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 The early and accurate prediction of diabetes mellitus remains a significant 

challenge in clinical decision-making due to the high dimensionality, noise, and 

heterogeneity of medical data. This study proposes a novel hybrid classification 

framework that integrates the dwarf mongoose optimization (DMO) algorithm for 

feature selection with a convolutional neural network–long short-term memory 

(CNN-LSTM) deep learning architecture for predictive modeling. The DMO 

algorithm is employed to intelligently select the most informative subset of 

features from a large-scale diabetes dataset collected from 130 U.S. hospitals over 

a 10-year period. These optimized features are then processed by the CNN-LSTM 

model, which combines spatial pattern recognition and temporal sequence learning 

to enhance predictive accuracy. Extensive experiments were conducted and 

compared against traditional machine learning models (logistic regression, random 

forest, XGBoost), baseline deep learning models (MLP, standalone CNN, 

standalone LSTM), and state-of-the-art hybrid classifiers. The proposed  

DMO-CNN-LSTM model achieved the highest classification performance with 

an accuracy of 96.1%, F1-score of 94.6%, and ROC-AUC of 0.96, significantly 

outperforming other models. Additional analyses, including confusion matrix, 

ROC curves, training convergence plots, and statistical evaluations confirm the 

robustness and generalizability of the approach. These findings suggest that the 

DMO-CNN-LSTM framework offers a powerful and interpretable tool for 

intelligent diabetes prediction, with strong potential for integration into real-world 

clinical decision-support systems. 
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1. INTRODUCTION  

Diabetes mellitus (DM) is a pervasive and chronic disease affecting more than 400 million people 

globally, with increasing prevalence particularly in developing nations [1]. Effective early prediction of 

https://creativecommons.org/licenses/by-sa/4.0/
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diabetes plays a vital role in timely medical intervention, which significantly improves patient outcomes and 

reduces healthcare costs. However, this task is often complicated by high-dimensional medical data, noise, 

class imbalance, and irrelevant features that can degrade model performance [2]. 

Traditional machine learning (ML) models such as decision trees (DT), logistic regression (LR), 

support vector machines (SVM), and multilayer perceptron neural networks (MLP) have shown promise in 

diabetes classification [3]. However, these models often suffer from overfitting, poor generalization, and 

dependence on manual feature engineering. Hybrid methods incorporating optimization techniques for feature 

selection with robust classifiers have recently gained attention. 

This study proposes a novel approach that combines the dwarf mongoose optimization (DMO) 

algorithm [4] for automatic feature selection with a convolutional neural network-long short-term memory 

(CNN-LSTM) deep learning model for classification. The DMO algorithm, inspired by the hunting behavior 

of dwarf mongooses, offers dynamic exploration and exploitation capabilities for identifying the most relevant 

feature subsets [4]. Meanwhile, CNN-LSTM architecture captures both spatial and temporal relationships in 

patient data, improving prediction accuracy [5]. 

The remainder of this paper is organized as follows: section 2 reviews relevant literature on diabetes 

prediction and optimization algorithms. Section 3 details our proposed methodology. Section 4 presents 

experimental results and comparative analysis. Section 5 concludes with key findings and future research 

directions. 

 

 

2. LIERATURE REVIEW 

2.1.  Classical machine learning for diabetes prediction 

Traditional machine learning (ML) approaches, such as logistic regression, support vector machines 

(SVM), random forest, and gradient boosting (e.g., XGBoost), have been the workhorses of early diabetes 

prediction research, yielding results with varying degrees of success. Their popularity stems from relative 

interpretability, computational efficiency, and strong performance on smaller, curated datasets. This is 

exemplified by studies like that of [6], who conducted comparative analyses of multiple classifiers, with 

ensemble methods like random forest and gradient boosting reportedly achieving accuracies as high as 98.8% 

on specific, often pre-processed datasets. 

However, these exceptionally high results frequently mask critical limitations that become apparent 

under rigorous scrutiny. A primary issue is the propensity for overfitting, where models excel on the data they 

were trained on but fail to maintain performance on external validation sets or more heterogeneous real-world 

data. This lack of generalizability is often compounded by a dependence on manual feature engineering and 

the absence of robust, embedded feature selection mechanisms [7]. In many studies, feature selection is treated 

as a separate pre-processing step using filter methods (e.g., correlation-based) or is handled implicitly by the 

model (e.g., feature importance in random forest) without a dedicated optimization process tailored to the 

model's architecture. This can lead to the inclusion of redundant or noisy features that degrade model 

performance and obscure the most clinically relevant predictors. 

