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 Attention deficit hyperactivity disorder (ADHD) is a neurological disorder 

that develops over time and is typified by impulsivity, hyperactivity, and 

attention deficiency. There have been noticeable changes in the patterns of 

brain activity in recent studies using functional magnetic resonance imaging 

(fMRI). Particularly in the prefrontal cortex. Machine learning algorithms 

show promise in distinguishing ADHD subtypes based on these 

neurobiological signatures. However, the inherent heterogeneity of ADHD 

complicates consistent classification, while small sample sizes limit the 

generalizability of findings. Additionally, methodological variability across 

studies contributes to inconsistent results, and the opaque nature of machine 

learning models hinders the understanding of underlying mechanisms. We 

suggest a novel deep learning architecture to overcome these issues by 

combining spatio-temporal feature extraction and classification through a 

hierarchical residual convolutional noise reduction autoencoder 

(HRCNRAE) and a 3D convolutional gated memory unit (GMU). This 

framework effectively reduces spatial dimensions, captures key temporal 

and spatial features, and utilizes a sigmoid classifier for robust binary 

classification. Our methodology was rigorously validated on the ADHD-200 

dataset across five sites, demonstrating enhancements in diagnostic accuracy 

ranging from 1.26% to 9.6% compared to existing models. Importantly, this 

research represents the first application of a 3D Convolutional GMU for 

diagnosing ADHD with fMRI data. The improvements highlight the efficacy 

of our architecture in capturing complex spatio-temporal features, paving the 

way for more accurate and reliable ADHD diagnoses. 
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1. INTRODUCTION 

One common neurodevelopmental condition that affects children is attention deficit hyperactivity 

disorder (ADHD), with a significant proportion of cases persisting into adulthood. Research indicates that 

approximately 65% of individuals diagnosed in childhood continue to experience symptoms into adulthood, 

resulting in substantial economic and psychological ramifications for both patients and their families [1]. 

Clinical judgment is the primary method of diagnosis, which introduces subjectivity and variability into 

evaluations. Timely intervention depends on early identification, but the diagnostic statistical manual 

interpretive flexibility makes the diagnostic procedure difficult [2]. Although a thorough assessment by 

qualified experts is required, inconsistencies are exacerbated by disparities in training. Like autism spectrum 
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disorder, ADHD has recognizable patterns of brain activity that facilitate diagnosis. New developments in 

machine learning (ML) and medical imaging present encouraging paths for more objective diagnosis. Brain 

data is being analyzed using methods including structural magnetic resonance imaging (sMRI) and functional 

magnetic resonance imaging (fMRI), which improve diagnostic accuracy [3]. For instance, Yilin et al. [4] 

used graph convolutional networks (GCN) to examine functional connectivity data, which improved the 

classification of ADHD by emphasizing the distinctions between peers who are usually developing and those 

who have ADHD. A similar model, attention-based spatial temporal network, was presented by Qiu et al. [5] 

using resting-state fMRI data with time division multiplexing to capture temporal fluctuations and adaptive 

functional connectivity generation (AFCG) for spatial correlation analysis. Through the integration of spatial 

and temporal data, adaptive spatial-temporal neural network (ASTNet) surpasses earlier approaches, opening 

the door to more precise and impartial diagnosis of ADHD. 

Recent advancements in ML and deep learning (DL) have significantly enhanced the diagnosis of 

ADHD and other psychiatric disorders through the integration of neuroimaging data. For example, Hatami et 

al. [6] showed how to improve the diagnosis of major depressive disorder by using fMRI data in conjunction 

with the MobileNet V2 model and the data processing and analysis for brain imaging toolbox. Liu et al. [7] 

developed the multimodal generative fusion framework, integrating fMRI and sMRI data through multi-task 

learning to generate paired data, improving diagnostic accuracy. Alsharif et al. [8] developed an ML-based 

decision system that achieved 91% accuracy on standard ADHD datasets, lowering subjectivity in traditional 

evaluations; and Agarwal et al. [9] used a dual approach, combining image-based DL models and graph-

based networks to analyze fMRI connectivity matrices, showing that different brain atlas and connection 

matrix selections improve classification accuracy. In contrast to conventional ReHo techniques, Gülhan and 

Özmen [10] shown that maintaining spatial information improves classification by using 3D convolutional 

neural networks (CNNs) to evaluate fractional amplitude of low frequency fluctuation data. In order to 

improve brain activity investigation in ADHD cases, Saurabh and Gupta [11] reshaped 4D pictures and 

utilized a modified bidirectional long short-term memory (BLSTM) model to interpret resting-state fMRI 

data. In order to get high computational efficiency, Salah et al. [12] combined fMRI and optical amplification 

data in their residual learning layer-based ADHD screening model. In an effort to create "explainable AI," 

