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 Earthquake prediction in seismology is challenging due to sudden events and 

lack of warnings, requiring rapid detection and accurate parameter 

estimation for real-time applications. This study proposed a novel automatic 

earthquake detection model to enhance the processing and analysis of 

seismic data. The hybrid model comprises convolutional layers, 

normalization techniques, bidirectional long short-term memory (Bi-LSTM) 

networks, and attention mechanisms, collectively referred to as the hybrid 

convolutional–normalization–BiLSTM–attention (CNBLA) model. The 

attention mechanism allows the model to focus on critical segments of 

seismic sequences, while layer normalization stabilizes training by 

normalizing activations, thus reducing the effects of input scale variations. 

This dual approach mitigates the impact of input scale variations and 

enhances the model’s ability to effectively decode complex temporal 

patterns. The hybrid CNBLA model optimizes the extraction and processing 

of temporal features from raw waveforms recorded at single stations, thereby 

improving the accuracy and efficiency of seismic magnitude estimation. The 

proposed model is evaluated using two datasets: the STEAD and USGS 

achieving a mean square error (MSE) values 0.054 and 0.0843 and a mean 

absolute error (MAE) 0.15 and 0.2526 respectively. The hybrid CNBLA 

model outperforms two baseline models and five state-of-the-art approaches 

in earthquake magnitude estimation, improving seismic monitoring and early 

warning systems. 
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1. INTRODUCTION 

Earthquakes occur when the ground moves and shakes, releasing energy stored in rocks. These 

natural disasters can cause significant damage, financial loss, and injury, and in severe cases, mass casualties 

[1]. They can cause mass death. Earthquake early warning (EEW) has emerged as an effective technology for 

mitigating the impact and damage caused by earthquakes. Nine countries or regions currently have 

operational EEW systems; another thirteen are testing such systems [2]. For as little as a few seconds, EEW 

systems can alert target locations before the arrival of harmful seismic waves, which is essential for lessening 

the impact of earthquakes [3]. The regional EEW system provides early warning by determining the 

properties of an earthquake, including its time, position, and magnitude. Since the earthquake’s magnitude 

plays a crucial role in a warning signal, rapid and precise magnitude estimation is a crucial field of research 

for regional EEW systems [2]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Magnitude is a logarithmic indicator of earthquake power. The Richter scale, often known as the 

local magnitude scale, was developed by Richter [4] and has been extensively used in scientific study and 

for providing quick public earthquake information. People usually feel earthquakes greater than 2.5 but 

cannot feel earthquakes less than 2.5. Earthquakes that cause significant damage have magnitudes greater 

than 4.5 [5]. Scientists strive continually to improve methods for predicting earthquake magnitudes to 

accurately prevent serious consequences. Although it is impossible to prevent earthquakes, timely and 

accurate warnings can significantly reduce their destructive impact. Various methods exist for predicting 

earthquake magnitudes, including the use of sensors, devices, magnetic and electrical waves, and seismic 

indicators derived from historical data. Although no ideal model exists, ongoing trials enhance prediction 

accuracy [6].  

Artificial intelligence, particularly neural networks [7] has shown great promise in solving complex 

nonlinear problems related to seismic activity. Neural networks, a subset of machine learning, can model 

intricate patterns and relationships in data, making them well suited for earthquake magnitude prediction [1]. 

By analyzing vast amounts of seismological data, these models can identify subtle features that traditional 

methods may overlook. Machine learning and data mining techniques offer robust methods for studying 

seismic data and indicators, making them effective for handling large datasets [8]. These technologies have 

revolutionized the field of seismology, providing new insights and improving the accuracy of earthquake 

predictions. Ensuring the quality and accuracy of the dataset is critical for the performance of predictive 

models [5]. 

Deep learning models perform better when interpreting complicated and nonlinear inputs using 

these layers for dimensionality reduction. Deep learning models like graph neural networks (GNN) [9], 

multilayer perceptrons [10], long short-term memory (LSTM) [11], Bi-LSTM [12], provide effective 

approaches for capturing geographical data, including stations and their relationships. Chakraborty et al. [13] 

presented a multitasking deep learning model called the convolutional recurrent model for earthquake 

identification and magnitude estimation (CREIME). It can perform the following tasks: i) identify the 

earthquake signal from background seismic noise, ii) calculate the arrival time of the first primary wave  

(P wave), and iii) estimate the magnitude using the raw three-component waveforms from a single station as 

the model input. Biases in performance evaluation may arise from variations in preprocessing techniques and 

input data length when comparing CREIME with other models in the study. This disparity indicates that 

uniform benchmarks are necessary to guarantee equitable comparisons across various approaches. 

Saad et al. [14] introduced a model comprising two specialized vision transformer (ViT) networks: 

one for identifying P-wave arrival times and another for predicting earthquake magnitudes, both engineered 

to process seismic data fast and reliably. A wider range of performance measurements would be beneficial 

for the paper, even though the evaluation metrics employed like mean absolute error (MAE) are significant. 

Mousavi and Beroza [15] used convolutional and recurrent neural networks, namely bidirectional long short-

term memory (Bi-LSTM) units, to efficiently predict the correlations between seismic wave amplitudes and 

magnitudes. The transformer technique was utilized to forecast earthquake magnitudes based on existing data 

for the Horn of Africa [16]. Several studies have examined the use of various machine learning and deep 

learning models for earthquake prediction that are summarized in Table 1. 