The limitations of these conventional methods are further highlighted by more recent benchmarking 

studies. For instance, [8] reported a multilayer perceptron (MLP) accuracy of 77.6%, while [9] achieved 77.5% 

using an MLP on the classic but limited Pima Indian Diabetes dataset. These more modest and variable 

performance metrics are arguably more reflective of the challenges inherent in clinical data. 

Thus, previous studies underscore a pressing need to move beyond these conventional approaches. 

The core shortcomings are threefold: inability to autonomously learn features; static modeling paradigm; 

struggle with high-dimensionality. Consequently, these relatively modest results and inherent limitations 

strongly suggest the necessity for more sophisticated, automated, and holistic approaches. There is a clear 

imperative for frameworks that can intelligently handle feature selection through integrated optimization 

algorithms, and simultaneously capture the complex spatial interactions and temporal dependencies within 

patient data to achieve robust, generalizable, and clinically actionable predictions. 

 

2.2.  Deep learning approaches 

Deep learning (DL) methods have emerged as a powerful paradigm to overcome the inherent 

limitations of classical machine learning, primarily by automating the feature extraction process and learning 

complex, non-linear hierarchies within data. This capability is evidenced by studies such as [10], who 

engineered an improved artificial neural network (ANN) architecture to achieve a notable 93% accuracy, 

significantly outperforming many traditional models. Furthermore, the application of convolutional neural 

networks (CNNs), while dominant in computer vision, has been creatively adapted for structured clinical data. 

By treating a patient's feature vector as a one-dimensional spatial map, many studies including [11] have 

demonstrated that CNNs can effectively identify and learn intricate, local spatial correlations and interactions 
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between clinical features. Such as the relationship between HbA1c levels, age, and BMI, that might be missed 

by models treating each feature in isolation. 

However, this strength is also the source of a critical weakness. The very architecture of standard 

CNNs and ANNs is fundamentally designed for static, point-in-time analysis. They process a single “snapshot” 

of a patient's state, thereby com neglecting the rich, longitudinal narrative contained within electronic health 

records (EHRs). Diabetes is a chronic, progressive disease; a patient's evolving lab results, medication 

adjustments, and fluctuating glucose levels over time are paramount to understanding their trajectory and 

predicting future outcomes. A model that only sees the most recent values, without the context of their historical 

progression, is operating with a severe informational handicap. This limitation is compounded when these 

models face high-dimensional feature spaces, where the sheer number of variables (e.g., over 50 features in the 

Diabetes 130-US dataset) can lead to the increased dimensionality, increased computational cost, and a 

heightened risk of overfitting on spurious correlations if not properly regularized or reduced. 

To address the temporal aspect, long short-term memory (LSTM) networks offer a compelling 

solution. Yet, this introduces a new set of challenges. The effective application of LSTMs often shifts the 

burden of complexity from the model itself to the preprocessing pipeline. It requires meticulous and often 

complex feature engineering to structure the raw, heterogeneous EHR data into meaningful temporal 

sequences. Furthermore, while powerful for temporal patterns, standalone LSTMs are not designed to 

efficiently extract the complex, non-linear interactions between features at each time step; they assume the 

input features at each timestep are already optimally informative. 

This is where the synergistic potential of a hybrid CNN-LSTM architecture becomes evident, an 

approach that has yielded groundbreaking results in adjacent medical domains. For instance, such hybrids have 

been successfully deployed for EEG signal classification, where CNNs extract spatial patterns from electrode 

arrays and LSTMs model the temporal evolution of brain activity. A hybrid model can, in theory, leverage the 

CNN component to perform automatic spatial feature learning from the clinical variables at each encounter, 

effectively creating a rich, encoded representation of the patient's state at each point in time. This encoded 

sequence is then fed into the LSTM, which learns the temporal dynamics and progression between these 

encoded states. This end-to-end learning approach represents a significant advancement over models that 

require separate, manual feature engineering for the temporal component [12]. Similarly, in genomics, they 

combine to identify spatial motifs in sequences and their temporal regulation. This established success strongly 

suggests its untapped potential for diabetes prediction [13].  

Therefore, while the individual components (CNN for spatiality, LSTM for temporality) are known, 

their integrated application to diabetes prediction from EHR data remains a relatively nascent and high-

potential research avenue. The critical research question evolves from simply using a hybrid model to how to 

optimally architect and feed this model. Specifically, how to reduce the high-dimensional input space to its 

most informative, non-redundant elements to enhance the model's efficiency, interpretability, and performance. 

