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 This study presents a comprehensive approach to solving fuzzy multi-

objective linear programming problems (FMOLPP) under uncertainty using 

trapezoidal fuzzy numbers. The authors propose a novel integration of 

Yager’s ranking method, the Big-M optimization technique, and Chandra 

Sen’s statistical mean methods to effectively convert fuzzy objectives into 

crisp values and optimize them. The methodology allows for managing 

multiple fuzzy objectives by ranking and aggregating them using various 

statistical means such as arithmetic, geometric, quadratic, harmonic, and 

Heronian averages. The model is implemented using TORA software and 

demonstrated through a detailed numerical example. The results validate the 

robustness and practicality of the proposed approach, showcasing consistent 

optimal solutions across all statistical methods. This research significantly 

enhances decision-making processes in uncertain environments by offering a 

structured, computationally efficient solution strategy for complex real-

world optimization problems. 

Keywords: 

Decision-making under 

uncertainty 

Fuzzy multi-objective linear 

programming 

Statistical mean approach 

Trapezoidal fuzzy numbers 

Yager’s ranking method 
This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Aditya Ghosh 

Department of Mathematics, Amity University 

Kolkata, West Bengal-700135, India 

Email: aaditya.ghosh09@gmail.com 

 

 

1. INTRODUCTION 

In real-life scenarios, outcomes are not always predictable due to various factors, and we especially 

observe that this issue has different types of areas i.e. industry-related issues (production and supply chain 

model), our social issues, and many types of economic systems. These undefined problems can be classified 

into two main categories: the first one is identified as stochastic uncertainty and the second one is fuzziness 

[1]. Fuzzy optimization techniques are used to handle unpredictable systems with the help of fuzzy numbers 

and parameters because fuzzy numbers easily handle the condition of vagueness. The fuzzy linear 

programming method is one of the most important and usable techniques from methods of fuzzy decision-

making because this model easily handles many types of industry-related issues. Many authors developed 

various types of methods to solve fuzzy linear programming models in the past years but the First literature is 

presented by Bellman and Zadeh for decision-making to handle vagueness conditions with the help of fuzzy 

numbers in [2]. Behera and Nayak [3] solve the related problem by using Zimmermann’s method. Das et al. 

[4] introduced the new algorithm with a grouping Charnes-Cooper scheme to obtain the optimal solution of 

fully fuzzy linear programming problems for real-life problems. Nahar et al. [5] are converting multi-

objective modal into a single objective by using two types of function namely the ranking function and the 

https://creativecommons.org/licenses/by-sa/4.0/
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weighted function to handle both trapezoidal and triangular fuzzy numbers. Sen [6] introduced an 

intermediate method for planning for the development of rural areas with multi-objective optimization 

models. Ackert get literature [7] projected a method namely fuzzy evaluation for natural disaster evaluation. 

The intriguing idea of the Spherical fuzzy linear programming problem was introduced by Ahmad 

and Adhami [8]. It may be divided into three categories and transformed into clear problems by applying a 

ranking function. With the use of t-norm and t-conorm from Archimedean fuzzy sets, Ashraf and Abdullah 

[9] opened up a new area of study for fuzzy sets: spherical fuzzy sets. Expanding on this work, Ashraf et al. 

[10] introduced spherical fuzzy t-norms and t-conorms to further enhance the concept. Ashraf et al. [11] 

developed several aggregation operators for spherical fuzzy dombi (SD) averaging, and ordered averaging. 

hybrid averaging, geometric, and hybrid geometric averaging to efficiently tackle decision-making problems. 

These operators in the context of fuzzy sets are revolutionary. As part of an automated storage and retrieval 

systems technology selection challenge. 