The results of this research have significant consequences for both the scientific community and 

public safety. The proposed model is built upon six key contributions: 

a. Integration of attention mechanism with bidirectional LSTM: This serves as the baseline model for 

earthquake prediction, leveraging the strengths of both approaches. 

b. Enhanced prediction through layer normalization: By replacing the attention mechanism with layer 

normalization (LN), the study demonstrates the effectiveness of this approach in models that do not 

utilize attention. 

c. Development of the hybrid convolutional–normalization–BiLSTM–attention (CNBLA) model: This 

model effectively combines the advantages of the attention mechanism and layer normalization, which 

enhances the stability of the training process. 

d. The custom loss function is crafted to allow the model to learn both accurate predictions and the 

associated uncertainty, specifically addressing aleatoric uncertainty, which refers to the uncertainty 

inherent in the data itself. 

e. Comparative analysis of architectures: The research includes a detailed comparison of various 

architectures, accompanied by an in-depth discussion of the results obtained. 

f. The efficiency of the proposed model is thoroughly evaluated using two different datasets and several 

performance metrics, including mean square error (MSE), mean absolute error (MAE), standard deviation 

of mean absolute error (MAE_STD), standard deviation of mean square error (MSE_STD), and mean 

combination error (MCE). 
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Improved magnitude estimation can enhance the reliability of EEW systems by providing critical 

seconds for individuals and infrastructures to take protective actions. Our findings will contribute to ongoing 

efforts to develop more robust and reliable early earthquake warning systems. It ultimately aiming to reduce 

the impact of these natural disasters on society. 

The  structure of the paper is organized as follows: The second section provides the necessary 

preliminaries, including foundational concepts and definitions pertinent to this study. Section 3 presents the 

architecture of the proposed Hybrid CNBLA model along with the configuration of the baseline model. 

Section 4 presents the results and discussion, beginning by describing the dataset used and assessing the 

model’s performance. In Section 5, the work is concluded with a summary of the significant contributions 

and recommendations for future research directions. 

 

 

Table 1. Comparison of existing earthquake forecasting models 
Ref. Techniques Predicted variables Range of magnitude The type of 

prediction 

[16] Transformer algorithm Magnitude Magnitudes >= 3. Regression 

[17] LSTM, GRU Magnitude occurrence, location cluster, 

and time 
Magnitude > 5.0 Clustering and 

regression 

[18] attention-based LSTM time, magnitude, and location magnitude > 5 Regression 

[19] Autoregressive integrated moving average 
(ARIMA) singular spectrum analysis (SSA) 

Magnitude Magnitude > 4 regression 

[20] attention and Bi-LSTM Earthquake or no earthquake occurrence 

location occurrence (regression) 

Magnitudes 

between 7 and 7.5 

Classification 

[21] GNN with batch normalization and an 

attention mechanism 

depth and magnitude undefined regression 

 

 

2. PRELIMINARIES 

2.1.  Convolutional neural network 

Convolutional neural networks (CNNs) have demonstrated efficacy in various domains, such as 

image processing, condition monitoring, and time series analysis. A CNN is constructed sequentially, 

layering three primary components: convolution, pooling, and fully connected (FC) layers [22]. The 

convolution layers comprise a collection of trainable kernels that are specifically designed to automatically 

extract local features from the input matrix [23]. These kernels execute convolution operations by utilizing 

weight sharing and local connection principles, resulting in reduced computational load, decreased model 

complexity, and improved performance. CNNs have been applied to earthquake prediction by analyzing 

seismic data, such as waveform signals and spectrograms. CNNs can learn geographical and temporal 

patterns in seismic data, enabling the detection of earthquake precursors or anomalies in the signals. CNNs, 

also known as feature learners, can automatically extract relevant features from raw input data [24].  

 

2.2.  Long short-term memory 

Long short-term memory (LSTM) is a recurrent neural network that retains temporal connections 

between input items during training. They are widely used to simulate sequential data, such as earthquake 

signals [25]. LSTM units are effective for magnitude estimation due to their gated mechanism, which 

includes Tanh and Sigmoid activation functions, making them less sensitive to unnormalized input. The 

proposed LSTM architecture is illustrated in Figure 1. The LSTM unit comprises a cell: a forget gate, output 

gate, and input gate. The cell unit is responsible for storing values at each time interval. The gates control 

information that enters and leaves the rest of the unit. The forget gate (Γ𝑓) in the memory block structure is 

managed by a basic one-layer neural network. Equation (1) expresses how this gate operates. Forget gate( Γ𝑓) 

determines how much of the section should be retained and what should be discarded. The sigmoid activation 

function (σ) is used to implement it.  

 

𝛤𝑓 = 𝜎(𝑤𝑓[𝑎
<𝑡−1>, 𝑥<𝑡>] + 𝑏𝑓  (1) 

 

where (𝑥<𝑡>) is the current input, (𝑎<𝑡−1>) is the previous hidden state, and (𝑤𝑓  and 𝑏𝑓  ) are the weight 

matrix and bias vector, which are learned from the input training data. An input gate is a unit in which the 

previous memory block effect forms new memory. A simple NN with an activation function is called tanh. 

These operations are calculated by (2), which calculates the candidate cell state, and (3), which calculates 

how much of the new cell state is retained using the sigmoid function (σ). 

 

𝑐̃<𝑡> = 𝑡𝑎𝑛ℎ (𝑤𝑐[𝑎
<𝑡−1>, 𝑥<𝑡>] + 𝑏𝑐)  (2) 
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𝛤𝑢 = 𝜎(𝑤𝑢[𝑎
<𝑡−1>, 𝑥<𝑡>] + 𝑏𝑢)  (3) 

 

Output gate ( Γ𝑜 ): It controls what parts of the cell state will be output, and it is described by (4). 

