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 Achieving a gain greater than 18 dB with a noise figure (NF) below 2 dB  
at 3.5 GHz remains a formidable challenge for low-noise amplifiers (LNAs) 
in sub-6 GHz 5G systems. This study explores and evaluates various  
LNA topologies, including single-stage designs with inductive source 
degeneration and cascade configurations, to optimize performance. The 
single-stage topology with inductive source degeneration achieves a gain of 
18.141 dB and an NF of 1.448 dB, while the cascade-stage common-source 
low-noise amplifier with inductive degeneration achieves a gain of  

32.714 dB and a noise figure of 1.563 dB. These results underscore the 
importance of GaAs FET technology in meeting the demanding 
requirements of 5G systems, specifically in the 3.5 GHz frequency band. 
The advancements demonstrated in gain, noise figure, and linearity affirm  
the viability of optimized LNA topologies for high-performance 5G 
applications, supporting improved signal quality and reliability essential for 
modern telecommunication infrastructure. 
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1. INTRODUCTION 

The low noise amplifier (LNA) is a critical component and the initial stage of a radio frequency 

(RF) receiver, playing a key role in wireless communication systems [1]. Its primary function is to amplify 

weak signals received by the antenna while minimizing the introduction of additional noise, thereby 

preserving the overall noise figure (NF) of the system [2]. Due to its importance in the RF front-end, the 

design of the LNA must emphasize achieving a low noise figure and high gain to ensure optimal receiver 

performance [3]. LNAs are essential in various applications, including wireless communications, astronomy, 

radar, satellite communications, and telecommunications systems. Additional design considerations 
encompass linearity and stability [4]. 

Historically, LNAs have been optimized for various technologies, including 3G and 4G frequency 

bands. However, with the advent of 5G starting in 2019, new requirements have emerged, rendering LNAs 

designed for 4G communications insufficient for 5G applications [5]. The higher data rates, improved 

performance demands, and expanded frequency ranges of 5G systems necessitate LNAs specifically designed 

to meet these challenges [6]. Consequently, the focus has shifted to sub-6 GHz frequency bands within the 

5G spectrum, particularly the 3.5 GHz band [7], which plays a critical role in enhancing both quality of 
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service and communication system efficiency as part of 5G new radio (NR) technologies [8]. Engineers are 

developing new circuits and improving existing topologies to ensure that devices can operate effectively in 

this frequency range [9]. 

Various LNA topologies have been investigated by researchers for their suitability in 5G 

applications, each offering distinct performance advantages. For instance, the common-source amplifier 

topology, as demonstrated in [10] using a gallium arsenide field-effect transistor (GaAs-FET), achieves a 

notable maximum gain of 15.436 dB and an NF of 1.908 dB for [3.3-3.9] GHz 5G systems. In another 
example, a cascode topology designed for 5G (3-4 GHz) wireless receivers employs a 400 µm GaAs 

transistor, achieving an NF of 0.8 dB and a gain of 13.3 dB, as reported in [11]. Additionally, the common-

source amplifier with inductive source degeneration topology, utilizing GaAs pseudomorphic high electron 

mobility transistor (GaAs pHEMT) processes, has been shown to achieve an NF of 1.3-1.4 dB and a gain of 

20 to 21 dB for 3.2 to 3.8 GHz systems [12], These topologies offer trade-offs in gain, NF, and linearity. 

However, the choice of topology depends on the specific system requirements and performance targets. 

Achieving a gain greater than 18 dB with an NF below 2 dB at 3.5 GHz is a critical challenge for 

improving signal quality and ensuring efficient 5G system performance [13]. A comparative analysis of 

semiconductor technologies such as InP, SiGe, GaAs FET, and Si reveals that GaAs FET technology offers 

an optimal balance of gain, noise figure, and frequency response, making it a strong candidate for LNA 

design in this band [14]. Our findings indicate that the single-stage LNA using GaAs FET achieves a gain of 

18.141 dB and an NF of 1.448 dB, successfully addressing this challenge. Cascading this topology increases 
the gain to 32.714 dB, with a modest rise in NF to 1.563 dB. These advancements in LNA design enhance 

system efficiency, expand coverage, and improve capacity, meeting the demanding requirements of modern 

5G networks and ensuring reliable, high-performance telecommunications infrastructure. 