Garg et al. [12] developed and enhanced immersive aggregation procedures for T-spherical fuzzy 

sets in multi-attribute decision-making. Giuleria and Bajaj [13] introduced the innovative concept of  

T-spherical fuzzy graphs, including their arithmetic operations, and applied them to business logistics 

management decision-making and service resto assessment problems Furthering their efforts. Kutlu 

Gundogdu and Kahraman [14] pioneered the MULTIMOORA methodology to solve personnel selection 

problems. To make decision-making even more accessible. This extension allowed for more precise and 

nuanced decision-making. Gündoğdu and Kahraman [15] pushed the limits of the VIKOR method by 

introducing the spherical fuzzy VIKOR (SF-VIKOR) approach and successfully applying it to select a 

warehouse placement, demonstrating its superior performance 

Jin et al. [16], [17] introduced spherical fuzzy entropy to identify unknown criterion weight 

information and proposed new logarithmic operations on spherical fuzzy sets. Liu et al. [18], [19] introduced 

the Lt-SFNs operator, which evaluates language value understanding among the public. They then developed 

the Lt-SF weighted averaging operator, integrating language evaluation knowledge. Building on these 

concepts, the authors enhanced the TODIM approach and established an MABAC methodology based on  

L1-SFNa, a generalization of picture fuzzy sets. Ullah et al. [20], [21] proposed novel similarity metrics, 

such as cosine similarity measurements, grey similarity measures, and set-theoretical similarity measures 

applied to a construction material identification problem in the context of spherical fuzzy sets and T-spherical 

fuzzy sets. Zeng et al. [22] devised a novel approach for hybrid spherical fuzzy sets using rough set concepts 

by implementing a covering-based spherical fuzzy rough set (CSFRS) model within the TOPSIS framework. 

Zheug et al. [23] proposed an analysis for optimizing the ceramic fibers using the differential method. The 

multi Goal Fuzzy problems were discussed using elementary Transformation by Shrivastava [24]. Profit 

maximization in the small mechanical industry due to the application of Linear Programming was explored 

by Jain et al. [25]. 

The primary objective of the research is to address the challenges in optimizing multi-objective 

linear problems when the data is not deterministic, a common scenario in industrial, economic, and 

engineering applications. Existing approaches either lack effective defuzzification or oversimplify fuzzy 

parameters, leading to inaccurate or suboptimal solutions. The following gap was found and it has been 

addressed in this work: i) Lack of robust defuzzification methods that capture the nuance of trapezoidal fuzzy 

parameters; ii) Inadequate integration of statistical tools in the change multiple objectives into the single 

objective in optimization process; and iii) Absence of a unified framework that combines uncertainty 

modeling, defuzzification, and multi-objective optimization. 

This study considers the statistical mean approaches to handle the fuzzy multi-objective linear 

programming problem. The core methodology involves as follows: 

a. Fuzzy representation: Objective and constraints of the linear programming problem are prepared by using 

Trapezoidal fuzzy numbers because of its recognized format that more successfully represents the 

vagueness and imprecision present in the real-world data compared to crisp or triangular fuzzy numbers. 

b. Statistical mean approach: The novelty of this approach lies in using statistical mean to change the multi-

objective functions into the single objective function in place of weighted sum method. 

c. Optimization technique: The classical Big-M method is employed with the help of Tora Software to solve 

this transformed problem and obtained an optimal solution. 

 

 

2. METHOD  

This research distinguishes itself through several innovative contributions, the first integration of the 

statistical mean approach with Yager's ranking function in the context of FMOLPPs involving trapezoidal 

fuzzy numbers. Theoretical refinement of how fuzzy data is translated into crisp values-maintaining the 

informational integrity of fuzzy parameters throughout the transformation. A unified computational 

framework that systematically handles uncertainty, fuzzification, and multi-objective optimization, which can 
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be generalized across various domains. The methodology allows for more realistic modeling of uncertainties 

that arise in economic planning, production scheduling, and logistics, where vague human judgments often 

shape decision variables. 

 

2.1.  Fuzzy set 

Let X be a non-empty set. A fuzzy set 𝐴̃ in X is characterized by its membership function  

𝜇𝐴:𝑋 → [0,1] and 𝜇𝐴(𝑥) is interpreted as the degree of membership of element x in fuzzy set A for each 𝑥 ∈ 𝑋. 

