparison, and  

(d) F1-score value comparison 

 

 

Table 6 as observed from comparison of the proposed models with previously published works in 

terms of intrusion detection ratio, we can say that a significant enhancement has been achieved in detection 

accuracy. For example in [18] they used ANN in NSL-KDD and obtained 95% accuracy while in this study it 

was 98.9% gotten from NSL-KDD employing MLP. In the same way, decision trees on CICIDS2017 lead to 

an accuracy of 92.6% [19], Random Forest in our experiments gathered 99.7% on UNSW-NB15. These 

improvements resulted from the application of sophisticated feature selection methods, and fine-tuned 

hyperparameters, which ultimately led to enhanced classification and less over fitting. 

The findings in Table 6 indicate that the current study achieved superior detection accuracy 

compared to earlier research efforts. In the first study, neural networks were applied to the NSL-KDD 

dataset, resulting in a detection accuracy of 95%. The second study utilized DT with the CICIDS2017 
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dataset, achieving 92.60% accuracy. The third study employed the RF algorithm on the UGR16 dataset, 

yielding an accuracy of 94%. In contrast, the current study analyzed two datasets, UNSW-NB15 and  

NSL-KDD, using multiple ML techniques. RF delivered the best accuracy on the UNSW-NB15 dataset, 

while the DL model with MLP achieved the highest accuracy on the NSL-KDD dataset, surpassing the 

performance of previous studies.  

 

 

Table 6. Comparison with previous studies 
Classification algorithm Dataset Detection accuracy (%) Reference 

ANN NSL-KDD 95 % [19] 

DT NSL-KDD 92.6 % [20] 

RF CICID 2017 94 % [21] 
DT, RF, KNN, NB, MLP, LSTM UGR'16 99.7 % This study 

DT, RF, KNN, NB, MLP, LSTM UNSW-NB15 98.9 % 

 

 

There are several limitations to this study even though our results are promising. First, the 

experiments were performed on two benchmark data sets, so they might not fully reflect the actual network 

traffic. Second, the deep learning models took a large amount of computation and training time, which came 

with an inherent restriction for being executed in resource-constrained environments. Also, the applied 

feature reduction technique could have been more informative and have produced a reduction in the original 

dataset that lost information. In the future, we plan to mitigate these limitations by including more diverse 

datasets and investigating lightweight deep learning architectures for real-time applications.  

 

 

5. CONCLUSION 

This research employed a diversity of ML and DL methods to identify network intrusions. By 

evaluating the performance of these methods across two datasets, several key conclusions appeared i) ML 

algorithms demonstrated strong classification performance ,the MLP, a DL method, achieved the highest 

accuracy for the NSL-KDD dataset, and the RF algorithm delivered the best results for the UNSW-NB15 

dataset, ii) Comparison of techniques while DL techniques like MLP were highly effective, traditional ML 

algorithms also achieved impressive outcomes, reaffirming their value as viable alternatives in intrusion 

detection, iii) Broader implications where this research highlights the potential for refining algorithmic 

approaches by identifying weaknesses and leveraging results to develop new hybrid systems that combine 

ML and DL techniques. 

Recommendations for future research may in dataset improvements to improve datasets by 

addressing class imbalances and expanding the range of attacks represented, model development to design 

novel models that integrate diverse ML approaches to improve detection capabilities, real-time adaptation to 

implement real-time IDS with support from web-based interfaces for dynamic and immediate threat 

management, and frequent update to conduct regular studies using updated datasets to stay ahead of evolving 

cyber threats, ensuring that IDS remain effective in the face of new attack methods. 

 

 

REFERENCES 
[1] R. Thomas and D. Pavithran, “A Survey of intrusion detection models based on NSL-KDD data set,” in 2018 Fifth HCT 

Information Technology Trends (ITT), Nov. 2018, pp. 286–291, doi: 10.1109/CTIT.2018.8649498. 

