International Journal of Electrical and Computer Engineering (IJECE)
Vol. 15, No. 6, December 2025, pp. 5879~5893
ISSN: 2088-8708, DOI: 10.11591/ijece.v15i6.pp5879-5893 g 5879

Hybrid CNBLA architecture for accurate earthquake

magnitude forecasting

Somia A. Shams, Asmaa Mohamed, Abeer S. Desuky, Gaber A. Elsharawy, Rania Salah El-Sayed
Department of Mathematics, Faculty of Science, Al-Azhar University, Cairo, Egypt

Article Info

ABSTRACT

Article history:

Received Oct 28, 2024
Revised Jul 17, 2025
Accepted Sep 14, 2025

Keywords:

Attention mechanism
Bidirectional long short-term
memory

Earthquake prediction

Layer normalization

Neural network

Earthquake prediction in seismology is challenging due to sudden events and
lack of warnings, requiring rapid detection and accurate parameter
estimation for real-time applications. This study proposed a novel automatic
earthquake detection model to enhance the processing and analysis of
seismic data. The hybrid model comprises convolutional layers,
normalization techniques, bidirectional long short-term memory (Bi-LSTM)
networks, and attention mechanisms, collectively referred to as the hybrid
convolutional-normalization-BiLSTM-attention (CNBLA) model. The
attention mechanism allows the model to focus on critical segments of
seismic sequences, while layer normalization stabilizes training by
normalizing activations, thus reducing the effects of input scale variations.
This dual approach mitigates the impact of input scale variations and
enhances the model’s ability to effectively decode complex temporal
patterns. The hybrid CNBLA model optimizes the extraction and processing
of temporal features from raw waveforms recorded at single stations, thereby
improving the accuracy and efficiency of seismic magnitude estimation. The
proposed model is evaluated using two datasets: the STEAD and USGS
achieving a mean square error (MSE) values 0.054 and 0.0843 and a mean
absolute error (MAE) 0.15 and 0.2526 respectively. The hybrid CNBLA
model outperforms two baseline models and five state-of-the-art approaches
in earthquake magnitude estimation, improving seismic monitoring and early
warning systems.
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1. INTRODUCTION

Earthquakes occur when the ground moves and shakes, releasing energy stored in rocks. These
natural disasters can cause significant damage, financial loss, and injury, and in severe cases, mass casualties
[1]. They can cause mass death. Earthquake early warning (EEW) has emerged as an effective technology for
mitigating the impact and damage caused by earthquakes. Nine countries or regions currently have
operational EEW systems; another thirteen are testing such systems [2]. For as little as a few seconds, EEW
systems can alert target locations before the arrival of harmful seismic waves, which is essential for lessening
the impact of earthquakes [3]. The regional EEW system provides early warning by determining the
properties of an earthquake, including its time, position, and magnitude. Since the earthquake’s magnitude
plays a crucial role in a warning signal, rapid and precise magnitude estimation is a crucial field of research

for regional EEW systems [2].
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Magnitude is a logarithmic indicator of earthquake power. The Richter scale, often known as the
local magnitude scale, was developed by Richter [4] and has been extensively used in scientific study and
for providing quick public earthquake information. People usually feel earthquakes greater than 2.5 but
cannot feel earthquakes less than 2.5. Earthquakes that cause significant damage have magnitudes greater
than 4.5 [5]. Scientists strive continually to improve methods for predicting earthquake magnitudes to
accurately prevent serious consequences. Although it is impossible to prevent earthquakes, timely and
accurate warnings can significantly reduce their destructive impact. Various methods exist for predicting
earthquake magnitudes, including the use of sensors, devices, magnetic and electrical waves, and seismic
indicators derived from historical data. Although no ideal model exists, ongoing trials enhance prediction
accuracy [6].