 

𝛤𝑜 = 𝜎(𝑤𝑜[𝑎
<𝑡−1>, 𝑥<𝑡>] + 𝑏𝑜)   (4) 

 

The output gate is the output of the current LSTM block and expressed using (5) and (6). 

 

𝑐<𝑡> = 𝛤𝑢 ∗ 𝑐̃
<𝑡> + 𝛤𝑓 ∗ 𝑐

<𝑡−1> (5) 

 

𝑎<𝑡> = 𝛤𝑜 ∗ 𝑡𝑎𝑛ℎ𝑐
<𝑡> (6) 

 

Where ( 𝑎<𝑡>) can be calculated by applying the output gate to the hyperbolic tangent of the cell state. 

 

 

 
 

Figure 1. The architecture of LSTM 

 

 

2.3.  Bidirectional long-short term memory 

Typically, an individual LSTM only functions in the forward direction of the information value. As a 

result, there was only one way to deliver the information. Two LSTM layers work together in the Bi-LSTM 

architecture [12], one layer handling forward information processing, and the second layer handling 

backward execution, as illustrated in Figure 2. This architecture is superior to single LSTM and RNN 

algorithms regarding earthquake magnitude prediction due to its ability to use previous and subsequent 

information. 

 

 

 
 

Figure 2. Bidirectional LSTM 
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2.4.  Attention mechanism 

Attention mechanism (ATT)  plays a crucial role in sequence-to-sequence models, particularly when 

dealing with long sequences or complex patterns. The attention mechanism allows the model to focus on 

relevant parts of the input sequence, regardless of its length [26]. It assigns different weights to different time 

steps to emphasize important information. Note that attention improves model performance by reducing 

information loss risk. Instead of relying solely on the final hidden state of the LSTM, this model considers all 

hidden states in each decoding step. 

 

 

3. RESEARCH METHOD 

3.1.  Architecture of the proposed hybrid CNBLA model  

In the pursuit of advancing the computational processing and analysis of seismic data, this paper 

introduces a hybrid CNBLA model that integrates the strengths of convolutional layers, Bi-LSTM, and ATT 

with innovative regularization techniques. The Hybrid CNBLA model amalgamates the key features of the 

two preliminary models as follows. The first Multi-CNN-Bi-LSTM-ATT model leverages an ATT to 

selectively emphasize significant segments of input sequences, thereby enhancing the model’s ability to 

handle complex patterns over long durations. In contrast, the second Multi-CNN-LN-Bi-LSTM model 

incorporates layer normalization (LN) [27] to stabilize the training process and mitigate the impact of input 

scale variations. By combining these approaches, the proposed hybrid CNBLA model aims to harness the 

robustness of layer normalization and the precision of attention-based mechanisms to deliver superior 

performance when analyzing three-channel seismogram data. This integration was designed to optimize the 

extraction and processing of temporal features, thereby improving the accuracy and efficiency of seismic 

magnitude estimation. The hybrid CNBLA architecture is shown in Figure 3 provided a comprehensive 

framework capable of addressing the challenges presented by the input data, leading to a more accurate and 

reliable prediction model. 

 

 

 
 

Figure 3. Architecture of hybrid CNBLA model for earthquake prediction 

 

 

The proposed model used seismograms from three channels, each covering 30 s, to predict 

earthquake magnitudes. The architecture comprises three convolutional layers with filter counts of 32, 64, 

and 32, each with a kernel size of 3. Layer normalization was used to improve stability and efficiency during 

training, and dropout and max pooling were used to decrease spatial dimensions while preserving essential 

features.  

The output of the CNN was used as Input for the Bi-LSTM architecture, which outperformed a 

single LSTM in predicting earthquake magnitudes. Attention mechanism is added after Bi-LSTM to evaluate 

all hidden states at each decoding step. The model incorporates two fully connected Dense layers, with the 

initial layer consisting of 64 units and L2 regularization to minimize overfitting. Dropout regularization is 

implemented to enhance model generalizability. The final output is created using a fully connected layer with 

a single neuron, and a linear activation function is used to estimate the output amplitude. 

To enable the proposed model to learn both accurate predictions and their inherent aleatoric 

uncertainty (data noise), we use a custom loss function (7). This loss function achieves this by combining two 
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key components: the weighted squared error and a direct penalty on the predicted uncertainty. This method 

provided a variant of the common MSE loss but incorporated an additional scaling factor that was dependent 

on the exponential function of variable si. The parameter si is extracted from the 𝑦ℎ𝑎𝑡,𝑖 tensor, which 

represents the model's predictions. The 𝑦ℎ𝑎𝑡,𝑖 tensor is expected to have at least two components along its last 

axis: the predicted value 𝑦ℎ𝑎𝑡,𝑖 and the secondary parameter si. The si parameter is used in the custom loss 

function to model aleatoric uncertainty, which represents the inherent noise or variability in the data. 

Specifically, si influences the weighting of the squared error term and adds a regularization-like term to the 

loss. The exponential transformation 0.5. 𝑒𝑠𝑖 adjusts the contribution of the squared error based on the value 

of si. 

This loss function is particularly interesting because it allows for dynamic adjustment of the error 

term based on the value of si.  