Amado-Caballero et al. [13] evaluated demographic parameters influencing ADHD diagnosis using CNN 

visualization techniques including occlusion maps. Using a transformer-based model using ADHD-200 fMRI 

data, Qin et al. [14] combined phenotypic and fMRI data to obtain 74.5% classification accuracy, surpassing 

earlier methods. To facilitate effective feature extraction, a 4D CNN model was also applied, capturing both 

spatial and temporal dimensions with an observed accuracy of 71.3% [15]. Around 800 people from various 

universities contributed sMRI and resting-state fMRI data to the ADHD-200 consortium, which was created 

by the INDI in 2011. This allowed researchers worldwide to improve ADHD classification algorithms by 

using consistent datasets [16]. This information made it easier to create sophisticated models. For example, 

Mao et al. [15] achieved improved classification accuracy by combining 3D CNNs for spatial extraction with 

an long short-term memory (LSTM) model to capture temporal relationships. In order to evaluate 

demographic aspects influencing ADHD diagnosis, Liu et al. [17] investigated CNN visualization 

approaches, such as occlusion maps. This work contributed to the developing topic of "explainable AI," 

which improves the interpretability of DL models in clinical practice. Finally, efforts to enhance diagnostic 

accuracy have been exemplified by Qin et al. [12] who employed a transformer-based model using ADHD-

200 fMRI images, combining fMRI and phenotypic data to achieve a classification accuracy of 74.5%, 

surpassing multiple advanced approaches. To facilitate effective feature extraction, a 4D CNN model was 

also applied, capturing both spatial and temporal dimensions with an observed accuracy of 71.3%. This study 

improves the detection of ADHD by introducing three major contributions: i) a convolutional gated memory 

unit (GMU) to capture spatial and temporal information; ii) a multi-layer convolutional denoising auto 

encoder network to recognize 3D spatial patterns in resting-state functional magnetic resonance imaging (rs-

fMRI) data; and iii) a validated framework evaluated across various sites. The overview of the algorithm, its 

conceptual underpinnings, the experimental setting, and its consequences and future directions are covered in 

the paper. 

 

 

2. ALGORITHM 

The algorithm for classifying ADHD from resting-state fMRI data extracts spatial features using an 

hierarchical residual convolutional noise reduction autoencoder (HRCNRAE), which is then strengthened by 

residual connections to preserve significant information. During training, the model reconstructs the input 

while measuring reconstruction loss, and a convolutional GMU records temporal dependency. Then, using 

global average pooling, people are categorized as either ADHD-positive or not, offering a quick and effective 

way to examine intricate neuroimaging data. 
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Algorithm 1: Spatio-temporal feature extraction and ADHD classification 
Input:X input :4D resting-state fMRI(rs-fMRI) data. 
Step 1: Data Regularization 

Add Gaussian noise for regularization: 

                                                 Input X input = X input + N noise  
Step 2: Feature Encoding with HRCNRAE 

1. Pass X noisy through CP block 1: F1 =H cp (X noisy) 

2. Process through CP block 2:   F2 = H cp(F1 ) 
3. Process through CP block 3: F3 = H cp(F2) 

Step 3: Incorporate Residual blocks 

         Combine features: F residual_outer = F3 + Hskip (F1, F2) 
Step 4: Feature Decoding 

           1.Decode 1: D1 = Hud (Fresidual_outer) 

           2.Decode 2: D2 = Hud (D1) 
           3.Final output: Yreconstructed = Hud(D2) 

Step 5: Compute Loss Function: calculate reconstruction loss 

Step 6: Spation-Temporal Feature Extraction with GMU 
               For each time step t 

             1.Reset gate: rt  =Ϫ(Wr . ht-1 + Ur .xt) 

             2.Update gate: zt=Ϫ(Wz .ht-1 +Uz .xt) 
             3.Candidate hidden state:  h̃t = tanh(Wh . (rtΘht-1) + Uh . xt) 

             4.Final hidden state:       ht = (1-zt)Θht-1 + zt Θ h̃t) 
Step 7: Classification:using Global Average Pooling O=GAP(hT ) 

Output: Predicted ADHD label(1 for ADHD,0 for non-ADHD). 

 

 

3. PROPOSED METHOD  

DL has been used extensively for a variety of applications because it is effective at extracting 

features from huge datasets. It is distinguished by its complexity and more accurate predictions compared to 

conventional machine learning methods. This research presents a network architecture that combines a 

convolutional GMU with an HRCNRAE to use rs-fMRI data to obtain joint spatiotemporal properties, which 

are then applied to the classification of ADHD. As illustrated in Figure 1, the encoder part of the auto 

encoder first extracts high-level spatial characteristics from the rs-fMRI. The auto encoder incorporates a 

residual network to further capture deeper spatial features. The convolutional GMU then organizes and 

processes these spatial characteristics in a temporal manner, capturing both spatial and temporal dynamics at 

the same time. The GMU-extracted characteristics are subjected to GAP [18] before being subjected to a 

sigmoid classifier for the ultimate ADHD classification.    
 