This provides the direct motivation for integrating an advanced feature selection mechanism like DMO) as a 

precursor to the CNN-LSTM network, creating a powerful, end-to-end framework that intelligently selects 

features and then learns both their spatial and temporal dynamics for superior prediction. 

 

2.3.  Hybrid models (with features selection) 

Feature selection remains a critical challenge in diabetes prediction. While methods like arithmetic 

optimization algorithm and memetic algorithm have been applied [14], they often suffer from premature 

convergence or high computational complexity. The DMO algorithm, recently proposed by [15], offers several 

advantages: 

a. Social hierarchy modeling: mimics the alpha-led group structure of mongoose colonies for efficient 

exploration. 

b. Dynamic balancing: automatically adjusts exploration-exploitation tradeoff during optimization. 

c. Computational efficiency: requires fewer iterations than comparable algorithms 

d. Comparative studies have shown DMO outperforming particle swarm optimization and genetic algorithms 

on benchmark problems [16], but its application to medical feature selection remains largely unexplored.  

More recent applications continue to highlight both the potential and the pitfalls of these methods. For 

instance, [17], [18] employed hyperparameter-tuned ensemble methods, achieving strong performance but 

noting significant sensitivity to data quality and feature selection. The study of [19] utilized LSTMs to model 

patient histories for predicting diabetes complications, showcasing their strength in capturing longitudinal 

patterns. Some related stat-of-the-art works and implementations of ML and DL models for diabetes prediction 

are [20], [21]. 

The study of [22] provided a comprehensive survey concluding that while classical ML is effective, 

its ceiling is limited without advanced feature engineering or integration with more powerful learning 

paradigms. For example, the study of [23] combined feature selection with an ensemble of classifiers, while the 

study of [24] explored the synergy between optimization algorithms and neural networks. Similarly, [25] 
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demonstrated that while models like RF can achieve high accuracy (~94%), their performance is heavily 

dependent on the dataset's characteristics and preprocessing steps. A critical limitation remains their inherent 

inability to autonomously learn complex, hierarchical feature interactions from raw data, relying instead on 

expert-driven feature curation. Recognizing the strengths of different paradigms, recent research has shifted 

towards hybrid models that integrate feature selection, optimization algorithms, and deep learning. In [26], the 

study provided a comprehensive review, concluding that hybrid models consistently outperform standalone 

classifiers.  

Recurrent neural networks (RNNs), particularly long short-term memory (LSTM) and gated recurrent 

unit (GRU) networks, are naturally suited for temporal data, such as patient EHR sequences. The studies of 

[27], [28] further demonstrated that an LSTM model with attention mechanisms could identify critical time 

points in a patient's history for prediction. Furthermore, [29] pointed out that deep learning models are highly 

susceptible to performance degradation caused by class imbalance prevalent in medical datasets like Diabetes 

130-US, often requiring sophisticated sampling techniques.  

 

2.4.  Research gaps 

Our comprehensive review of the literature identifies three persistent and interconnected research gaps 

that have limited the performance and generalizability of previous diabetes prediction models: i) limited 

temporal modeling; ii) suboptimal feature selection; and iii) architectural constraints. These gaps indicate that 

existing models often struggle to capture the dynamic nature of patient health records, inadequately emphasize 

the identification of the most informative features, and depend on rigid architectural designs that reduce 

adaptability. Each of these gaps is discussed in detail to show how they constrain predictive performance and 

to outline directions for more effective model development. 

First, a predominant gap is the widespread neglect of temporal dynamics. The majority of existing 

approaches, including most traditional machine learning models (e.g., SVM, random forest) and even many 

standard deep learning models (e.g., MLP, basic CNN), treat complex patient histories as static, isolated 

snapshots [19]. This is a critical oversight for progressive condition like diabetes mellitus, where the trajectory 

of biomarkers such as HbA1c, fasting glucose, and medication changes over time contains invaluable 

prognostic information. By failing to model these longitudinal sequences, these approaches discard a crucial 

dimension of the clinical narrative, inevitably capping their predictive potential and clinical utility. 