 

𝐿𝑖 = ∑(0.5. 𝑒𝑠𝑖 . (|𝑦𝑡𝑟𝑢𝑒,𝑖 − 𝑦ℎ𝑎𝑡,𝑖|)
2
+ 0.5. 𝑠𝑖) (7) 

 

Where 𝐿𝑖 is the loss of element i in the batch, and si is a parameter that modulates the squared error's 

influence on the total loss. The exponential function ensures that this scaling factor decreases as si increases, 

which can be interpreted as reducing the importance or weight of large errors when si is high. 

We used an adjustable learning rate technique in our implementation. The proposed model 

adaptively modifies the learning rate during training, thereby enabling more effective convergence. We 

calculated the learning rate using (8): 

 

𝑙𝑟𝑡 = 𝑙𝑟𝑡−1 ∗ 𝑒
−𝜆    (8) 

 

Where 𝜆 is the decay rate, which in this case is set to the square root of 0.1. The value of lambda was 

determined through extensive experimentation with different configurations. We tested a variety of lambda 

values to find the optimal setting that balanced convergence speed and stability during training. Our results 

indicated that a lambda value of 0.1 consistently produced favorable results across multiple training runs, 

contributing to a more stable learning process. This choice reflects our findings that this particular value 

allowed the model to converge effectively without oscillations or divergence. The patience parameter was set 

to 4 epochs, which indicates that the learning rate decreased if no progress was detected during this time 

frame. The absence of a cooldown period (cooldown=0) permitted the immediate resumption of post-

reduction. This adaptive methodology enhances training by achieving a harmonious equilibrium between 

swift initial learning and meticulous refinement in subsequent phases. This may result in enhanced model 

performance and expedited convergence. This dual approach leverages the benefits of both normalization and 

attention mechanisms to ensure robustness and superior performance in sequence processing tasks. All 

parameters are shown in Tables 2 and 3.  

 

 

Table 2. Description of proposed model and its parameters 
Block Layers (Name) Description and parameter values 

feature 
extraction 

block 

conv1d  1D conv layer with 32 filters, kernel size of 3 and L2 regularization = 0.001 
 layer_normalization 

Dropout rate of 0.2 

max_pooling1d with a pool size of 4 

conv1d_1 1D conv layer with 64 filters, kernel size of 3 and L2 regularization = 0.001 

 layer_normalization_1 

Dropout rate of 0.2 
max_pooling1d with a pool size of 4 

conv1d_2 1D conv layer with 32 filters, kernel size 3, and L2regularization = 0.001 

 layer_normalization_2 
Dropout rate of 0.2 

max_pooling1d with a pool size of 4 

Sequence 
learning 

Bi-LSTM The LSTM layer has 100 units, recurrent_dropout=0.2, and dropout regularization rate is 0.2. 

Attention 

block 

dense_1 A dense layer with a single output neuron is applied to the input using the tanh activation function. 

 Attention 
Prediction 

block 

dense_2 Dense layer with 64 units, L2 regularization = 0.001, and the ReLU activation function was applied. 

 layer_normalization_3 

Dropout rate of 0.2 
dense_3 Dense layer with 64 units, L2 regularization = 0.001, and ReLU activation function. 

 layer_normalization_4 
Dropout rate of 0.2 

dense_4 A dense layer is applied with a linear activation function. 
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Table 3. Parameter settings for the hybrid CNBLA model 
Parameter Value 

No. of training samples 50734 
No. of validation samples 7248 

No. of testing samples 14495 

No. of epochs 200 
Batch size 256 

L2 regularization strength 0.001 

Loss function The custom loss function as in (7) 
optimizer Adam algorithm 

Learning rate Automatically adjusts the learning rate during training, as shown in (8) 

Early stopping monitor=validation loss, and patience = 5 

 

 

3.2.  Baseline model configuration 

3.2.1. Multi CNN-Bi-LSTM-ATT model  

The proposed neural network architecture integrates convolutional layers, Bi-LSTM, and an 

attention mechanism. Following the attention mechanism, the architecture includes three fully-connected 

dense layers to predict the output magnitude. The attention mechanism helps the model focus on pertinent 

input, which improves its capacity to decode complex patterns over lengthy periods of time. This selective 

attention enhances model performance, particularly on sequence-to-sequence tasks.  

 

3.2.2. Multi CNN-LN-Bi-LSTM model   

This model modifies the Multi-CNN-Bi-LSTM-ATT model by substituting the attention mechanism 

with layer normalization (LN) to demonstrate its effectiveness in a model without attention. LN is applied 

after each learnable layer, such as CNN and fully connected layers. LN facilitates training by normalizing  

the activations within each layer, thereby stabilizing the learning process and making it less sensitive to the 

scale of the input features; however, it does not support capturing long-term dependencies or improving  

the emphasis on critical inputs. Its primary job in this situation is to improve stability and training 

effectiveness; however, it does not provide any additional input weighting capabilities, as attention 

mechanisms do. 