 

 
 

Figure 1. Flowchart of the proposed classification algorithm 
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3.1.  Hierarchical residual convolutional noise reduction autoencoder 

The HRCNRAE is a new method that combines residual networks with convolutional denoising 

autoencoders (CDAE) to extract spatial information from unlabeled rs-fMRI data [19]. Its main goal is to 

recover high-level spatial characteristics while lowering dimensionality so that the convolutional GMU can 

more easily extract spatiotemporal features. HRCNRAE uses skip connections to preserve high-level feature 

extraction while using the residual learning technique first presented by He et al. [20] to avoid the vanishing 

gradient issue in deep networks. The encoder, decoder, and residual blocks make up the HRCNRAE 

architecture, as seen in Figure 2. There are three CP segments with data filtering and reduction layers in the 

input processing unit, and three unpooling deconvolution (UD) segments with reverse filtering and data 

expansion in the output processing unit. An external bypass with two CP and two UD segments and an 

internal bypass with one CP and one UD segment is the two bypass architectures that guarantee effective data 

flow. The system performance is improved by these bypasses, which allow input and output units to be 

trained simultaneously. 
 

 

 
 

Figure 2. Organization of HRCNRAE 
 

 

Regarding the provided rs-fMRI data: 
 

𝑥 = [𝑥1𝑥𝑝](𝑥1 ∈ 𝑅60×72×60)  (1) 

 

where the time period, denoted by p, varies depending on the location. 

The input of HRCNRAE is first obtained by adding random noise, which is regularized by following 

a conventional normal distribution. As a result, we can get 
 

𝑥 = [𝑥1𝑥𝑝], (𝑥𝑖∈ 𝑅60×72×60)      (2) 

 

To extract the enhanced pattern h, the input processing section of HRCNRAE transforms the original data 

into a condensed representation, which is 
 

ℎ = 𝑓(𝑥)    (3) 
 

The interim pattern h is reconstructed into y through HRCNRAE's output processing section, which is 
 

𝑦 = 𝑔(ℎ)      (4) 
 

Since the goal of HRCNRAE's training is to reduce the discrepancy between the cleaned and rebuilt data, the 

loss is described as (5). 
 

2
loss y x= −      (5) 

 

The maximum value [21] that can be produced within the pooling window is the goal of the max pooling 

window. Let sk,i ∈ Ql×m×n be the previous layer's i-th feature map, and let sk− 1,i ∈ Ql×m×n represent the i-th 

feature map in the k-th layer. The i-th feature map of the k-th layer's components can be calculated as (6). 
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𝑠𝑘,𝑖
𝑥1,𝑥2,𝑥3 = 𝑚𝑎𝑥(𝑄𝑘,𝑖

𝑥1,𝑥2,𝑥3)        (6) 

 

To perform deconvolution, the deconvolution kernel slides across the features, whereas the unpooling 

process zero-fills the latent features to return the feature map to its original picture size [22]. Three CP blocks 

make up the encoder, and the CP block's i-th output is 

 

Fi = Hcp (Fi-1) i=1, 2, 3,  (7) 

 

where specific composite functions are used, such pooling, rectified linear unit (ReLU), and convolution, are 

represented by HCP [23]. For i = 1, Fi-1 represents the input noise image I, and the final result resulting from 

the subsequent CP block for all other values. The skip-connection's output is 

 

𝑆1𝑜𝑟𝐸
= 𝑅𝑒𝐿𝑈(∑𝐹𝑖 ∗ 𝑤𝑗 +𝑏𝑗)  (8) 

 

The internal residual block is represented when SI or E = I and i = 2, and the outer residual block is 

represented where i = 1 and SI or E = E. The i-th convolution kernel is indicated by ωj. Bj is a representation 

of the bias. The ReLU activation adds a tiny degree of sparsity to the trained network when j is the number of 

channels, which is shown as (9). 