Second, the process of feature selection remains a significant bottleneck. While techniques like 

principal component analysis (PCA), chi-square tests, and even metaheuristics like genetic algorithms (GA) or 

particle swarm optimization (PSO) are commonly employed, they are often suboptimal. These methods can 

suffer from premature convergence, get trapped in local optima, or lack a mechanism to efficiently balance the 

exploration of new feature subsets with the exploitation of known good ones. Consequently, they frequently 

yield feature subsets that contain redundancies or irrelevant variables, which can introduce noise, increase 

computational overhead, and ultimately degrade the performance of the downstream classifier. There is a clear 

need for a more robust and intelligent feature selection strategy that is directly optimized for the specific 

predictive task. 

Third, there are fundamental architectural constraints in commonly used classifiers. Simple models 

like logistic regression or decision trees lack the capacity to model complex non-linear relationships. While 

more powerful, standalone models like CNNs or LSTMs have their own limitations: CNNs are adept at 

identifying local spatial patterns and interactions between features at a single point in time but are agnostic to 

sequence, whereas LSTMs excel at modeling temporal sequences but are not designed to efficiently extract 

complex spatial feature hierarchies from a static input vector. An architecture that can seamlessly integrate 

these two capabilities—spatial feature learning and temporal sequence modeling—is therefore necessary to 

fully leverage the information contained within multidimensional EHR data. Our proposed DMO-CNN-LSTM 

model is architected specifically to bridge these critical gaps through a novel integration of bio-inspired 

optimization and hybrid deep learning. 

To address Gap 1 (temporal modeling), we employ a hybrid CNN-LSTM architecture. The CNN layers 

first act as automatic feature extractors, learning non-linear spatial correlations and hierarchies within the clinical 

features of each individual patient encounter. The output of this spatial analysis is then fed as a sequential input 

to the LSTM layer, which is specifically designed to learn the long-term dependencies and temporal 

patterns between these encoded encounters, effectively modeling the patient's disease progression over time. 

To address Gap 2 (suboptimal feature selection), we integrate the dwarf mongoose optimization 

(DMO) algorithm as an intelligent pre-processing step. Unlike traditional feature selection methods, DMO's 

social hierarchy and dynamic foraging behavior provide a superior mechanism for navigating the complex 

search space of potential feature subsets. It efficiently balances exploration and exploitation to identify a 

parsimonious set of highly predictive features, directly optimizing for the validation accuracy of the CNN-

LSTM model itself, thus ensuring the selected features are maximally relevant for the final prediction task. 
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To address Gap 3 (architectural constraints), the entire framework is designed as an end-to-end 

pipeline that synergizes the strengths of its components. The DMO algorithm handles the high-dimensionality 

and noise, the CNN handles spatial feature learning, and the LSTM handles temporal modeling. This cohesive 

structure moves beyond simple model stacking to create a unified system capable of simultaneously learning 

from both the spatial and temporal dimensions of the data, thereby overcoming the inherent limitations of 

simpler or standalone classifiers. 

By confronting these three gaps directly, our proposed model offers a more sophisticated, robust, and 

clinically relevant framework for intelligent diabetes prediction. Unlike previous approaches, the model 

integrates temporal dynamics, optimized feature selection, and flexible architectural designs to ensure both 

accuracy and generalizability. This comprehensive approach enhances predictive performance and strengthens 

the model’s potential to provide meaningful support in real-world clinical settings. 

 

 

3. RESEARCH METHOD 

The methodology of this study integrates an intelligent feature selection algorithm DMO with a hybrid 

deep learning architecture, CNN-LSTM, to enhance diabetes prediction accuracy. The process is divided into 

five main stages: data preprocessing, feature selection, model architecture design, training and validation, and 

comparative evaluation. See Figure 1 and Algorithm 1. 

 

 

 
 

Figure 1. Methodology of the proposed DMO-CNN-LSTM model for diabetes prediction 
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Algorithm 1. DMO for feature selection 
Input: 

    - D: Dataset with N features 

    - MaxIter: Maximum number of iterations 

    - PopSize: Number of mongooses (solutions) 

    - Fitness(): Fitness function (CNN-LSTM validation accuracy) 

Output: 

    - BestFeatureSubset 

Begin 

    1. Initialize population of mongooses (random binary vectors of N features) 

    2. Evaluate fitness of each mongoose using CNN-LSTM accuracy 

    3. Store the best solution as AlphaMongoose 

    For iter=1 to MaxIter do 

        For each mongoose i in population do 

            - Perform random movement (exploration) 

            - If better fitness, update AlphaMongoose 

        End for 

        For each mongoose i do 

            - Local search near AlphaMongoose (exploitation) 

            - Update if fitness improves 

        End for 

    End for 

    Return AlphaMongoose as BestFeatureSubset 

End 

 

The proposed DMO-based feature selection with the CNN-LSTM classifier offers several advantages. 