[2] J. Zhao, S. Zhang, B. Liu, and B. Cui, “Malware detection using machine learning based on the combination of dynamic and static 

features,” in 2018 27th International Conference on Computer Communication and Networks (ICCCN), Jul. 2018, pp. 1–6,  
doi: 10.1109/ICCCN.2018.8487459. 

[3] M. S. Akhtar and T. Feng, “Malware analysis and detection using machine learning algorithms,” Symmetry, vol. 14, no. 11,  

p. 2304, Nov. 2022, doi: 10.3390/sym14112304. 
[4] H.-J. Liao, C.-H. Richard Lin, Y.-C. Lin, and K.-Y. Tung, “Intrusion detection system: a comprehensive review,” Journal of 

Network and Computer Applications, vol. 36, no. 1, pp. 16–24, Jan. 2013, doi: 10.1016/j.jnca.2012.09.004. 

[5] S. Moualla, K. Khorzom, and A. Jafar, “Improving the performance of machine learning‐based network intrusion detection 
systems on the UNSW‐NB15 dataset,” Computational Intelligence and Neuroscience, vol. 2021, no. 1, Jan. 2021,  

doi: 10.1155/2021/5557577. 

[6] C. Rajathi and P. Rukmani, “Hybrid learning model for intrusion detection system: a combination of parametric and non-
parametric classifiers,” Alexandria Engineering Journal, vol. 112, pp. 384–396, Jan. 2025, doi: 10.1016/j.aej.2024.10.101. 

[7] A. Odeh and A. Abu Taleb, “Ensemble-based deep learning models for enhancing IoT intrusion detection,” Applied Sciences,  

vol. 13, no. 21, p. 11985, Nov. 2023, doi: 10.3390/app132111985. 
[8] A. Aldhaheri, F. Alwahedi, M. A. Ferrag, and A. Battah, “Deep learning for cyber threat detection in IoT networks: a review,” 

Internet of Things and Cyber-Physical Systems, vol. 4, pp. 110–128, 2024, doi: 10.1016/j.iotcps.2023.09.003. 

[9] R. Mohammad, F. Saeed, A. A. Almazroi, F. S. Alsubaei, and A. A. Almazroi, “Enhancing intrusion detection systems using a 

deep learning and data augmentation approach,” Systems, vol. 12, no. 3, p. 79, Mar. 2024, doi: 10.3390/systems12030079. 

[10] A. Alharthi, M. Alaryani, and S. Kaddoura, “A comparative study of machine learning and deep learning models in binary and 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 6, December 2025: 5570-5583 

5582 

multiclass classification for intrusion detection systems,” Array, vol. 26, p. 100406, Jul. 2025, doi: 10.1016/j.array.2025.100406. 

[11] V. Shanmugam, R. Razavi-Far, and E. Hallaji, “Addressing class imbalance in intrusion detection: a comprehensive evaluation of 
machine learning approaches,” Electronics, vol. 14, no. 1, p. 69, Dec. 2024, doi: 10.3390/electronics14010069. 

[12] A. Jain, R. Bagoria, and P. Arora, “An intelligent zero-day attack detection system using unsupervised machine learning for 

enhancing cyber security,” Knowledge-Based Systems, vol. 324, p. 113833, Aug. 2025, doi: 10.1016/j.knosys.2025.113833. 
[13] S. Muneer, U. Farooq, A. Athar, M. Ahsan Raza, T. M. Ghazal, and S. Sakib, “A critical review of artificial intelligence based 

approaches in intrusion detection: a comprehensive analysis,” Journal of Engineering, vol. 2024, no. 1, Jan. 2024,  

doi: 10.1155/2024/3909173. 
[14] R. Anderson, Security engineering: a guide to building dependable distributed systems. Indianapolis: John Wiley & Sons, 2010. 

[15] G. Kim, S. Lee, and S. Kim, “A novel hybrid intrusion detection method integrating anomaly detection with misuse detection,” 

Expert Systems with Applications, vol. 41, no. 4, pp. 1690–1700, Mar. 2014, doi: 10.1016/j.eswa.2013.08.066. 
[16] M. Ozkan-Okay, R. Samet, O. Aslan, and D. Gupta, “A comprehensive systematic literature review on intrusion detection 

systems,” IEEE Access, vol. 9, pp. 157727–157760, 2021, doi: 10.1109/ACCESS.2021.3129336. 