 

( ) ( )Re max 0,LU x x=   (9) 

 

Three symmetric UD blocks make up the decoder component. The result of the first UD block is displayed as 

(10): 

( )0 3UDG H F=  (10) 

 

The following is the outcome of the i-th UD block: 

 

( )1 2,3i UD iG H G S i−= + =   (11) 

 

where HUD is for the composite operation that combines sampling, deconvolution, and ReLU, and S stands 

for the output from the shortcut convolution layer. It should be noted that the deconvolution up sampling 

blocks belong to the decoder, whereas the convolution pooling blocks indicated above are part of the 

encoder. Two nested residual blocks in the residual structure connect the encoder and decoder. In the 

beginning, the internal residual block creates a skip-connection between the encoder and decoder, which is 

established by (12) 

 

1 1 1R S G= +  (12) 

 

The outer residual block's output is shown as (13): 

 

2E ER S G= +   (13) 

 

3.2.  Gated convolutional memory unit 

The GMU is a sophisticated, parameter-efficient variant of the traditional recurrent neural network 

(RNN) [24] that successfully resolves long-sequence dependence and gradient vanishing problems. In this 

study, spatial information must be incorporated in order to extract spatiotemporal characteristics from rs-

fMRI data using convolutional GMU. Convolutional GMU processes spatial and temporal features at the 

same time, in contrast to conventional GMU [25]. The information flow is managed by means of reset and 

update gates, where the reset gate eliminates some previous data and the update gate regulates the amount of 

historical data that is kept. Both gates to process the preceding output (ht−1) at time t and the current input (xt) 

use a sigmoid activation function. The update gate (zt) regulates the amount of the prior data that is retained, 

while the reset gate (rt) establishes how much of it is considered. Convolution with xt multiplies rt by ht−1 to 

yield the candidate hidden state h̃t.  The previous hidden state and the candidate-hidden state are combined to 

determine the final hidden state ht. 

 

( )1*[ ,tt r tr W x h −=  (14) 
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( )1*[ ,tt z tZ W x h −=    (15) 

 

( )1[tanh * ,t t tt x rW hh −     (16) 

 

The convolution operation is represented by *, the Hadamard product by ⊙, and the sigmoid activation 

function by σ. The weights that correspond to rt, zt, and ̃ht are Wr, Wz, and W. 

 

3.3.  Experimental setup 

3.3.1. Data description 

The developed method is analyzed and processed using the Python simulation platform. The 

publicly available ADHD-200 database, which contains fMRI images, is collected and examined for this 

study in order to carry out the experiment. dataset comprised of imaging and phenotypic data (gender, age, 

IQ, handedness) from 973 people spread over eight worldwide sites. Of these, 585 had normally developing 

typical developing (TD) profiles, 26 had an unidentified diagnosis, and 362 had ADHD. Three sites—Brown, 

Pittsburgh, and Washington University—were disqualified because of missing diagnostic data, whereas data 

from five sites—Peking, Neuroimaging, KKI, OHSU, and NYU—were examined. The data processing 

assistant for resting-state fMRI (DPARSF) tools, which include noise reduction, spatial smoothing, 

normalization to MNI space, slice-timing correction, and head motion correction, were applied to pre-process 

rs-fMRI data. Images containing objects and participants who moved their heads excessively were 

disqualified. 93,650 frames were kept for training the HRCNRAE model as shown in Table 1 after pre-

processing. 
 

 

Table 1. Building data using the ADHD-200 dataset 
  NYU OHSU Peking N image KKI Total 

Training set ADHD 105 24 61 12 20 222 
Control 90 33 108 16 53 300 

Total 195 57 169 28 73 522 

Testing set ADHD 29 6 24 5 3 67 

Control 12 28 27 14 8 89 

Total 41 34 51 19 11 156 

 

 

3.3.2. Training of models 

The encoder for the HRCNRAE model is made up of three CP blocks with convolution kernel sizes 

of 3×3×3, 3×3×3, and 2×2×2, and feature mappings set to 16, 32, and 96. The stride for all convolution 

layers is 1×1×1, however the pooling layers have the same padding but kernel sizes and strides of 2×2×2,  

3×3×3, and 2×2×2. Its structure is mirrored in the decoder. The learning rate was set at 0.001 and decreased 

exponentially at 0.9 during the 220 epochs of training, which had a batch size of 50. To improve every 

network component, an overview of the model's complex design is shown in Table 2. The Adam optimizer 

was employed. A learning rate of 0.00001 and a batch size of 8 were used to refine the convolutional GMU. 

The fully connected layer was subjected to a dropout rate of 0.5 and L2 regularization (0.3) in order to avoid 

overfitting. 
 