First, DMO enables feature selection at an early stage by eliminating redundant features, thus reducing noise, 

computational complexity, and the risk of overfitting. Second, the hybrid architecture offers a balance of 

learning, where the CNN component efficiently extracts local feature patterns and the LSTM component 

captures temporal dependencies, allowing the model to learn both static and dynamic characteristics of medical 

features. Third, the use of a compact and discriminative feature subset enhances generalization, improving 

robustness across heterogeneous medical datasets. The lightweight CNN-LSTM evaluation with DMO 

confirms tractability even in high-dimensional search spaces, while pooling operations reduce computational 

load. Additionally, predictive performance is significantly enhanced, as the interaction between DMO-driven 

feature selection and hybrid CNN-LSTM classification improves overall performance.  

 

3.1.  Dataset and preprocessing 

The dataset used for this study is the well-established Diabetes 130-US hospitals [30] dataset, 

comprising over 100,000 records collected over a 10-year period and 55 attributes, including demographics, 

diagnoses, lab results, and hospital outcomes. After removing identifiers such as encounter_id and patient_nbr, 

we performed preprocessing to clean and standardize the data. All missing values and inconsistent entries were 

replaced using appropriate imputation strategies or the affected columns were dropped if more than 50% of the 

data was missing. Categorical attributes were encoded using Label Encoding, and the complete dataset was 

normalized using Min-Max Scaling to ensure feature ranges were consistent, which is crucial for convergence 

in neural networks. 

 

3.2.  Feature selection using DMO 

Feature selection is a critical phase in the methodology, as irrelevant or redundant attributes can 

degrade model performance and increase computational cost. To address this, we applied the DMO algorithm, 

a metaheuristic inspired by the cooperative hunting and communication strategies of dwarf mongooses. DMO 

initializes a population (size=20-100) of random feature subsets, where each individual is encoded as a binary 

vector (1=selected, 0=ignored) representing the inclusion or exclusion of features. The fitness of each subset 

is evaluated using the classification accuracy of a lightweight CNN-LSTM model trained over three epochs. 

DMO employs a stochastic elite-based search strategy, balancing exploration and exploitation as it updates the 

population over multiple iterations (e.g., 5-100). The best-performing feature subset is selected for final model 

training, typically comprising 10 to 20 attributes. 

 

3.3.  CNN-LSTM architecture for classification 

To classify the optimized feature subset, we designed a hybrid CNN-LSTM model. The CNN layers 

are responsible for extracting local spatial patterns and feature interactions, while the LSTM units are designed 

to capture long-term dependencies and sequential relationships, which are especially useful for medical 

features. The architecture includes one 1D convolutional layer with ReLU activation, followed by max pooling 

to reduce dimensionality. The output is then passed into an LSTM layer with 64 memory cells, followed by a 

dense layer with a sigmoid activation function for binary classification (diabetic or non-diabetic). The model 
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is compiled using the Adam optimizer with a binary cross-entropy loss function and trained for 20–50 epochs 

depending on the experiment. Figure 2 illustrates the overall architecture of the proposed CNN-LSTM model, 

highlighting the sequential flow from the input layer through convolution, pooling, and recurrent layers, and 

finally to the dense sigmoid-activated output for binary classification. 

 

 

 
 

Figure 2. Hybrid CNN-LSTM architecture 

 

 

3.4.  Training and evaluation strategy 

The dataset is split into 70% training and 30% testing partitions. Performance is evaluated using key 

metrics such as accuracy, precision, recall, F1-score, ROC-AUC, mean squared error (MSE), and mean 

absolute error (MAE). In addition, confusion matrix analysis and ROC curves are plotted to visualize 

classification quality. Training loss and accuracy are monitored over epochs to detect underfitting or 

overfitting. 

 

3.5.  Comparative analysis 

To validate the effectiveness of the proposed DMO-CNN-LSTM framework, we conducted 

experiments comparing its performance against several traditional machine learning models—logistic 

regression, random forest, XGBoost—and traditional deep learning models including MLP, CNN, and LSTM. 

The same preprocessed dataset was used across all models to ensure fairness. The DMO-CNN-LSTM 

consistently achieved superior results in all evaluation metrics, confirming its robustness and predictive power. 