 

2.2.  Multi-objective fuzzy linear programming problem 

If all the parameters of a linear programming problem (LPP) are presented in terms of vagueness i.e. 

fuzzy numbers then our LP problem is identified as a fuzzy linear programming problem (FLPP) and if FLP 

problem consists of more than one objective for a particular modal then it is modal namely know as a multi-

objective fuzzy linear programming problem. In our study, fuzzy numbers are assigned as 𝑐̃𝑟 , 𝑎̃𝑖𝑗 . Here we 

consider MOFLPP as  

 

𝑀𝑎𝑥 𝑜𝑟 𝑀𝑖𝑛 𝑃𝑚 = ∑ 𝑐̃𝑟𝑥𝑟
𝑛
𝑟=1   ∀ 𝑚 ∈ 𝑁 

 

Subject to 

 

∑ 𝑎̃𝑖𝑟𝑥𝑖 ≤ 𝑏̃𝑖
𝑛

𝑟=1
 

1 ≤ 𝑖 ≤ 𝑚 ∃ 𝑥𝑖 > 0 

 

2.3.  Fuzzy trapezoidal number 

Let 𝑚, 𝑛, 𝛼, 𝛽 are real numbers then if these numbers can be arranged in the following manner  

 

𝐴̃ = (𝑚, 𝑛, 𝛼, 𝛽) 
 

Then 𝐴̃ = (𝑚, 𝑛, 𝛼, 𝛽) this fuzzy number is known as fuzzy trapezoidal numbers if its membership function 

can be represented by the function  

 

𝜇𝐴(𝑥) =

{
 
 

 
 
𝑥−(𝑚−𝑛)

𝛼
  𝑚 − 𝛼 ≤ 𝑥 ≤  𝑚

1                  𝑚 ≤ 𝑥 ≤ 𝑛
(𝑛+𝛽)−𝑥

𝛽
  𝑛 ≤ 𝑥 ≤ 𝑛 + 𝛽  

0                          𝑒𝑙𝑠𝑒 

  

 

Now here we present the arithmetic operation for fuzzy trapezoidal numbers as follows. Let 𝐴̃(𝑚1, 𝑛1, 𝛼1, 𝛽1) 
and 𝐵̃ = (𝑚2, 𝑛2, 𝛼2, 𝛽2) are representing two fuzzy trapezoidal numbers define 

 

𝑥 > 0, 𝑥 ∈ 𝑅: 𝑥𝐴̃ = (𝑥𝑚1, 𝑥𝑛1, 𝑥𝛼1, 𝑥𝛽1) 
𝑥 < 0, 𝑥 ∈ 𝑅: 𝑥𝐴̃ = (𝑥𝑚1, 𝑥𝑛1, −𝑥𝛼1, −𝑥𝛽1) 
𝐴̃ + 𝐵̃ = (𝑚1 +𝑚2, 𝑛1 + 𝑛2, 𝛼1 + 𝛼2, 𝛽1 + 𝛽2) 
 

2.4.  Ranking function 

Let ℛ is a function which math every fuzzy number 𝐺(ℛ) in the real line i.e. ℛ: 𝐺(ℛ) → ℛ. Now 

here we presenting the order on 𝐺(ℛ) as follows 

 

𝐴̃ ≤ 𝐵̃  ⇔ ℛ(𝐴̃) ≤ ℛ(𝐵̃), 𝐴̃ ≥ 𝐵̃  ⇔ ℛ(𝐴̃) > ℛ(𝐵̃)  

𝐴̃ ≃ 𝐵̃  ⇔ ℛ(𝐴̃) = ℛ(𝐵̃), 𝐴̃ ≤ 𝐵̃  ⇔ 𝐵̃ ≥ 𝐴̃  
 

Where 𝐴̃ and 𝐵̃ belong in 𝐺(ℛ). Here we specially focused on only about linear ranking function i.e. a 

ranking function ℛ define such that  

 

ℛ(𝐾𝐴̃ + 𝐵̃) = 𝐾ℛ(𝐴̃) + ℛ(𝐵̃) ∀ 𝐴̃, 𝐵̃  ∈ 𝐺(ℛ)  

 

Now taking the 𝐺(𝑅) as linear ranking function as follows: 
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ℛ(𝐴̃) =  
1