Artificial intelligence, particularly neural networks [7] has shown great promise in solving complex
nonlinear problems related to seismic activity. Neural networks, a subset of machine learning, can model
intricate patterns and relationships in data, making them well suited for earthquake magnitude prediction [1].
By analyzing vast amounts of seismological data, these models can identify subtle features that traditional
methods may overlook. Machine learning and data mining techniques offer robust methods for studying
seismic data and indicators, making them effective for handling large datasets [8]. These technologies have
revolutionized the field of seismology, providing new insights and improving the accuracy of earthquake
predictions. Ensuring the quality and accuracy of the dataset is critical for the performance of predictive
models [5].

Deep learning models perform better when interpreting complicated and nonlinear inputs using
these layers for dimensionality reduction. Deep learning models like graph neural networks (GNN) [9],
multilayer perceptrons [10], long short-term memory (LSTM) [11], Bi-LSTM [12], provide effective
approaches for capturing geographical data, including stations and their relationships. Chakraborty ef al. [13]
presented a multitasking deep learning model called the convolutional recurrent model for earthquake
identification and magnitude estimation (CREIME). It can perform the following tasks: i) identify the
earthquake signal from background seismic noise, ii) calculate the arrival time of the first primary wave
(P wave), and iii) estimate the magnitude using the raw three-component waveforms from a single station as
the model input. Biases in performance evaluation may arise from variations in preprocessing techniques and
input data length when comparing CREIME with other models in the study. This disparity indicates that
uniform benchmarks are necessary to guarantee equitable comparisons across various approaches.

Saad et al. [14] introduced a model comprising two specialized vision transformer (ViT) networks:
one for identifying P-wave arrival times and another for predicting earthquake magnitudes, both engineered
to process seismic data fast and reliably. A wider range of performance measurements would be beneficial
for the paper, even though the evaluation metrics employed like mean absolute error (MAE) are significant.
Mousavi and Beroza [15] used convolutional and recurrent neural networks, namely bidirectional long short-
term memory (Bi-LSTM) units, to efficiently predict the correlations between seismic wave amplitudes and
magnitudes. The transformer technique was utilized to forecast earthquake magnitudes based on existing data
for the Horn of Africa [16]. Several studies have examined the use of various machine learning and deep
learning models for earthquake prediction that are summarized in Table 1.

The results of this research have significant consequences for both the scientific community and
public safety. The proposed model is built upon six key contributions:

a. Integration of attention mechanism with bidirectional LSTM: This serves as the baseline model for
earthquake prediction, leveraging the strengths of both approaches.

b. Enhanced prediction through layer normalization: By replacing the attention mechanism with layer
normalization (LN), the study demonstrates the effectiveness of this approach in models that do not
utilize attention.

c. Development of the hybrid convolutional-normalization—-BiLSTM-attention (CNBLA) model: This
model effectively combines the advantages of the attention mechanism and layer normalization, which
enhances the stability of the training process.

d. The custom loss function is crafted to allow the model to learn both accurate predictions and the
associated uncertainty, specifically addressing aleatoric uncertainty, which refers to the uncertainty
inherent in the data itself.

e. Comparative analysis of architectures: The research includes a detailed comparison of various
architectures, accompanied by an in-depth discussion of the results obtained.

f. The efficiency of the proposed model is thoroughly evaluated using two different datasets and several
performance metrics, including mean square error (MSE), mean absolute error (MAE), standard deviation
of mean absolute error (MAE_STD), standard deviation of mean square error (MSE_STD), and mean
combination error (MCE).
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Improved magnitude estimation can enhance the reliability of EEW systems by providing critical
seconds for individuals and infrastructures to take protective actions. Our findings will contribute to ongoing
efforts to develop more robust and reliable early earthquake warning systems. It ultimately aiming to reduce
the impact of these natural disasters on society.