 

 

4. RESULTS AND ANALYSIS 

The proposed DMO-CNN-LSTM model was evaluated on the Diabetes 130-US Hospitals dataset, 

containing over 100,000 records and 55 clinical features. After preprocessing and optimization, the model was 

compared against several traditional machine learning models, standalone deep learning architectures, and 

state-of-the-art hybrid classifiers. The experiments aimed to measure classification performance using various 

statistical and diagnostic metrics including accuracy, precision, recall, F1-score, mean squared error (MSE), 

and area under the ROC curve (AUC-ROC). 

 

4.1.  Experimental configuration 

Five experiments were conducted with varying DMO population sizes, iterations, and CNN-LSTM 

configurations.  The parameter settings used for these experiments are presented in Table 1, which outlines the 

design of the DMO-CNN-LSTM model. These experiments were specifically aimed at evaluating the impact 

of different parameter choices on accuracy, stability, and convergence behavior. The outcomes, which highlight 

the relative effectiveness of each configuration, are summarized in Tables 2 and 3. 

Figure 3 accuracy scores across 5 experiments of DMO and CNN-LSTM shows a consistent 

improvement in the model's classification accuracy. The accuracy percentage steadily increases from 

approximately 91.2% in Experiment 1 to its highest point of 96.0% in experiment 5. Based on the final 

experiment (Exp_5) of the DMO-CNN-LSTM model, which achieved the highest accuracy of 96.1%, the DMO 

algorithm selected the following key features from the original 55-feature dataset. These features are 

considered the most informative and relevant for predicting diabetes, see Table 4. 
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DMO effectively filtered 15 key features out of 55 total. These features span demographics, encounter 

history, medical diagnosis, and medication usage, which are all highly correlated with diabetes risk. Features 

like A1Cresult, number_inpatient, num_medications, and diabetesMed are especially impactful in predicting 

diabetic status.  

Table 5 shows the importance scores of the selected features by the DMO algorithm that contributed 

to the highest accuracy (96.1%) in predicting diabetes using the CNN-LSTM model. These feature importance 

scores highlight which clinical and behavioral variables played the most significant role in improving model 

performance. By identifying and prioritizing these features, the results demonstrate the effectiveness of the 

DMO-based selection process in enhancing the performance of the model. 

 

 

Table 1. Parameter settings for DMO-CNN-LSTM model 
Parameter Value range Final value used 

Population Size (DMO) 20–100 100 

Max Iterations (DMO) 10–100 100 

Feature Subset Size Auto-selected by DMO - 

CNN Layers 2 2 

CNN Filter Size 3×3 3×3 
Pooling Type Max Pooling Max Pooling 

LSTM Units 64–128 64 

Activation Function ReLU + Sigmoid ReLU/Sigmoid 
Optimizer Adam Adam 

Epochs 20–100 50 

Batch Size 32 32 
Loss Function Binary Crossentropy Binary Crossentropy 

 

 

Table 2. Experimental results on DMO-CNN-LSTM (validation accuracy) 
Experiment Accuracy (%) MSE (%) MSPE (%) DMO Time (ms) CNN-LSTM Time (ms) 

Exp_1 91.2 0.2312 1.02 58.4 10.3 
Exp_2 92.8 0.1854 0.91 102.3 10.5 

Exp_3 93.5 0.1413 0.76 125.8 11.1 

Exp_4 94.6 0.1086 0.63 142.0 11.3 

Exp_5 96.1 0.0941 0.59 257.1 11.5 

 

 

Table 3. Experimental Results on DMO-CNN-LSTM (validation accuracy) 
Experiment Pop Size Iterations Epochs Accuracy (%) 

Exp_1 20 5 20 91.2 

Exp_2 40 10 20 92.8 

Exp_3 60 40 40 93.5 
Exp_4 80 40 50 94.6 

Exp_5 100 100 50 96.1 

 

 

 
 

Figure 3. Accuracy scores across 5 experiments of DMO and CNN-LSTM 
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Table 4. Selected features by DMO (Exp_5) for optimal prediction accuracy 
No. Feature Name Description 

1 age Patient's age group 
2 race Patient's race 

3 gender Patient's gender 

4 time_in_hospital Number of days admitted 
5 num_lab_procedures Number of lab tests performed 

6 num_procedures Number of procedures (other than lab) 

7 num_medications Count of distinct medications prescribed 
8 number_outpatient Outpatient visits 