 

Table 2. The network's specifics 
Layer type Output size Filter size, stride 

Input layer 62×70×62 ------------ 
CP Block 1 16, 30×36×30 3×3×3 Conv, stride 1 

External residual block 

CP Block 2 

16, 1×1×1 

32, 10×12×10 

1×1×1 Conv, stride 1 

    2×2×2 Conv, stride 1 
3×3×3 max pool, stride 3 

Internal residual block 

CP Block 3 

32, 1×1×1 

96, 5×6×5 

1×1×1 Conv, stride 1 

3×3×3 Conv, stride 1 
2×2×2 max pool, stride 2 

UD Block 1 96, 10×12×10 2×2×2 DeConv, stride 1 

2×2×2 Un Pool, stride 2 
Internal residual block 

UD Block 2 

32, 1×1×1 

32, 30×36×30 

------------ 

3×3×3 DeConv, stride 1 

3×3×3 Un Pool, stride 3 
External residual block 

UD Block 3 

16, 1×1×1 

16, 60×72×60 

------------- 

3×3×3 DeConv, stride 1 

2×2×2 Un pool, stride 2 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Multi-layer convolutional autoencoder for recognizing three-dimensional … (Zarina Begum) 

3971 

4. RESULTS AND DISCUSSION  

We evaluated the proposed model's performance using the test set derived from the dataset ADHD-

200. Since generalization ability is essential when using machine learning to diagnose disorders, the model's 

efficacy was evaluated using classification performance across several sites. The next sections present the 

findings from a variety of experimental testing. 

 

4.1.  Visualization results 

To evaluate the model's performance, feature maps and convolution weights from CP blocks were 

examined. Figure 3 [26] presents 16 neural weights from the initial CP block, initialized using the Xavier 

method. The variation in grayscale shades highlights how the trained weights capture richer and more diverse 

feature representations. Figure 4 emphasizes the extraction of spatial information; and Figure 5, which 

demonstrates notable variations between people with ADHD and those with TD. 

 

 

 
 

Figure 3. Weights assigned to the convolution layer in the first CP block 

 

 

 
 

Figure 4. The maps with features that were produced using the initial CP block 

 

 

 
 

Figure 5. The first filter was used to create differential feature maps for the third block of CP 
 

 

4.2.  Choosing the regularization parameters 

The convolutional GMU's accuracy under various regularization settings is displayed in Figure 6, 

underscoring the important influence that parameter choice has on classification outcomes. As the 

regularization parameter rises, accuracy increases and reaches a top of 0.3. But when the parameter goes 

beyond 0.3, performance suffers, most likely as a result of overfitting. Smaller numbers, on the other hand, 

result in excessive features, redundancy and lower performance. 
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Figure 6. The precision associated with distinct regularization settings 

 

 

4.3.  Model ablation 

4.3.1. The residual block 

The HRCNRAE model shows improved classification performance compared to the convolutional 

denoising autoencoder (CDAE), largely due to the integration of a residual block. This residual block 

enhances feature preservation across layers, allowing the model to learn patterns that are more complex 

without losing important information. As shown in Figure 7, evaluation metrics such as the area under the 

curve (AUC) and receiver operating characteristic (ROC) clearly demonstrate the effectiveness of this 

architectural improvement. 

 

 

 
 

Figure 7. The contrast between HRCNRAE and CDAE 

 

 

4.3.2. A set of CP units 

We also ran two other schemes using two blocks and one block for contrast in order to get the ideal 

number of CP blocks. Table 3 displays the findings. The classification assessment indices' accuracy, 

sensitivity, specificity and are examples of metrics used in evaluation. The probability that the model would 

accurately categorize TD and ADHD is known as accuracy, and it is described as (17) 

 

Accuracy = TP + TN/TP+TN+FP+FN (17) 
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The likelihood of correctly identifying ADHD is represented by sensitivity, which could be computed as (18) 

 

Sensitivity = TP/TP+FN  (18) 

 

Specificity is a measure of the model's ability to accurately identify TD and is calculated as (19) 

 

Specificity = TN/TN+FP   (19) 

 

The study used TP, TN, FP, and FN indicators to assess ADHD categorization performance. Using 10,000 

bootstrapped samples, accuracy, sensitivity, and specificity were computed with 90% confidence intervals. 

Table 3 illustrates how additional CP blocks increased accuracy, with three blocks yielding 72.44% accuracy, 

70.22% sensitivity, and 74.18% specificity. Computational constraints prevented testing of more blocks. 

 

 

Table 3. Comparative analysis of many convolutions pooling blockshe network's specifics 
S.No Accuracy Sensitivity Specificity 

1 69.39% 71.14% 70.88% 

2 72.24% 70.42% 72.12% 

3 72.44% 70.22% 74.18% 

 

 

With its residual connections and hierarchical structure, HRCNRAE provides faster convergence, increased 

stability, and improved noise suppression, making it perfect for complicated workloads. The simpler and 

more effective CDAE, on the other hand, could have trouble with complex noise patterns and deeper 

architecture. Figure 7 demonstrates that HRCNRAE is more resilient than CDAE, with a higher AUC of 0.72 

compared to a lower AUC of 0.67. 