 

 

4. RESULTS AND DISCUSSION 

4.1.  Datasets description 

4.1.1. Stanford earthquake dataset (STEAD) datasets 

The STEAD dataset [5] is a large-scale, global dataset containing two classes of waveforms: 

Seismic noise and local earthquake waveforms, which are recorded at local distances (within 350 km of 

earthquakes). STEAD includes approximately 1.2 million waveforms recorded by seismometers located 

worldwide and resampled at 100 Hz, with a duration of 60 s (6000 features). The local earthquake category 

comprises approximately 1,050,000 three-component seismograms linked to 450,000 earthquakes that 

occurred between January 1984 and August 2018. The seismic noise class comprises approximately 100,000 

waveforms recorded in the United States and Europe since 2000. We require seismic waveforms from 

continuous time series stored in the archives of the earthquake data management center (IRIS DMC), which 

is a collaboration of many research organizations. There are three categories of access states: manual 

selections, which human analysts choose; automatic selections, which are determined by automatic 

algorithms; and automatic pickers, which are selected using an AI-based model. The STEAD dataset 

comprises separate arrays with three waveforms  

Representing three-component seismograms. Each waveform has 6000 characteristics. To prepare for 

training, the proposed model does not use all the data from the STEAD dataset. It carefully selects a smaller 

portion based on specific rules. These rules are designed to ensure data quality and relevance to earthquakes. 

One example of these rules is selecting only data inputs labeled “trace_category” as “earthquake_local”. The 

columns p_travel_seconds, source_distance_km, source_magnitude, and source_depth_km are not empty. We 

used approximately 300,000 earthquake waveforms recorded at less than 1-degree epicentral distances. The 

entire waveform (from 1 second before P to end of S coda) was equal to or less than 30 s. The magnitude 

distribution of the occurrences is shown in Figure 4. All waveforms were band-pass filtered between 1.0 to 

40.0 Hz with a signal-to-noise ratio greater than 20 db. To test the impact of factors such as magnitude type, 

side effects, regional effects, and site-dependent learning, we divided the data into smaller subsets ranging 

from 60K to 140K. We used 70% of each subset for training and 10% and 20% for validation and testing 

regressivity.  
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Figure 4. Magnitude distribution 

 

 

4.1.2. USGS dataset 

The United States Geological Survey (USGS) provides real-world earthquake data on historical 

earthquakes. The dataset used for this research from https://www.kaggle.com/datasets/warcoder/earthquake-

dataset which contains earthquake data collected from the USGS website by Kaggle. This dataset includes a 

record of title, magnitude, date, time, intensity, maximum estimated instrumental intensity, tsunami, The total 

number of seismic stations, The largest azimuthal gap between azimuthally adjacent stations, depth, latitude, 

longitude and country of every earthquake.  

 

4.2.  Performance evaluation 

We evaluated the performance of our models using the mean square error (MSE) [28], MAE, mean 

absolute error standard deviation (MAE_STD), mean square error standard deviation (MSE_STD), and mean 

combination error (MCE). Let n be the number of samples, and the values 𝑦1, 𝑦2, 𝑦3, …, y𝑛 be samples ones 

that were observed in the dataset, and let the values 𝑦̂1, 𝑦̂2, 𝑦̂3, …, 𝑦̂ the ones that were predicted by the 

model. MSE, MAE_STD, E_STD, and (MCE) can be calculated using (9)-(13). 

 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦 

𝑖
)
2𝑛

𝑖=1
  (9) 

 

𝑀𝐴𝐸 =
∑ |𝑦𝑖−𝑦̂𝑖|

𝑛
𝑖=1

𝑛
 (10) 

 

𝑀𝐴𝐸_𝑆𝑇𝐷 = √
1

𝑛
∑ (|𝑦𝑖 − 𝑦̂𝑖| − 𝑀𝐴𝐸)2𝑛
𝑖=1  (11) 

 

𝑀𝑆𝐸_𝑆𝑇𝐷 = √
1

𝑛
∑ ((𝑦𝑖 − 𝑦 

𝑖
)
2
−𝑀𝑆𝐸)

2𝑛

𝑖=1
 (12) 

 

𝑀𝐶𝐸 =∝∗ 𝑀𝐴𝐸 + (1−∝) ∗ √𝑀𝑆𝐸 (13) 

 

where: α is a weighting factor between 0 and 1 

 

4.3.  Experimental results and discussion 

All tests were performed using Google's Kaggle, the Keras framework, which can operate on top of 

TensorFlow, and the Python programing language. All experiments were conducted on an NVIDIA Tesla 

K80 graphical processing unit (GPU) with 32 GB RAM. Furthermore, the Windows 10 operating system was 

used. 

https://www.kaggle.com/datasets/warcoder/earthquake-dataset
https://www.kaggle.com/datasets/warcoder/earthquake-dataset
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This section presents three adapted prediction models. The first model is the Multi CNN-Bi-LSTM-

ATT, which incorporates an attention mechanism. The second model is the Multi-CNN-LN-Bi-LSTM, which 

utilizes layer normalization. Finally, the hybrid CNBLA model integrates the strengths of the two previous 

approaches. Several experiments were carried out to explore the hyperparameter values of the proposed 

model. The parameter values that achieved the highest performance in this study are summarized in Table 3. 

 

4.3.1. Multi CNN-Bi-LSTM-ATT model for earthquake prediction  

In this section, we assess the performance of the Multi CNN-Bi-LSTM-ATT model for earthquake 

prediction. Figure 5 offers a compelling visual overview of the model's effectiveness, demonstrating its 

superior accuracy, consistency, and efficiency in predicting earthquake magnitudes. The figure features a line 

graph that depicts the training and validation loss of the proposed model across several epochs. The x-axis 

represents the number of epochs, while the y-axis displays the corresponding loss values. A lower loss value 

indicates improved model performance. The blue line illustrates the training loss, which begins at a high 

value in the early epochs and decreases rapidly. As training progresses, the loss continues to decline, albeit at 

a slower rate. 

It was found that the model learned effectively from the training set after approximately 80 epochs. 