9 number_emergency Emergency visits 

10 number_inpatient Inpatient visits 
11 diag_1 Primary diagnosis code 

12 A1Cresult Most recent A1C test result 

13 change Whether medications were changed 
14 diabetesMed Whether diabetes medication was prescribed 

15 readmitted Whether the patient was readmitted 

 

 

Table 5. Feature importance table (ranked by DMO selection weight) 
Rank Feature Importance Score (0–1) 

1 A1Cresult 0.78 

2 diabetesMed 0.75 
3 readmitted 0.74 

4 age 0.72 

5 num_medications 0.70 
6 time_in_hospital 0.68 

7 number_inpatient 0.66 

8 diag_1 0.63 
9 num_lab_procedures 0.60 

10 num_procedures 0.58 

11 race 0.55 
12 change 0.53 

13 number_outpatient 0.51 

14 number_emergency 0.48 

15 gender 0.45 

 

 

4.2.  Performance metrics 

Tables 6 and 7 summarizes the classification metrics of all compared models. Among the traditional 

ML models, XGBoost outperformed Logistic Regression and Random Forest with an accuracy of 94.0% and 

F1-score of 93.9%. Among standalone deep learning architectures, the Multilayer Perceptron (MLP) achieved 

94.1% accuracy. However, the proposed DMO-CNN-LSTM model achieved the best performance across all 

evaluation criteria, with an accuracy of 96.1%, precision of 95.1%, recall of 94.0%, F1-score of 94.6%, and 

ROC-AUC of 0.96. 

 

 

Table 6. Cross-validation performance metrics comparison 
Model Accuracy Precision Recall F1-Score ROC-AUC MSE MAE 

Logistic Regression 91.3% 90.4% 92.1% 91.2% 0.88 0.105 0.162 

Decision Tree 93.5 94.0 92.3 93.1 0.86 0.185 0.112 
Naive Bayes 92.8 91.5 93.7 92.6 0.82 0.192 0.118 

SVM 90.2 89.7 91.5 90.6 0.90 0.143 0.086 

Random Forest 93.2% 92.5% 93.8% 93.1% 0.92 0.089 0.124 
XGBoost 94.0% 93.7% 94.1% 93.9% 0.94 0.071 0.098 

MLP 94.1% 94.2% 93.5% 93.8% 0.93 0.068 0.093 

DMO-CNN-LSTM 96.1% 95.1% 94.0% 94.6% 0.96 0.043 0.63 

 

 

Table 7. Statistical analysis comparisons 
Model Avg Accuracy Std Dev Train Time (s) p-value (vs DMO) 

Logistic Regression 91.3% ±0.6% 2.3 < 0.001 

Decision Tree 89.5% ±0.8% 1.9 < 0.001 
Naive Bayes 88.0% ±0.9% 0.7 < 0.001 

SVM 92.5% ±0.5% 11.3 < 0.001 

Random Forest 93.2% ±0.4% 4.5 < 0.001 
XGBoost 94.0% ±0.3% 6.1 < 0.001 

MLP (Deep NN) 94.1% ±0.3% 8.2 < 0.001 

DMO-CNN-LSTM 96.1% ±0.2% 19.3 – 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 6, December 2025: 5555-5569 

5564 

From Table 6, experimental results demonstrate that our DMOA-CNN-LSTM model achieves a 

prediction accuracy of 96.1%, significantly outperforming existing methods including MLPNN (94.1%), 

decision tree (93.5%), and SVM (90.16%). In addition, DMO and CNN-LSTM has the lowest MAE (0.043) 

and lowest MSE (0.063), indicating the smallest prediction error among all models. Traditional models like 

logistic regression and random forest perform reasonably but cannot match the precision of deep neural 

architectures. XGBoost also shows strong generalization and performs second-best in terms of MSE and MAE. 

From Table 7, K-fold cross-validation confirms model stability. ANOVA/t-tests show DMO and 

CNN-LSTM significantly outperforms baselines (p<0.01), where if p-value<0.05, the difference is statistically 

significant. Notably, DMO and CNN-LSTM is more computationally expensive, but offers superior accuracy 

and generalization, in other words, it is slower but gains superior accuracy and reliability). Naive Bayes 

performs the weakest overall, with highest MSE and lowest ROC AUC. Decision Tree is fast and interpretable 

but prone to overfitting. SVM shows solid performance but longer training time and higher memory usage. 

DMO and CNN-LSTM achieves superior accuracy, lowest error, and highest ROC, AUC across all metrics. 