2
∫ (𝑖𝑛𝑓𝐴̃𝜆 + sup 𝐴̃𝜆)𝑑𝜆
1

0

 

 

Which reduce to  

 

ℛ(𝐴̃) =  
1

2
(𝑚 + 𝑛) + 

1

4
(𝛽 − 𝛼) 

 

Then for fuzzy trapezoidal number 𝐴̃ =  (𝑚1, 𝑛1, 𝛼1, 𝛽1) and 𝐵̃ =  (𝑚2, 𝑛2, 𝛼2, 𝛽2) 

We have 𝐴̃ ≥ 𝐵̃  ⇔  
1

2
(𝑚1 + 𝑛1) +  

1

4
(𝛽1 − 𝛼1)  ≥  

1

2
(𝑚2 + 𝑛2) +  

1

4
(𝛽2 − 𝛼2) 

 

2.5.  Arithmetic operation 

In this sub-section, we are going to present the operation procedures for the addition and 

multiplication of two fuzzy trapezoidal numbers. 

Let 𝐴̃ =  (𝑚1, 𝑛1, 𝛼1, 𝛽1) and 𝐵̃ =  (𝑚2, 𝑛2, 𝛼2, 𝛽2) be two trapezoidal fuzzy numbers then 

 

𝐴̃ + 𝐵̃ = (𝑚1, 𝑛1, 𝛼1, 𝛽1) + (𝑚2, 𝑛2, 𝛼2, 𝛽2) = (𝑚1 +𝑚2, 𝑛1 + 𝑛2, 𝛼1 + 𝛼2, 𝛽1 + 𝛽2) 
𝐴̃ = −(𝑚1, 𝑛1, 𝛼1, 𝛽1) = (−𝑛1, −𝑚1, 𝛽1,𝛼1) 

 

If 𝐴̃ ≥ 0 and 𝐵̃ ≥ 0 then, 𝐴̃ × 𝐵̃ = (𝑚1, 𝑛1, 𝛼1, 𝛽1) + (𝑚2, 𝑛2, 𝛼2, 𝛽2) = (𝑚1𝑚2, 𝑛1𝑛2, 𝛼1𝛼2, 𝛽1𝛽2) 
 

2.6.  Chandra Sen’s method 

The steps involved in the algorithm [6] are: 

− Apply the Big M Method and determine the optimum solution for every objective function. 

− Let Max 𝑃𝑛 = χk, where k=1, 2, 3, …, g, 𝑃𝑛 = χk, where 𝐾 = 𝑔 + 1, 𝑔 + 2…ℎ. 

− Calculate B1 and B2, where B1=max (|𝜒𝑘|, where k=1, 2, 3, …, g, B2=min |𝜒𝑘|, where K=g+1, g+2, …, h. 

− Calculate the value of the mean by different mean methods. 

a. Arithmetic mean method  

 

Arithmetic mean 𝑀𝑎𝑥 𝑃 =
(∑ 𝑃𝑛
𝑔
𝑛=1 −∑ 𝑃𝑛

ℎ
𝑛=𝑔+1 )

𝐴.𝑀.
, Arithmetic mean by average 𝐴.𝑀.=

𝐵1+𝐵2

2
 

 

b. Quadratic mean method  

 

Quadratic mean 𝑀𝑎𝑥 𝑃 =
(∑ 𝑃𝑛
𝑔
𝑛=1 −∑ 𝑃𝑛

ℎ
𝑛=𝑔+1 )

𝑄.𝑀.
, Quadratic mean by average 𝑄𝑀 = √(𝐵1

2+𝐵2
2)

2
 

 

c. Geometric mean method  

 

Geometric mean 𝑀𝑎𝑥 𝑃 =
(∑ 𝑃𝑛
𝑔
𝑛=1 −∑ 𝑃𝑛

ℎ
𝑛=𝑔+1 )

𝐺.𝑀.
, Geometric mean by average 𝐺𝑀 = √𝐵1×𝐵2 

 

d. Harmonic mean method  

 

Harmonic mean 𝑀𝑎𝑥 𝑃 =
(∑ 𝑃𝑛
𝑔
𝑛=1 −∑ 𝑃𝑛

ℎ
𝑛=𝑔+1 )