 

 

2. DESIGN OF LOW NOISE AMPLIFIER 

In low noise amplifier (LNA) design, several key steps need to be addressed, followed by the 

evaluation of critical performance metrics [15]. The first step is selecting an appropriate transistor [16], as 

transistors are optimized for specific frequency ranges based on their structure and manufacturing process. 

This selection is critical for meeting the design's performance criteria [17]. A suitable direct current (DC) 

biasing network is then designed to set the operating point of the transistor, ensuring consistent performance 
[18]. Typically, an active bias network is preferred to maintain stability under varying operating conditions 

[19]. In this design, a specific biasing network is implemented to achieve the desired operating point [20]. 

Impedance matching is another crucial aspect of LNA design, as improper matching can severely degrade 

system performance [21]. The primary objective is to match the load impedance with the source impedance 

to optimize signal transfer [22]. Various methods, such as LC, stub, T, and Pi networks [23], are commonly 

employed for this purpose, with Smith charts often used to facilitate practical implementation [24]. 

Key performance metrics must be carefully considered to achieve optimal functionality. The first 

metric, gain, refers to the ratio of the output signal to the input signal [25]. For an LNA, this means the output 

power must exceed the input power, resulting in a positive gain measured in dB [26]. Typically, a single-

stage LNA achieves a gain of over 10 dB and an NF below 5 dB [27], with additional stages cascaded to 

further enhance the overall gain when necessary. Another critical parameter is the noise figure, which 
quantifies the noise introduced by the system. A lower NF is essential for improving overall performance and 

increasing system sensitivity, making NF a primary consideration in transistor selection [28]. Beyond gain 

and NF, two additional factors play a crucial role in ensuring reliable LNA operation: stability and linearity. 

Stability is essential, as an unstable amplifier may oscillate, leading to performance degradation or complete 

circuit failure. It is evaluated using S-parameters, with the stability factor K serving as a key indicator [29]. 

An amplifier is absolutely stable when the following conditions are met [30]: 

 

K =
1−|S11|2−|S22|2+|∆|2

2|S12S21|
> 1 (1) 

 

|∆| = |S11S22 − S12S21| < 1   (2) 

 

Here, S11 and S22 are reflection coefficients, and  S21 and S12 are transmission coefficients, and ∆ is 

the determinant of the 2-port scattering matrix [31]. Linearity, on the other hand, ensures that the amplifier’s 
output power changes proportionally with the input power, crucial for handling large signals without 

significant distortion [32]. This characteristic is typically assessed by the 1 dB compression point, which 

indicates the input level at which the gain drops by 1 dB from its ideal linear response. Maintaining good 

linearity prevents signal degradation, especially in high-performance communication systems [33]. 
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3. METHOD 

In this work, a low noise amplifier was developed using the s8834 GaAs FET transistor, a 

microwave semiconductor characterized for the 3 to 10 GHz frequency band. The design employs an 

common-source with inductive degeneration topology optimized for the 3.3 to 3.7 GHz frequency range, 

crucial for 5G wireless applications. Simulations were performed using advanced design system (ADS) 2009 

to optimize key performance metrics. The circuit includes a designed DC biasing network to set the optimal 
operating point for the transistors, ensuring consistent performance with a 5V DC supply. Impedance 

matching is achieved through a combination of LC networks, which align the load and source impedances for 

optimal signal transfer and minimal reflection losses. 