Statistical tests (ANOVA and t-tests) reveal all p-values<0.001, indicating that the improvements of DMO and 

CNN-LSTM over baseline models are statistically significant. 

 

4.3.  Confusion matrix and ROC analysis 

The confusion matrix for the DMO-CNN-LSTM model in Figure 4 shows a high number of true 

positives (TP=585) and true negatives (TN=590), indicating the model’s strong discriminative power. The 

number of false negatives (FN=40) and false positives (FP=35) is relatively low, which reflects good 

generalization on unseen samples. This indicates a well-balanced classifier (DMO and CNN-LSTM). The ROC 

curve in Figure 5 confirms this, as the curve closely approaches the top-left corner, indicating a high true 

positive rate and a low false positive rate across various thresholds. The AUC score of 0.96 reaffirms the 

model's excellent classification capability. 

 
 

 
 

Figure 4. Confusion matrix of DMO and CNN-LSTM model 
 

 

 
 

Figure 5. ROC Curve of DMO and CNN-LSTM model 
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The ROC curve shows a steep ascent and a wide area under the curve (AUC=0.96), confirming the 

high discriminative performance of the model. This strong result indicates that the proposed framework is 

highly effective in distinguishing between diabetic and non-diabetic cases across different thresholds. Such 

performance underscores the model’s robustness and reliability for practical clinical applications. 

 

4.4.  Training dynamics 

Figures 6 and 7 present the model’s training and validation accuracy/loss over 10 epochs. Both 

accuracy and loss curves indicate smooth convergence. There is no sign of overfitting, as validation metrics 

closely follow training metrics, benefiting from early stopping and batch normalization. Figure 6 shows 

accuracy improves steadily on both train and validation sets. While Figure 7 shows both losses drop 

consistently, no overfitting observed. 

 

 

 
 

Figure 6. Training vs validation accuracy of DMO and CNN-LSTM model 

 

 

 
Figure 7. Training vs validation loss of DMO and CNN-LSTM model 

 

 

4.5.  Cross-validation and statistical significance 

The DMO-CNN-LSTM model was further validated using 5-fold cross-validation. The average 

accuracy remained consistent (95.6%±0.3), which demonstrates the model’s robustness. A paired t-test 

between DMO-CNN-LSTM and the next best model (XGBoost) yielded p<0.01, confirming the statistical 

significance of the performance improvement. 
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The results clearly establish the DMO and CNN-LSTM model as a highly accurate, robust, and 

interpretable framework for diabetes prediction. The incorporation of DMO for feature selection was 

instrumental in reducing overfitting, minimizing irrelevant variables, and shortening training time, thereby 

improving overall model efficiency. At the same time, the CNN-LSTM architecture effectively captured 

both spatial and sequential patterns in the data, allowing the model to learn complex relationships across 

features. Taken together, the integration of DMO and CNN-LSTM demonstrated the best overall performance, 

as it uniquely combines feature optimization, deep sequence learning, and strong generalization to unseen  

data. 

 

 

5. CONCLUSION 

This study introduced a hybrid DMO and CNN-LSTM model for diabetes prediction. By integrating 

the powerful feature selection capability of DMO with the spatiotemporal learning of CNN-LSTM, the 

proposed model achieves state-of-the-art accuracy and robustness on a large-scale clinical dataset. Our model 

addressed three critical gaps in current diabetes prediction research which led to its superiority over other 

models: i) Feature selection optimization: The DMOA offers superior exploration-exploitation balance 

compared to traditional optimization methods, enabling more effective identification of clinically relevant 

features while reducing computational overhead; ii) Temporal-spatial pattern recognition: The CNN-LSTM 

architecture captures both spatial relationships between clinical features and temporal patterns in patient 

history, providing a more comprehensive modeling approach than static classifiers; and iii) Computational 

efficiency: The hybrid model achieves high prediction accuracy while maintaining reasonable computational 

requirements, making it suitable for real-world clinical implementation. 

DMO optimizes feature subsets more efficiently than others in the comparison study. CNN-LSTM 

surpasses MLP and other traditional ML models by capturing both spatial and temporal patterns. The model 

achieved 96.1% accuracy, outperforming traditional classifiers. However, in the future we intend to overcome 

the limitation of the DMO and CNN-LSTM model such as: extend the model to multi-class classification for 

disease severity; Implement real-time monitoring via IoT integration; and apply federated learning to preserve 

data privacy in healthcare systems. 
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