[17] T. Sowmya and E. A. Mary Anita, “A comprehensive review of AI based intrusion detection system,” Measurement: Sensors,  
vol. 28, p. 100827, Aug. 2023, doi: 10.1016/j.measen.2023.100827. 

[18] K. A. Taher, B. Mohammed Yasin Jisan, and M. M. Rahman, “Network intrusion detection using supervised machine learning 

technique with feature selection,” in 2019 International Conference on Robotics,Electrical and Signal Processing Techniques 
(ICREST), Jan. 2019, pp. 643–646, doi: 10.1109/ICREST.2019.8644161. 

[19] M. Injadat, A. Moubayed, A. B. Nassif, and A. Shami, “Multi-stage optimized machine learning framework for network intrusion 

detection,” IEEE Transactions on Network and Service Management, vol. 18, no. 2, pp. 1803–1816, Jun. 2021,  
doi: 10.1109/TNSM.2020.3014929. 

[20] R. Magán-Carrión, D. Urda, I. Díaz-Cano, and B. Dorronsoro, “Towards a reliable comparison and evaluation of network 

intrusion detection systems based on machine learning approaches,” Applied Sciences, vol. 10, no. 5, p. 1775, Mar. 2020,  
doi: 10.3390/app10051775. 

[21] G. A. MM, J. N. K. S, U. M. R, and M. R. TF, “An efficient SVM based DEHO classifier to detect DDoS attack in cloud 
computing environment,” Computer Networks, vol. 215, p. 109138, Oct. 2022, doi: 10.1016/j.comnet.2022.109138. 

[22] E. Mushtaq, A. Zameer, M. Umer, and A. A. Abbasi, “A two-stage intrusion detection system with auto-encoder and LSTMs,” 

Applied Soft Computing, vol. 121, p. 108768, May 2022, doi: 10.1016/j.asoc.2022.108768. 
[23] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 

network data set),” in 2015 Military Communications and Information Systems Conference (MilCIS), Nov. 2015, pp. 1–6,  

doi: 10.1109/MilCIS.2015.7348942. 
[24] S. Choudhary and N. Kesswani, “Analysis of KDD-Cup’99, NSL-KDD and UNSW-NB15 datasets using deep learning in IoT,” 

Procedia Computer Science, vol. 167, pp. 1561–1573, 2020, doi: 10.1016/j.procs.2020.03.367. 

[25] B. M. Serinelli, A. Collen, and N. A. Nijdam, “Training guidance with KDD cup 1999 and NSL-KDD data sets of ANIDINR: 
anomaly-based network intrusion detection system,” Procedia Computer Science, vol. 175, pp. 560–565, 2020,  

doi: 10.1016/j.procs.2020.07.080. 

[26] A. E. Cil, K. Yildiz, and A. Buldu, “Detection of DDoS attacks with feed forward based deep neural network model,” Expert 
Systems with Applications, vol. 169, p. 114520, May 2021, doi: 10.1016/j.eswa.2020.114520. 

[27] G. C. Amaizu, C. I. Nwakanma, S. Bhardwaj, J. M. Lee, and D. S. Kim, “Composite and efficient DDoS attack detection 

framework for B5G networks,” Computer Networks, vol. 188, p. 107871, Apr. 2021, doi: 10.1016/j.comnet.2021.107871. 
[28] A. Basati and M. M. Faghih, “PDAE: efficient network intrusion detection in IoT using parallel deep auto-encoders,” Information 

Sciences, vol. 598, pp. 57–74, Jun. 2022, doi: 10.1016/j.ins.2022.03.065. 

[29] S. Buyrukoglu, “Promising cryptocurrency analysis using deep learning,” in 2021 5th International Symposium on 
Multidisciplinary Studies and Innovative Technologies (ISMSIT), Oct. 2021, pp. 372–376,  

doi: 10.1109/ISMSIT52890.2021.9604721. 