In the testing phase, Multi CNN-Bi-LSTM-ATT achieved MAE=0.19, MAS_STD=0.21, MSE=0.083, 

MSE_STD=0.22, and MCE=0.03. Figure 6 illustrates the relationship between the measured and predicted 

magnitudes. The horizontal axis represents the measured magnitude documented in the earthquake event 

catalog measurements, while the vertical axis represents the predicted magnitude produced by the model. The 

computed linear regression line is displayed by the diagonal line at the center of the plot. Thus, we can 

deduce that the CNN-Bi-LSTM-ATT model demonstrates a satisfactory fit for the data because the data point 

is close to the theoretical regression line.  

 

 

  
  

Figure 5. Training of the Multi-CNN-Bi-LSTM-ATT 

model and validation loss over a no. of epochs 

Figure 6. Measured and predicted magnitudes of the 

Multi CNN-Bi-LSTM-ATT model 

 

 

4.3.2. Multi-CNN-LN-Bi-LSTM model for enhanced earthquake prediction  

The next step investigates the effect of incorporating a normalization layer to enhance the 

performance of earthquake prediction. Figure 7 demonstrates that the model has learned effectively from the 

training set. Around epoch 35, the training loss plateaued, while the validation loss continued to fluctuate. 

This behavior indicates that the model is successfully learning from the data during the training process. The 

Multi-CNN-LN-Bi-LSTM model achieved in the testing phase, MAE=0.16, MAS_STD=0.18, MSE=0.058, 

MSE_STD=0.17, and Mean combination error=0.017. Figure 8 illustrates the relationship between the 

measured and predicted magnitudes. The computed linear regression line is displayed by the diagonal line at 

the center of the plot. Thus, we can deduce that Multi- CNN-LN-Bi-LSTM model demonstrates a satisfactory 

fit for the data because the data point is close to the theoretical regression line. 

 

4.3.3. Hybrid CNBLA model for improving earthquake prediction 

A novel Hybrid CNBLA model is proposed, which combines the advantageous features of 

convolutional layers, Bi-LSTM, and ATT with creative regularization techniques. The combination of LN 

and ATT reduces the influence of input scale fluctuations, allowing the model to train successfully while not 
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negatively influencing the data. This combination improves the model's robustness, allowing it to better 

tackle the problems posed by seismic data, resulting in higher generalization to previously unexplored data, 

as shown in the following result. The inclusion of both strategies enables more efficient learning, where LN 

supports faster convergence and AT ensures that the model learns from the most relevant input, resulting in 

faster weight modifications during training. Our hybrid CNBLA model aims to leverage the resilience of 

layer normalization and the accuracy of attention-based processes to achieve enhanced performance when 

analyzing three-channel seismogram data. To enhance the precision and effectiveness of seismic magnitude 

estimation, this integration was developed to optimize the extraction and processing of temporal information. 

The implementation of the hybrid CNBLA architecture depicted in Figure 9 offers a comprehensive 

framework that effectively tackles the issues posed by the input data, resulting in a prediction model that is 

both more precise and reliable. Figure 10 Illustrates the relationship between the measured and predicted 

magnitudes. The computed linear regression line is displayed by the diagonal line at the center of the plot. 

Thus, we can deduce that the Hybrid CNBLA model exhibits a satisfactory fit for the data because the data 

point is close to the theoretical regression line. In the testing phase, the hybrid proposed model outperformed 

the others, with the lowest MAE=0.15, MAS_STD=0.17, MSE=0.054, MSE_STD=0.15, and MCE=0.015. 

 

 

  
  

Figure 7. Multi-CNN-LN-Bi-LSTM 's training and 

validation loss over a no. of epochs 

Figure 8. Measured and predicted magnitude 

estimation by Multi-CNN-LN-Bi-LSTM 

 

 

  
  

Figure 9. Hybrid CNBLA training and validation 

loss over a no. of epochs 

Figure 10. Measured and predicted magnitude 

estimation of Hybrid CNBLA 

 

 

4.4.  Comparative study and discussion 

Table 4 presented a comparative analysis of various model architectures on the STEAD dataset 

during testing phase. The comparison of the proposed model and the baseline models using the performance 

metrics are summarized in Table 4. 
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Table 4. Comparative results of different models for proposed model on STAND dataset 
Dataset Model Architecture MAE MAE_STD MSE MSE_STD MCE 

STEAD LSTM [16] 0.2234 0.2304 0.103 0.2599 1.0 
Bi-LSTM [16] 0.222 0.2226 0.099 0.231 1.0 

Bi-LSTM-attention [16] 0.224 0.227 0.102 0.243 1.0 

Transformer [16] 0.20879 0.2088 0.0872 0.2095 1.0 
MagNet [15] 0.201 0.22 0.089 0.228 0.02 

Multi-CNN-Bi-LSTM-ATT (baseline_model) 0.19 0.21 0.083 0.226 0.03 

Multi-CNN-LN-Bi-LSTM (baseline_model) 0.16 0.18 0.058 0.17 0.017 
Hybrid CNBLA (Proposed Model) 0.15 0.17 0.054 0.15 0.015 

 

 

The model of LSTM establishes the baseline with an MAE of 0.2234 and an MSE of 0.103. This 

model is followed by a bidirectional variant, Bi-LSTM, which achieves a slightly improved MAE of 0.222 

and an MSE of 0.099. These results suggest a marginal benefit in capturing temporal dependencies with 

bidirectional processing, but the improvements are limited. Incorporating an attention mechanism into the  