𝐻.𝑀.
, Harmonic mean by average 𝐻𝑀 =

2
1

𝐵1
+
1

𝐵2

 

 

e. Heronian mean method  

 

Heronian mean 𝑀𝑎𝑥 𝑃 =
(∑ 𝑃𝑛
𝑔
𝑛=1 −∑ 𝑃𝑛

ℎ
𝑛=𝑔+1 )

𝐻𝑒.𝑀.
,  

Heronian mean by average 𝐻𝑒 . 𝑀 =
1

3
(𝐵1 + √𝐵1×𝐵2 + 𝐵2) 

 

 

3. RESULTS AND DISCUSSION  

In this study, we consider a multi-objective fuzzy linear programming problem with four objectives 

and six constraints with trapezoidal fuzzy numbers. Our problems are as follows: 
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Multiple objective 

 

𝑀𝑎𝑥 𝑃1 = (3,8,11,13)𝑥1 + (3,6,8,10)𝑥2 + (3,8,11,13)𝑥3 + (3,4,5,7)𝑥4 
𝑀𝑎𝑥 𝑃2 = (8,9,12,14)𝑥1 + (7,8,10,12)𝑥2 + (3,8,11,13)𝑥3 + (3,4,5,7)𝑥4 
𝑀𝑖𝑛 𝑃3 = (4,8,12,16)𝑥1 + (9,13,17,21)𝑥2 + (7,8,10,12)𝑥3 + (8,9,12,14)𝑥4 
𝑀𝑖𝑛 𝑃4 = (9,11,12,28)𝑥1 + (13,15,16,32)𝑥2 + (10,12,13,27)𝑥3 + (7,9,10,26)𝑥4 
 

Subject to constraint 

 

(3,5,6,22)𝑥1 + (5,7,8,24)𝑥2 + (4,6,7,23)𝑥3 + (6,8,9,25)𝑥4  ≤  271.75 
(5,7,8,24)𝑥1 + (6,8,9,25)𝑥2 + (7,9,10,26)𝑥3 + (10,12,13,27)𝑥4  ≤  411.75 
(8,10,11,27)𝑥1 + (8,10,11,27)𝑥2 + (8,10,11,27)𝑥3 + (12,14,15,31)𝑥4  ≤  573.75 
(6,8,9,25)𝑥1 + (9,11,12,28)𝑥2 + (9,11,12,28)𝑥3 + (8,10,11,27)𝑥4  ≤  385.5 
(9,11,12,28)𝑥1 + (13,15,16,32)𝑥2 + (12,14,15,31)𝑥3 + (9,11,12,28)𝑥4  ≤  539.5 
(11,13,14,30)𝑥1 + (14,16,17,33)𝑥2 + (15,17,18,34)𝑥3 + (13,15,16,32)𝑥4  ≤  759.5 
𝑥1, 𝑥2, 𝑥3,  𝑥4 ≥ 0 

 

To solve the objective function the ranking function of the trapezoidal no.  

 

Let 𝐴̃ = (m1, n1, α1, β1) and 𝐵̃ = (m2, n2, α2, β2).  

 

Now the ranking of the Trapezoidal no. is 

 

𝑅(𝐴̃) =  
1

2
(𝑚 + 𝑛) + 

1

4
(𝛽 − 𝛼),  

 

Then 𝑅 (8, 9, 12, 14) =
1

2
(8 + 9) +

1

4
(14 − 12) = 6. 