The key components of the design include coupling capacitors (C1, C2) to isolate DC while 

preserving RF signal integrity and biasing resistors (R2, R3) to ensure proper transistor biasing. Inductor L1 

serves as a bias inductor, providing a high impedance path for RF signals. On the output side, resistor R4  

establishes the transistor's bias point, while inductor L2 enhances gain and output characteristics. The input 

and output impedance matching networks (L4, C3 and L5, C4, respectively) are designed to maximize power 

transfer and amplifier efficiency. An inductive source degeneration topology, with L3 at the source of the 

primary transistor (M1) is employed to stabilize gain, improve linearity, and reduce the noise figure.  

However, the single stage common-source LNA with inductive degeneration in Figure 1 achieved a 

low noise figure but lacked sufficient gain to meet stringent performance requirements. To address this, a 
cascade stage common-source LNA with inductive degeneration in Figure 2 was developed, utilizing two 

GaAs FETs (M1 and M3) and biasing transistors (M2 and M4). This design enhances gain while maintaining a 

low noise figure, resolving the limitations of the single-stage design for 5G applications. 

 

 

 
 

Figure 1. Single stage common-source LNA with inductive degeneration 

 

 

 
 

Figure 2. Cascade stage common-source LNA with inductive degeneration 
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4. RESULT AND DISCUSSION 

The performance of each LNA topology was evaluated based on gain, noise figure (NF), stability, 

and linearity, with configurations optimized for maximum gain and minimum NF to ensure efficient 

operation within the target frequency band. Impedance matching was crucial to optimize power transfer and 

minimize signal reflections. Simulation results and a comparative analysis of the single-stage and cascade-

stage configurations are summarized in Table 1, where key parameters such as gain, NF, K and Δ, and 

impedance matching (S11, S22) are compared with the required performance criteria. This analysis 
demonstrates the reliability of the design methodology and the improvements achieved through 

optimization. 

 

 

Table 1. Performance metrics for each LNA topology 
Parameters Requirements Single stage common-source LNA with 

inductive degeneration 

Cascade stage common-source with 

inductive degeneration 

Gain (dB) >18 18.141 32.714 

NF (dB) < 2 1.448 1.563 

K >1 1.002 1.472 

Δ <1 0.690 0.392 

S11 (dB) < -10 -12.223 -34.006 

S22 (dB) < -10 -22.530 -57.787 

 

 

4.1.  Single stage common-source low noise amplifier with inductive degeneration  

The single stage common-source LNA with inductive degeneration initially faced challenges in 

achieving adequate gain. Optimization addressed these limitations as shown in Figure 3, resulting in a 
stability factor K of 1.002 and Δ of 0.690 at 3.5 GHz as shown in Figure 3(a). The design achieved a gain of 

18.141 dB and an NF of 1.448 dB GHz as shown in Figure 3(b), making it the most noise-efficient among the 

single-stage configurations. Additionally, impedance matching was effective, with S11 of -12.223 dB and S22 

of -22.530 dB GHz as shown in Figure 3(c). The power-added efficiency (PAE) reached 27.506% GHz as 

shown in Figure 3(d) indicating high efficiency. The output voltage Vout was 1.448 V, the input voltage Vin 

was 0.386 V as shown in Figure 3(e), and the output power was 13.076 dBm as shown in Figure 3(f), 

reflecting moderate amplification of the input signal. Despite these strengths, the gain was insufficient to 

meet the stringent requirements for 5G applications. 

 

4.2.  Cascade stage common-source low noise amplifier with inductive degeneration 

To overcome the gain limitations of the single-stage design, the cascade topology was adopted by 

adding an additional amplification stage with inductive degeneration. This design demonstrated, as shown in 
Figure 4 a stability factor K of 1.472 and a Δ of 0.392 at 3.5 GHz as shown in Figure 4(a). The optimized 

configuration achieved the highest gain of 32.714 dB and an NF of 1.563 dB as shown in Figure 4(b). 