Bi-LSTM model results in an MAE of 0.224 and MSE of 0.102, which are comparable to the standard  

Bi-LSTM. This indicates that the simple addition of attention alone does not substantially enhance the 

model’s performance. The attention mechanism in this context may not effectively capture the long-term 

dependencies within the seismic sequences. Transformer architecture [16] significantly improves, achieving 

an MAE of 0.20879 and an MSE of 0.0872. The transformer's self-attention mechanism seems to better 

understand the relationships in the seismic data, leading to better performance compared to recurrent-based 

architectures. The model also demonstrates greater stability with lower standard deviations (MAE_STD: 

0.2088, MSE_STD: 0.2095), highlighting the transformer’s consistent predictive ability. The author in [15] 

designed a regressor (MagNet) combining convolutional and recurrent neural networks which increase 

architectural complexity to efficiently predict the correlations between seismic wave amplitudes and 

magnitudes. The model achieves an MAE of 0.20 and an MSE of 0.089  when using this architecture for the 

STEAD dataset.  

The multi-CNN-Bi-LSTM-ATT architecture further improves the results, obtaining an MAE of 0.19 

and an MSE of 0.083. This model has convolutional layers for extracting features, Bi-LSTM for recognizing 

temporal patterns, and an attention mechanism to pay attention to important inputs. The combination of these 

components enhances the model’s ability to extract meaningful features from seismic data, as reflected in the 

reduced errors. The standard deviations for this architecture are 0.21 for MAE and 0.226 for MSE, indicating 

reasonable stability. The Multi-CNN-LN-Bi-LSTM model, which replaces the attention mechanism with 

layer normalization (LN), demonstrates a notable leap in performance. This model achieves an MAE of 0.16 

and an MSE of 0.058, demonstrating the impact of LN in stabilizing the training process and improving both 

accuracy and consistency. The standard deviations of MAE and MSE further decrease to 0.18 and 0.17, 

respectively. The MCE for this model is also significantly lower at 0.017, underscoring the importance of 

layer normalization in this architecture. 

The hybrid CNBLA proposed model, which integrates convolutional layers, Bi-LSTM, attention, 

and layer normalization, achieves the best overall performance. This model records an MAE of 0.15 and an 

MSE of 0.054, with the lowest standard deviations (MAE_STD: 0.17, MSE_STD: 0.15) and a remarkably 

low MCE of 0.015. When you combine layer normalization and attention mechanisms, they make training go 

faster and predictions more accurate. This lets the model work well with seismic data. 

A clear trend emerges when examining the MCE across models. The basic architectures, including 

LSTM, Bi-LSTM, and transformer, exhibit relatively high MCEs around 1.0. However, the integration of 

more advanced components—such as attention mechanisms, convolutional layers, and layer normalization—

leads to dramatic improvements. The Multi-CNN-Bi-LSTM-ATT model reduces the MCE to 0.03, while the 

Multi-CNN-LN-Bi-LSTM achieves 0.017. The hybrid CNBLA model further reduces the MCE to 0.015, 

demonstrating the effectiveness of hybrid architectures in capturing complex seismic patterns. Figure 11 

illustrates the efficiency of the proposed hybrid model, which exhibits the lowest deviation metrics (MAE, 

MAE_STD, MSE, and MSE_STD) when evaluated with an unknown test dataset, in comparison to other 

state-of-the-art models. 

Comparing the suggested model with two baseline models and five state-of-the-art techniques shows 

how effective it is at estimating earthquake magnitude. For routine seismic monitoring and early warning 

systems, our hybrid CNBLA model performs better, with MSE and MAE values of 0.054 and 0.15, 

respectively. According to this comparison investigation, better seismic data analysis performance is correlated 

with more complex architecture. When moving from simple LSTM models to more complex hybrid 

architectures, MAE, MSE, and MCE consistently improve; each change improves accuracy and stability. The 

hybrid CNBLA proposed model was also tested using USGS dataset. Table 5 presents a comparative study 

between the hybrid CNBLA proposed model and the other adopted ones using this dataset. 
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Figure 11. Comparison of proposed model and state-of-the-art on STEAD dataset 

 

 

Table 5. Comparative results of different models for proposed model on USGS dataset 
Dataset Model architecture MAE MAE_STD MSE MSE_STD 

USGS Bi-LSTM [16] 0.277642 0.1728135 0.10694 0.1158977 

Bi-LSTM-attention [16] 0.2670741 0.1660221 0.0988919 0.1027874 
Transformer [16] 0.2582806 0.145861 0.082423 0.07721 

MagNet [15] 0.2626354 0.1502673 0.0915576 0.0811363 

Multi-CNN-Bi-LSTM-ATT (baseline_model) 0.2589762 0.1487923 0.0892078 0.0777827 

Multi-CNN-LN-Bi-LSTM (baseline_model) 0.2581094 0.1416009 0.0866713 0.077774 

Hybrid CNBLA (Proposed Model) 0.2526728 0.143346 0.0843916 0.0759424 

 

 

In Table 5, the hybrid CNBLA model outperforms both the basic Bi-LSTM and its attention-

enhanced version in terms of accuracy and consistency. While adding attention to Bi-LSTM reduces MAE by 

3.7% and MSE by 7.5%, hybrid CNBLA further improves these metrics—achieving an additional 5.4% 

reduction in MAE and 14.7% in MSE. It also shows the lowest MSE standard deviation, indicating more 

stable performance. When comparing our hybrid CNBLA with the transformer and MagNet, two distinct 

tendencies become evident. The transformer, although proficient in collecting long-range dependencies 

through self-attention, produces a MAE of 0.2583 and a mean squared error (MSE) of 0.0824. In contrast, 

MagNet’s convolution-driven design attains a somewhat elevated MAE of 0.2626 and an MSE of 0.0916. 