Now fully fuzzy linear programming problem reduces in this form  

Objective functions: 

 

𝑀𝑎𝑥 𝑃1 = 6𝑥1 + 5𝑥2 + 6𝑥3 + 4𝑥4 
𝑀𝑎𝑥 𝑃2 = 9𝑥1 + 8𝑥2 + 6𝑥3 + 4𝑥4 
𝑀𝑖𝑛 𝑃3 = 7𝑥1 + 12𝑥2 + 8𝑥3 + 9𝑥4 
𝑀𝑖𝑛 𝑃4 = 14𝑥1 + 17𝑥2 + 15𝑥3 + 12𝑥4 
 

Subject to:  

 

8𝑥1 + 10𝑥2 + 9𝑥3 + 11𝑥4  ≤ 271.75 
10𝑥1 + 11𝑥2 + 12𝑥3 + 15𝑥4  ≤ 411.75 
13𝑥1 + 13𝑥2 + 13𝑥3 + 17𝑥4  ≤ 573.75 
11𝑥1 + 14𝑥2 + 14𝑥3 + 13𝑥4  = 385.5 
14𝑥1 + 18𝑥2 + 17𝑥3 + 14𝑥4  = 539.5 
16𝑥1 + 19𝑥2 + 20𝑥3 + 18𝑥4  = 759.5 
𝑥1, 𝑥2, 𝑥3,  𝑥4  ≥  0 

 

a.  First fuzzy objective function 𝑀𝑎𝑥 𝑃1 = 6𝑥1 + 5𝑥2 + 6𝑥3 + 4𝑥4  

Subject to: 

 

8𝑥1 + 10𝑥2 + 9𝑥3 + 11𝑥4  ≤ 271.75 
10𝑥1 + 11𝑥2 + 12𝑥3 + 15𝑥4  ≤ 411.75 
13𝑥1 + 13𝑥2 + 13𝑥3 + 17𝑥4  ≤ 573.75 
11𝑥1 + 14𝑥2 + 14𝑥3 + 13𝑥4  = 385.5 
14𝑥1 + 18𝑥2 + 17𝑥3 + 14𝑥4  = 539.5 
16𝑥1 + 19𝑥2 + 20𝑥3 + 18𝑥4  = 759.5 
𝑥1, 𝑥2, 𝑥3,  𝑥4  ≥  0 
The optimized value is 𝑀𝑎𝑥 𝑃1 = −25426.7. 

 

b.  Second fuzzy objective function 𝑀𝑎𝑥 𝑃2 = 9𝑥1 + 8𝑥2 + 6𝑥3 + 4𝑥4 
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Subject to: 

8𝑥1 + 10𝑥2 + 9𝑥3 + 11𝑥4  ≤ 271.75 
10𝑥1 + 11𝑥2 + 12𝑥3 + 15𝑥4  ≤ 411.75 
13𝑥1 + 13𝑥2 + 13𝑥3 + 17𝑥4  ≤ 573.75 
11𝑥1 + 14𝑥2 + 14𝑥3 + 13𝑥4  = 385.5 
14𝑥1 + 18𝑥2 + 17𝑥3 + 14𝑥4  = 539.5 
16𝑥1 + 19𝑥2 + 20𝑥3 + 18𝑥4  = 759.5 
𝑥1, 𝑥2, 𝑥3,  𝑥4  ≥  0 
The optimized value is 𝑀𝑎𝑥 𝑃2 = −25349.4 

 

c.  Third fuzzy objective function 𝑀𝑖𝑛 𝑃3 = 7𝑥1 + 12𝑥2 + 8𝑥3 + 9𝑥4 

Subject to:  

 

8𝑥1 + 10𝑥2 + 9𝑥3 + 11𝑥4  ≤ 271.75 
10𝑥1 + 11𝑥2 + 12𝑥3 + 15𝑥4  ≤ 411.75 
13𝑥1 + 13𝑥2 + 13𝑥3 + 17𝑥4  ≤ 573.75 
11𝑥1 + 14𝑥2 + 14𝑥3 + 13𝑥4  = 385.5 
14𝑥1 + 18𝑥2 + 17𝑥3 + 14𝑥4  = 539.5 
16𝑥1 + 19𝑥2 + 20𝑥3 + 18𝑥4  = 759.5 
𝑥1, 𝑥2, 𝑥3,  𝑥4  ≥  0 
The optimized value is 𝑀𝑖𝑛 𝑃3 = 25863.7 

 

d.  Fourth fuzzy objective function 𝑀𝑖𝑛 𝑃4 =  14𝑥1 + 17𝑥2 + 15𝑥3 + 12𝑥4 

Subject to: 

 