 

4.4.  Choosing techniques for extracting spatiotemporal features 

4.4.1. Contrast between convolutional LSTM and convolutional GMU 

Using the same datasets, the efficacy of convolutional GMU and convolutional LSTM was 

evaluated. Table 4 demonstrates that convolutional GMU surpassed convolutional LSTM in classification 

accuracy and specificity, despite having a marginally lower sensitivity. GMU had superior overall 

performance and stability, presumably as a result of LSTM's complexity and larger number of variables, 

which make training more challenging. LSTM attained 72.14% accuracy, 72.24% specificity, and 68.44% 

sensitivity. 

 

 

Table 4. Convolutional LSTM vs. convolutional GMU comparison 
Methodology Accuracy Specificity Sensitivity 

Convolutional LSTM 68.44% 72.14% 72.24% 
Convolutional GMU 72.44% 75.26% 70.15% 

 

 

4.4.2 GMU and convolutional GMU comparison 

The effectiveness of the convolution operation is assessed by comparing the efficiency of 

convolutional GMU with standard GMU in order to classify ADHD. The same testing set is used to evaluate 

both models, and the same training set is used to train them. Table 5 shows the experiment's results. 

 

 

Table 5. Comparison of convolutional GMU and convolutional GMU 
Methodology Accuracy Sensitivity Specificity 

GMU 69.87% 66.26% 70.81% 
Convolutional GMU 73.22% 70.14% 73.14% 

 

 

4.5.  Comparison with other methods 

The suggested algorithm for classifying ADHD was contrasted with five cutting-edge techniques: 

CDAE-AdaDT [23], MKL [27], MDS-SVM [28], 3D-CNN [19], and 4D-CNN [22]. In accuracy, specificity, 

and sensitivity, it outperformed MDS-SVM, 3D-CNN, MKL, and 4D-CNN, as seen in Table 6. However, in 

specificity, it performed somewhat worse than CDAE-AdaDT, most likely as a result of variations in 

generalization across different sites. Figure 8 shows a graphic comparison of these findings. 
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Table 6. Results of classification on the ADHD-200 dataset using different methods 
Method 4D-CNN MDS-SVM 3D-CNN CDAE MKL Our method 

Accuracy 61.54% 62.81% 69.15% 71.30% 72.64% 74.24% 
Specificity 71.21% 68.12% --- 58.24% 70.28% 78.26% 

Sensitivity 41.33% 27.27% --- 71.10% 69.24% 71.15% 

 

 

 
 

Figure 8. Comparing the results of various methods 

 

 

4. CONCLUSION  

The four-dimensional data recorded using functional magnetic resonance imaging in the resting state 

(rs-fMRI) incorporates one-dimensional temporal information alongside three-dimensional spatial details. 

Traditional methods often reduce this 4D data to 2D or 3D formats for categorization, it may cause a 

substantial loss of information. We provide a novel classification method to address this problem. That 

utilizes HRCNRAE and convolutional GMU, effectively preserving the comprehensive 4D structure of 

rs-fMRI images. Through the utilization of the temporal and spatial dynamics present in the data, our 

approach improves the model's capacity to precisely detect ADHD. The results of the experiments show that 

the suggested method functions well in cross-site classification tasks, greatly increasing the classification 

accuracy of ADHD. While this study focuses on ADHD, future research will aim to broaden the application 

of this methodology to other neurodevelopmental disorders, thereby enhancing its generalizability and 

potential impact within the field. 

 

 

ACKNOWLEDGEMENTS  

Our research endeavors were greatly aided by the resources and invaluable support provided by 

VIT-AP University, for which we are grateful. 

 

 

FUNDING INFORMATION 

Authors state no funding involved. 

 

 

AUTHOR CONTRIBUTIONS STATEMENT 

This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author 

contributions, reduce authorship disputes, and facilitate collaboration 

 

Name of Author C M So Va Fo I R D O E Vi Su P Fu 

Zarina Begum ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓   ✓  

Kareemulla Shaik ✓ ✓    ✓  ✓  ✓ ✓ ✓   

 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Multi-layer convolutional autoencoder for recognizing three-dimensional … (Zarina Begum) 

3975 

C :  Conceptualization 

M :  Methodology 

So :  Software 

Va :  Validation 

Fo :  Formal analysis 

I :  Investigation 

R :  Resources 

D : Data Curation 

O : Writing - Original Draft 

E : Writing - Review & Editing 

Vi :  Visualization 

Su :  Supervision 

P :  Project administration 

Fu :  Funding acquisition 

 

 

 

CONFLICT OF INTEREST STATEMENT 

Authors state no conflict of interest. 

 

 

DATA AVAILABILITY  

The data that support the findings of this study are available on request from the corresponding 

author, KS. The data, which contain information that could compromise the privacy of research participants, 

are not publicly available due to certain restrictions. 