While the NF was slightly higher than the single-stage design, it presented a favorable trade-off between 

noise and gain. Impedance matching was excellent, with S11 of -34.006 dB and S22 of -57.787 dB as shown in 

Figure 4(c). The output voltage Vout was 1.720 V and the input voltage Vin was 0.528 V as shown in 

Figure 4(e), resulting in an output power of 14.525 dBm as shown in Figure 4(f). The PAE was measured at 

21.226% as shown in Figure 4(d), slightly lower than the single-stage design due to the additional 

amplification stage. This reduction in PAE reflects the inherent trade-off between higher gain and efficiency; 

however, the resulting PAE remains sufficient for high-performance 5G applications. 

Table 2 presents a detailed comparison of the proposed LNA with existing topologies, 

demonstrating its superior performance. The cascade-stage LNA with inductive degeneration achieves the 
highest gain (32.714 dB), significantly surpassing the gain of the common-source topology using GaN 

HEMT transistors (16.225 dB) in [34]. While its noise figure (1.563 dB) is slightly higher than those reported 

in other references, the proposed design exhibits excellent impedance matching, with S11 = -34.006 dB and  

S22 = -57.787 dB, outperforming all references. This analysis highlights the trade-offs between gain and noise 

figure, positioning the proposed LNA as a well-balanced, high-performance solution for 5G sub-6 GHz 

applications. 

This analysis confirms the importance of selecting the right LNA topology for specific 5G 

applications. While the single-stage LNA with inductive degeneration excels in noise performance and 

efficiency, the cascade-stage topology, by offering higher gain, is more suited for applications where gain is 

the primary requirement. Future work should focus on further optimizing the cascade-stage LNA for a better 

balance between noise figure and efficiency to meet the evolving needs of 5G systems. 
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(a) (b) 

 

  
(c) (d) 

 

  
(e) (f) 

 

Figure 3. Performance metrics of single stage common-source LNA with inductive degeneration topology: 

(a) stability factor K and delta ∆, (b) noise figure NF and gain, (c) S-parameters, (d) power added efficiency 

(PAE) versus output power, (e) output and input signals and (f) harmonic spectrum 
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Figure 4. Performance metrics of cascade stage common-source LNA with inductive degeneration topology: 

(a) stability factor K and delta ∆, (b) noise figure and gain, (c) S-parameters, (d) power added efficiency 

(PAE) versus output power, (e) output and input signals, and (f) harmonic spectrum 
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Table 2. Performance overview and comparison of the present study with existing LNAs 
Reference [34] [35] [36] [37] This work 

Technology GaN 

HEMT 

CMOS 110 nm SOI GaAs 

pHEMT 

GaAs 

pHEMT 

GaAs FET 

Topology  Common 

source 

Cascode inductive 

source degeneration 

Cascade 

CS-CS 

Two-stage Cascade stage common-source 

with inductive degeneration 

Frequency [GHz] 3.5  2.4–3.5 4-8  4.2–5.2  3.5 

Application Sub-6GHz  LTE/5G NR Sub-6GHz  Sub-6GHz Sub-6GHz  

Transistor model CGH35 - 0.25 μm  0.5μm  s8834 

Gain [dB] 16.225 20 21.5 27.6 32.714 

Noise Figure [dB] 1.232 1.5 1.43 0.66 1.563 

S11 [dB] -23.785 - < -14 - -34.006 

S22 [dB] -23.516 - < -11 - -57.787 

 
 

5. CONCLUSION 

This study provides a detailed evaluation of various LNA topologies designed for 5G systems 

operating at 3.5 GHz, with a focus on achieving high gain and optimal noise figure using GaAs FET 

technology. The single-stage common-source LNA with inductive degeneration demonstrated superior noise 

performance, achieving an NF of 1.448 dB and a gain of 18.141 dB, it well-suited for applications requiring 

low noise. In contrast, the cascade-stage configuration offered a significantly higher gain of 32.714 dB, 

proving effective for scenarios demanding greater signal amplification. These findings highlight the 

advantages of GaAs FET technology, particularly in sub-6 GHz 5G systems where both low noise and high 

gain are essential. Future research should aim to further enhance these designs by optimizing performance for 

different 5G application requirements. 
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