8𝑥1 + 10𝑥2 + 9𝑥3 + 11𝑥4  ≤ 271.75 
10𝑥1 + 11𝑥2 + 12𝑥3 + 15𝑥4  ≤ 411.75 
13𝑥1 + 13𝑥2 + 13𝑥3 + 17𝑥4  ≤ 573.75 
11𝑥1 + 14𝑥2 + 14𝑥3 + 13𝑥4  = 385.5 
14𝑥1 + 18𝑥2 + 17𝑥3 + 14𝑥4  = 539.5 
16𝑥1 + 19𝑥2 + 20𝑥3 + 18𝑥4  = 759.5 
𝑥1, 𝑥2, 𝑥3,  𝑥4  ≥  0 
The optimized value is 𝑀𝑖𝑛 𝑃4 = 26095.1 

 

Table 1 shows the initial table: 

 

 

Table 1. Initial table 
Objectives χk |𝜒𝑘| Value of B1 and B2 

1 -25426.7 25426.7 B1= 25426.7 

2 -25349.4 25349.4 

3 25863.7 25863.7 B2=25863.7 
4 26095.1 26095.1 

 

 

− Arithmetic Mean 𝐴𝑀 =
𝐵1+𝐵2

2
= 

25426.7+25863.7

2
= 25645.2 

− Quadratic Mean 𝑄𝑀 = √
(𝐵1
2+𝐵2

2)

2
 = √

(25426.72+25863.72)

2
= 25646.1  

− Geometric Mean 𝐺𝑀 = √𝐵1×𝐵2  = √25426.7 × 25863.7 = 25644.3 

− Harmonic Mean 𝐻𝑀 =
2

1

𝐵1
+
1

𝐵2

= 
2

1

25426.7
+

1

25863.7

= 25643.4 

− Heronian Mean 𝐻𝑒𝑀 =  
1

3
(𝐵1 +√𝐵1×𝐵2 + 𝐵2) = 25644.9 

− Mean Deviation 𝑀𝑎𝑥 𝑃 = (𝑃1 + 𝑃2) − (𝑃3 + 𝑃4) 
 

𝑀𝑎𝑥 𝑃 = {(6𝑥1 + 5𝑥2 + 6𝑥3 + 4𝑥4) + (9𝑥1 + 8𝑥2 + 6𝑥3 + 4𝑥4)} 
−{(7𝑥1 + 12𝑥2 + 8𝑥3 + 9𝑥4) + (14𝑥1 + 17𝑥2 + 15𝑥3 + 12𝑥4)} 

 

Now the objective function is converting in this form.  

Max 𝑃 by 𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑚𝑒𝑎𝑛 = 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑚𝑒𝑎𝑛 
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𝑀𝑎𝑥 𝑃 =
(∑ 𝑃𝑛
𝑔
𝑛=1 −∑ 𝑃𝑛

ℎ
𝑛=𝑔+1 )

𝐴.𝑀.
  

𝑀𝑎𝑥 𝑃 = (−6𝑥1 − 16𝑥2 − 11𝑥3 − 13𝑥4)/25645.2  

𝑀𝑎𝑥 𝑃 =  (−0.000234𝑥1 −  0.000624𝑥2 −  0.000429𝑥3 −  0.000507𝑥4) 
 

Objective function: 𝑀𝑎𝑥 𝑃 = (−0.000234𝑥1 −  0.000624𝑥2 −  0.000429𝑥3 −  0.000507𝑥4) 
Subject to: 

 

8𝑥1 + 10𝑥2 + 9𝑥3 + 11𝑥4  ≤ 271.75 

10𝑥1 + 11𝑥2 + 12𝑥3 + 15𝑥4  ≤ 411.75 
13𝑥1 + 13𝑥2 + 13𝑥3 + 17𝑥4  ≤ 573.75 
11𝑥1 + 14𝑥2 + 14𝑥3 + 13𝑥4  = 385.5 
14𝑥1 + 18𝑥2 + 17𝑥3 + 14𝑥4 = 539.5 
16𝑥1 + 19𝑥2 + 20𝑥3 + 18𝑥4  = 759.5 
𝑥1, 𝑥2, 𝑥3, 𝑥4  ≥  0 

 

Max P by 𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑀𝑒𝑎𝑛 = −25625.01. 