 

 

REFERENCES 
[1] J. C. Agnew-Blais, G. V Polanczyk, A. Danese, J. Wertz, T. E. Moffitt, and L. Arseneault, “Young adult mental health and 

functional outcomes among individuals with remitted, persistent and late-onset ADHD,” British Journal of Psychiatry, vol. 213, 

no. 3, pp. 526–534, 2018. 

[2] American Psychiatric Association, “Diagnostic and statistical manual of mental disorders: DSM-5.” American psychiatric 
association, 2013. 

[3] S. Cheekaty and G. Muneeswari, “Exploring sparse Gaussian processes for Bayesian optimization in convolutional neural 

networks for autism classification,” IEEE Access, vol. 12, pp. 10631–10651, 2024, doi: 10.1109/ACCESS.2024.3351168. 
[4] Y. Hu et al., “Identifying ADHD‐related abnormal functional connectivity with a graph convolutional neural network,” Neural 

Plasticity, vol. 2024, 2024, doi: 10.1155/2024/8862647. 

[5] B. Qiu, Q. Wang, X. Li, W. Li, W. Shao, and M. Wang, “Adaptive spatial-temporal neural network for ADHD identification 
using functional fMRI,” Frontiers in Neuroscience, vol. 18, May 2024, doi: 10.3389/fnins.2024.1394234. 

[6] A. Hatami, A. Ranjbar, and S. Azizi, “Utilizing fMRI and deep learning for the detection of major depressive disorder: A 

MobileNet V2 approach,” in HORA 2024 - 6th International Congress on Human-Computer Interaction, Optimization and 
Robotic Applications, Proceedings, 2024, pp. 1–5, doi: 10.1109/HORA61326.2024.10550687. 

[7] R. Liu, Z. A. Huang, Y. Hu, Z. Zhu, K. C. Wong, and K. C. Tan, “Attention-like multimodality fusion with data augmentation for 

diagnosis of mental disorders using MRI,” IEEE Transactions on Neural Networks and Learning Systems, vol. 35, no. 6, pp. 
7627–7641, 2024, doi: 10.1109/TNNLS.2022.3219551. 

[8] N. Alsharif, M. H. Al-Adhaileh, and M. Al-Yaari, “Diagnosis of attention deficit hyperactivity disorder: A deep learning 

approach,” AIMS Mathematics, vol. 9, no. 5, pp. 10580–10608, 2024, doi: 10.3934/math.2024517. 
[9] S. Agarwal, A. Raj, A. Chowdhury, G. Aich, R. Chatterjee, and K. Ghosh, “Investigating the impact of standard brain atlases and 

connectivity measures on the accuracy of ADHD detection from fMRI data using deep learning,” Multimedia Tools and 

Applications, vol. 83, no. 25, pp. 67023–67057, 2024, doi: 10.1007/s11042-023-17962-7. 
[10] P. G. Gülhan and G. Özmen, “The use of FMRI regional analysis to automatically detect ADHD through a 3D CNN-based 

approach,” Journal of Imaging Informatics in Medicine, 2024, doi: 10.1007/s10278-024-01189-5. 

[11] S. Saurabh and P. K. Gupta, “Deep learning-based modified bidirectional LSTM network for classification of ADHD disorder,” 
Arabian Journal for Science and Engineering, vol. 49, no. 3, pp. 3009–3026, 2024, doi: 10.1007/s13369-023-07786-w. 

[12] E. Salah, M. Shokair, F. E. A. El-Samie, and W. A. Shalaby, “Utilization of fMRI with optical amplification to diagnose attention 
deficit hyperactivity disorder,” Journal of Optics (India), 2024, doi: 10.1007/s12596-023-01485-3. 

[13] P. Amado-Caballero, P. Casaseca-de-la-Higuera, S. Alberola-López, J. M. Andrés-de-Llano, J. A. López-Villalobos, and C. 

Alberola-López, “Insight into ADHD diagnosis with deep learning on actimetry: Quantitative interpretation of occlusion maps in 
age and gender subgroups,” Artificial Intelligence in Medicine, vol. 143, p. 102630, Sep. 2023, doi: 

10.1016/j.artmed.2023.102630. 

[14] Y. Qin, Y. Lou, Y. Huang, R. Chen, and W. Yue, “An ensemble deep learning approach combining phenotypic data and fMRI for 
ADHD diagnosis,” Journal of Signal Processing Systems, vol. 94, no. 11, pp. 1269–1281, 2022, doi: 10.1007/s11265-022-01812-

0. 

[15] Z. Mao et al., “Spatio-temporal deep learning method for ADHD fMRI classification,” Information Sciences, vol. 499, pp. 1–11, 
2019, doi: 10.1016/j.ins.2019.05.043. 

[16] “The ADHD-200 global competition.” http://fcon_1000.projects.nitrc.org/indi/adhd200/results.html (accessed Oct. 01, 2017). 