Our hybrid CNBLA demonstrates superior performance, achieving an MAE of 0.2527 and an MSE of 

0.0844. It enhances the transformer by almost 2.2 percent in MAE and exceeds MagNet by over 3.8 percent 

in MAE and 7.9 percent in MSE. This suggests that although the transformer is proficient in modeling global 

temporal structures and MagNet in extracting localized waveform features, neither can independently capture 

the multi-scale patterns seen in seismic data as successfully as our integrated approach. 

Secondly, in terms of stability throughout numerous iterations, the Transformer’s MSE standard 

deviation of 0.0772 and MagNet’s 0.0811 both surpass the Hybrid CNBLA’s 0.0759. This indicates that the 

incorporation of convolutional feature extractors (as utilized in MagNet) and recurrent-attention algorithms 

(as employed in the Transformer) inside a unified, normalized framework results in reduced average errors 

and enhanced reliability in performance. This increased robustness is essential for earthquake forecasting: 

early-warning systems require accurate magnitude estimations and consistent model behavior under different 

initial conditions. The Hybrid CNBLA leverages the complementary strengths of CNNs, Bi-LSTMs, layer 

normalization, and attention, surpassing each particular baseline and providing a balanced solution 

unattainable by either pure Transformer or pure convolutional architectures alone. Figure 12 shows a 

comparative performance matrix of seven deep‑learning architectures—Bi‑LSTM, Bi‑LSTM+Attention, 

Transformer, MagNet, Multi‑CNN‑Bi‑LSTM+ATT, Multi‑CNN‑LN‑Bi‑LSTM, and the proposed Hybrid 

CNBLA—on the USGS earthquake dataset (2001–2023). Across all models, we report MAE, standard 

deviation of MAE (MAE_STD), mean squared error (MSE), and standard deviation of MSE (MSE_STD). 
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Figure 12. Comparison of proposed model and state-of-the-art on USGS dataset 

 

 

The results clearly indicate that recurrent models enhanced with attention or convolutional 

preprocessing outperform the plain Bi‑LSTM, but the most significant gains arise from the integrated 

Hybrid CNBLA design. Attention alone yields modest improvements by allowing the network to focus on 

salient temporal features, cutting MAE and MSE by approximately 3.7% and 7.5%, respectively. 

Convolutional layers in the multi‑CNN hybrids contribute to local feature extraction, further reducing error 

and variability. 

The Transformer’s strong performance underscores the value of self-attention for capturing global 

dependencies, achieving the lowest variability in MAE. However, the Hybrid CNBLA combines the best of 

both worlds: convolutional preprocessing filters out noise and emphasizes local seismic patterns, 

bidirectional LSTMs model sequence context, layer normalization stabilizes training, and attention highlights 

critical time steps. This synergy results in the lowest average errors and the tightest error distributions 

(MAE_STD and MSE_STD), demonstrating both high accuracy and robustness. 

 

4.5.  Architectural considerations and scalability 

Our proposed hybrid model, integrating (CNN, BiLSTM, Attention) stands out for its superior 

performance in intricate earthquake magnitude prediction. This advanced design is critical for discerning the 

subtle, long-range connections within extensive seismic data, a capability vital for precise earthquake 

precursor detection. While this powerful architecture introduces a computational footprint, notably a 

dominant O(L2) complexity from the attention mechanism for long sequences, this is a necessary trade-off for 

achieving unparalleled accuracy in such a critical application.  Despite these inherent complexities, our model 

is engineered for substantial scalability through its robust implementation within the TensorFlow Keras 

framework. We employ a multifaceted strategy: 

a. Implemented distributed training using tf.distribute. Strategy for enhancing parallel processing on 

GPUs/TPUs. 

b. Enhanced data management utilizing the tf.data API for efficient batch processing and streaming, 

alleviating memory limitations. 

c. Enhancement of deployment using quantization and pruning to reduce model size and improve inference 

speed for real-time applications. 

This comprehensive method confirms that the model's intentional complexity is justified by performance 

criteria and that its design is inherently suitable for scaling, ensuring practical viability and extensibility for 

future large-scale seismological applications. 

 

 

5. CONCLUSION 

This paper presents a new automatic earthquake detection model that uses a hybrid neural network 

architecture to enhance the processing of seismic data. The proposed model efficiently improves the 

extraction and analysis of temporal characteristics from raw seismic waveforms by using convolutional 

layers, Bi-LSTM, and attention processes. The proposed model demonstrates superior performance compared 

to the other models in magnitude estimation when evaluated against two datasets: the STEAD and USGS 

datasets. It is evaluated using two datasets, resulting in MSE of 0.054 and 0.0843, and MAE values of 0.15 

and 0.2526, respectively. The findings emphasize the capacity of sophisticated neural network structures to 
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enhance the precision and effectiveness of earthquake magnitude forecasts. This strategy not only improves 

the regular monitoring of seismic activity and boosts earthquake's dependability early warning systems, 

providing crucial seconds for taking precautionary measures. Subsequent efforts will focus on enlarging the 

dataset and investigating supplementary improvements to neural networks to enhance earthquake prediction 

capabilities to a greater extent. 
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