Similarly, Quadratic Mean: 𝑀𝑎𝑥 𝑃 =
(∑ 𝑃𝑛
𝑔
𝑛=1 −∑ 𝑃𝑛

ℎ
𝑛=𝑔+1 )

𝑄.𝑀.
 

− Max P by 𝑄𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑀𝑒𝑎𝑛 = (−6𝑥1 − 16𝑥2 − 11𝑥3 − 13𝑥4)/25646.1  

 

𝑄.𝑀.= (−0.000234𝑥1 −  0.000624𝑥2 −  0.000429𝑥3 −  0.000507𝑥4) 
 

Geometric Mean: 𝑀𝑎𝑥 𝑃 =
(∑ 𝑃𝑛
𝑔
𝑛=1 −∑ 𝑃𝑛

ℎ
𝑛=𝑔+1 )

𝐺.𝑀.
 

− Max P by 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑀𝑒𝑎𝑛 = (−6𝑥1 − 16𝑥2 − 11𝑥3 − 13𝑥4)/25644.3  

 

𝐺.𝑀 = (−0.000234𝑥1 −  0.000624𝑥2 −  0.000429𝑥3 −  0.000507𝑥4) 
 

Harmonic Mean: 𝑀𝑎𝑥 𝑃 =
(∑ 𝑃𝑛
𝑔
𝑛=1 −∑ 𝑃𝑛

ℎ
𝑛=𝑔+1 )

𝐻.𝑀.
 

− Max P by 𝐻𝑎𝑟𝑚𝑜𝑛𝑖𝑐 𝑀𝑒𝑎𝑛 =
−6𝑥1−16𝑥2−11𝑥3−13𝑥4

25643
 

 

𝐻.𝑀.=  (−0.000234𝑥1 −  0.000624𝑥2 −  0.000429𝑥3 −  0.000507𝑥4) 
 

Heronian Mean: 𝑀𝑎𝑥 𝑃 =
(∑ 𝑃𝑛
𝑔
𝑛=1 −∑ 𝑃𝑛

ℎ
𝑛=𝑔+1 )

𝐻𝑒.𝑀.
 

− Max P by 𝐻𝑒𝑟𝑜𝑛𝑖𝑎𝑛 𝑀𝑒𝑎𝑛 = (−6𝑥1 − 16𝑥2 − 11𝑥3 − 13𝑥4)/ 25644.9  

 

𝐻𝑒 . 𝑀 =  (−0.000234𝑥1 −  0.000624𝑥2 −  0.000429𝑥3 −  0.000507𝑥4) 
 

With same constraints.  

Optimized value of FFMOLPP by mean approaches is  

− Max P by 𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑀𝑒𝑎𝑛 = −25625.01, Max P by 𝑄𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑀𝑒𝑎𝑛 = −25625.01 

− Max P by 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑀𝑒𝑎𝑛 = −25625.01, Max P by 𝐻𝑎𝑟𝑚𝑜𝑛𝑖𝑐 𝑀𝑒𝑎𝑛 = −25625.01 

− Max P by 𝐻𝑒𝑟𝑜𝑛𝑖𝑎𝑛 𝑀𝑒𝑎𝑛 = −25625.01 

 

 

4. CONCLUSION  

Fuzzy multi-objective linear programming problems with trapezoidal numbers present remarkable 

improvement in optimizing results when we are using the proposed statistical mean approach methods. Here 

we found that from obtained results are the same form all the applicable conditions, with this observation 

ability of decision-making has been enhanced, especially in ambiguous conditions.  

The proposed framework demonstrates consistent optimal results across different statistical 

measures, indicating its robustness and reliability in handling vagueness and imprecision inherent in real-

world decision-making scenarios. The use of TORA software for implementation adds to the practicality of 

the approach, making it suitable for a wide range of applications in operations research, engineering, and 

management science. Overall, this study contributes a structured and computationally viable solution to 

FMOLPPs and enhances decision-making capabilities in uncertain environments. 
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