[30] P. TS and P. Shrinivasacharya, “Evaluating neural networks using Bi-Directional LSTM for network IDS (intrusion detection 
systems) in cyber security,” Global Transitions Proceedings, vol. 2, no. 2, pp. 448–454, Nov. 2021,  

doi: 10.1016/j.gltp.2021.08.017. 

[31] M. Al-Shabi, “Design of a network intrusion detection system using complex deep neuronal networks,” International Journal of 
Communication Networks and Information Security, vol. 13, no. 3, pp. 409–415, 2021. 

[32] R. Kruse, S. Mostaghim, C. Borgelt, C. Braune, and M. Steinbrecher, “Multi-layer perceptrons,” in Computational intelligence: a 

methodological introduction, Springer, 2022, pp. 53–124. 
[33] T. D. U. T. CONVOLUTIONAL, “Real-time anomaly detection in Internet of Things devices using temporal convolutional 

network,” Journal of Theoretical and Applied Information Technology, vol. 101, no. 16, 2023. 

[34] D. Božić, B. Runje, D. Lisjak, and D. Kolar, “Metrics related to confusion matrix as tools for conformity assessment decisions,” 
Applied Sciences, vol. 13, no. 14, p. 8187, Jul. 2023, doi: 10.3390/app13148187. 

 

 

BIOGRAPHIES OF AUTHORS 

 

 

Mohammed Al-Shabi     is an associate professor in the Department of MIS, 

Faculty of Business Administration, at Taibah University, KSA. He received his bachelor's 

degree from the computer science department at University at Iraq (1997). He received his 

master's degree in computer science from Putra Malaysia University at 2002, and Ph.D. 

(computer science) from Putra Malaysia University, Malaysia (2006). His research interests 

are mainly directed to network security, data protection, and cloud security. In addition to data 

protection and privacy, developing new protocols, and using artificial intelligence in 

cybersecurity, wireless security, cryptography, UML, stenography multistage interconnection 

network, parallel computing and apply mathematic. He can be contacted at email: 

mshaby@taibahu.edu.sa. 

https://orcid.org/0000-0001-9290-2754
https://scholar.google.com/citations?hl=en&user=plLrjA0AAAAJ


Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Improving network security using deep learning for intrusion detection (Mohammed Al-Shabi) 

5583 

 

Anmar Abuhamdah     received the B.Sc. degree in computer science from Princess 

Sumaya University for Technology, Jordan, in 2003, and his M.Sc. degree in intelligent 

systems from Utara University, Malaysia, in 2007, and the Ph.D. degree in computer science 

from the National University of Malaysia, Malaysia, in 2011. He is currently an associate 

professor at Taibah University, Kingdom of Saudi Arabia, since 2018. His research interests 

are mainly directed to metaheuristics and combinatorial optimization problems including 

timetabling, routing, quadratic, and rostering. His research interests include the applications of 

artificial intelligence, including deep learning, evolutionary and heuristic optimization 

techniques, operation and control, text classification, feature selection prediction models. He 

can be contacted at email: aabuhamdah@taibahu.edu.sa. 

  

 

Malek Alzaqebah     received the B.Sc. degree in computer science from Al Balqa' 

Applied University, Jordan, in 2006, and his M.Sc. degree in information technology from 

Utara University, Malaysia, in 2008, and the Ph.D. degree in computer science from the 

National University of Malaysia, Malaysia in 2012. He is currently an assistant professor in the 

department mathematics, college of science at Imam Abdulrahman Bin Faisal University. His 

research interests are mainly directed to metaheuristics and combinatorial optimization 

problems including course and exam timetabling, vehicle routing, travelling salesman, 

knapsack, and nurse rostering problems. He can be contacted at email: maafehaid@iau.edu.sa. 

 

https://orcid.org/0000-0003-3496-6711
https://scholar.google.com/citations?hl=en&user=MxSRlUMAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=35228560900
https://orcid.org/0000-0002-3846-0673
https://scholar.google.com/citations?hl=en&user=P9ypgCwAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=48360889800