[17] S. Liu et al., “Deep spatio-temporal representation and ensemble classification for attention deficit/hyperactivity disorder,” IEEE 
Transactions on Neural Systems and Rehabilitation Engineering, vol. 29, pp. 1–10, 2021. 

[18] D. Kuang, X. Guo, X. An, Y. Zhao, and L. He, “Discrimination of ADHD based on fMRI data with deep belief network,” Lecture 

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 
8590 LNBI, pp. 225–232, 2014, doi: 10.1007/978-3-319-09330-7_27. 

[19] L. Zou, J. Zheng, C. Miao, M. J. McKeown, and Z. J. Wang, “3D CNN based automatic diagnosis of attention deficit 

hyperactivity disorder using functional and structural MRI,” IEEE Access, vol. 5, pp. 23626–23636, 2017, doi: 
10.1109/ACCESS.2017.2762703. 

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE Computer 

Society Conference on Computer Vision and Pattern Recognition, 2016, vol. 2016-Decem, pp. 770–778, doi: 
10.1109/CVPR.2016.90. 

[21] S. K. Roy, G. Krishna, S. R. Dubey, and B. B. Chaudhuri, “HybridSN: Exploring 3-D-2-D CNN feature hierarchy for 

hyperspectral image classification,” IEEE Geoscience and Remote Sensing Letters, vol. 17, no. 2, pp. 277–281, 2020, doi: 
10.1109/LGRS.2019.2918719. 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 4, August 2025: 3965-3976 

3976 

[22] R. A. Borsoi, T. Imbiriba, and J. C. M. Bermudez, “Deep generative endmember modeling: An application to unsupervised 

spectral unmixing,” IEEE Transactions on Computational Imaging, vol. 6, pp. 374–384, 2019, doi: 10.1109/tci.2019.2948726. 
[23] S. H. Wang, V. V. Govindaraj, J. M. Górriz, X. Zhang, and Y. D. Zhang, “Covid-19 classification by FGCNet with deep feature 

fusion from graph convolutional network and convolutional neural network,” Information Fusion, vol. 67, pp. 208–229, 2021, 

doi: 10.1016/j.inffus.2020.10.004. 
[24] Q. Cui, S. Wu, Q. Liu, W. Zhong, and L. Wang, “MV-RNN: A multi-view recurrent neural network for sequential 

recommendation,” IEEE Transactions on Knowledge and Data Engineering, vol. 32, no. 2, pp. 317–331, 2020, doi: 

10.1109/TKDE.2018.2881260. 
[25] B. Kong et al., “Learning tree-structured representation for 3D coronary artery segmentation,” Computerized Medical Imaging 

and Graphics, vol. 80, 2020, doi: 10.1016/j.compmedimag.2019.101688. 

[26] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural networks,” Journal of Machine 
Learning Research, vol. 9, pp. 249–256, 2010. 

[27] D. Dai, J. Wang, J. Hua, and H. He, “Classification of ADHD children through multimodal magnetic resonance imaging,” 

Frontiers in Systems Neuroscience, no. SEPTEMBER, pp. 1–8, 2012, doi: 10.3389/fnsys.2012.00063. 
[28] S. Dey, R. Rao, and M. Shah, “Attributed graph distance measure for automatic detection of attention deficit hyperactive 

disordered subjects,” Frontiers in Neural Circuits, vol. 8, no. JUNE, 2014, doi: 10.3389/fncir.2014.00064. 

 

 

BIOGRAPHIES OF AUTHORS 

 

 

Zarina Begum     graduated from Jawaharlal Nehru Technological University in 

Kakinada with a bachelor's and master's degree in engineering. She is presently enrolled at 

VIT-AP University, which is close to Vijayawada, Andhra Pradesh, to pursue a Ph. D. in 

computer science. Machine learning, deep learning, optimization techniques, the internet of 

things (IoT), data mining, and big data are among her current research interests. Her email 

address is  zarinabegum.714@gmail.com. 

  

 

Kareemulla Shaik     is a senior assistant professor at VIT-AP University's School 

of Computer Science & Engineering, which is located close to Vijayawada, Andhra Pradesh. 

He has been a teacher for more than fifteen years. He received a Ph.D. from KLEF, a B. Tech. 

from JNTU-Hyderabad, and an M. Tech. from JNTU-Kakinada. In addition to guiding 

numerous undergraduate and graduate projects, he has presented and published his work in a 

number of reputable journals and conferences. Additionally, he published patents from India. 

His research focuses on machine learning, deep learning, and computer networks and security. 

Additionally, he arranged conferences and gave numerous talks. He emails address is 

kareemulla.shaik@vitap.ac.in. 

 

 

mailto:zarinabegum.714@gmail.com
https://orcid.org/0000-0002-8774-1666
https://orcid.org/0000-0001-8938-2452