The structure of the paper is organized as follows: The second section provides the necessary
preliminaries, including foundational concepts and definitions pertinent to this study. Section 3 presents the
architecture of the proposed Hybrid CNBLA model along with the configuration of the baseline model.
Section 4 presents the results and discussion, beginning by describing the dataset used and assessing the
model’s performance. In Section 5, the work is concluded with a summary of the significant contributions
and recommendations for future research directions.

Table 1. Comparison of existing earthquake forecasting models

Ref. Techniques Predicted variables Range of magnitude  The type of
prediction

[16] Transformer algorithm Magnitude Magnitudes >= 3. Regression

LSTM, GRU Magnitude occurrence, location cluster, Magnitude > 5.0  Clustering and
and time regression
[18] attention-based LSTM time, magnitude, and location magnitude > 5 Regression
19]  Autoregressive integrated moving average Magnitude Magnitude > 4 regression
(ARIMA) singular spectrum analysis (SSA)
[20] attention and Bi-LSTM Earthquake or no earthquake occurrence Magnitudes Classification
location occurrence (regression) between 7 and 7.5
[21] GNN with batch normalization and an depth and magnitude undefined regression

attention mechanism

2.  PRELIMINARIES
2.1. Convolutional neural network

Convolutional neural networks (CNNs) have demonstrated efficacy in various domains, such as
image processing, condition monitoring, and time series analysis. A CNN is constructed sequentially,
layering three primary components: convolution, pooling, and fully connected (FC) layers [22]. The
convolution layers comprise a collection of trainable kernels that are specifically designed to automatically
extract local features from the input matrix [23]. These kernels execute convolution operations by utilizing
weight sharing and local connection principles, resulting in reduced computational load, decreased model
complexity, and improved performance. CNNs have been applied to earthquake prediction by analyzing
seismic data, such as waveform signals and spectrograms. CNNs can learn geographical and temporal
patterns in seismic data, enabling the detection of earthquake precursors or anomalies in the signals. CNNss,
also known as feature learners, can automatically extract relevant features from raw input data [24].

2.2. Long short-term memory

Long short-term memory (LSTM) is a recurrent neural network that retains temporal connections
between input items during training. They are widely used to simulate sequential data, such as earthquake
signals [25]. LSTM units are effective for magnitude estimation due to their gated mechanism, which
includes Tanh and Sigmoid activation functions, making them less sensitive to unnormalized input. The
proposed LSTM architecture is illustrated in Figure 1. The LSTM unit comprises a cell: a forget gate, output
gate, and input gate. The cell unit is responsible for storing values at each time interval. The gates control
information that enters and leaves the rest of the unit. The forget gate (I¥) in the memory block structure is
managed by a basic one-layer neural network. Equation (1) expresses how this gate operates. Forget gate( I¥)
determines how much of the section should be retained and what should be discarded. The sigmoid activation
function (o) is used to implement it.

I; = a(we[a<t"1>,x<] + by (1)

where (x<*7) is the current input, (a<t~'>) is the previous hidden state, and (wy and by ) are the weight
matrix and bias vector, which are learned from the input training data. An input gate is a unit in which the
previous memory block effect forms new memory. A simple NN with an activation function is called tanh.
These operations are calculated by (2), which calculates the candidate cell state, and (3), which calculates
how much of the new cell state is retained using the sigmoid function (o).

&< = tanh (w.[a~"1>,x<*>] + b,) )

Hybrid CNBLA architecture for accurate earthquake magnitude forecasting (Somia A. Shams)



5882 O ISSN: 2088-8708

L, = o(wy[a~",x<] + by) 3
Output gate ([, ): It controls what parts of the cell state will be output, and it is described by (4).

I, = o(wo[a=""%,x=] + b,) “
The output gate is the output of the current LSTM block and expressed using (5) and (6).

c<> =[x ¢<t> 4 I; * c<t-1> (5)

a<t> =T, x tanhc<* 6)

Where ( a<*>) can be calculated by applying the output gate to the hyperbolic tangent of the cell state.
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Figure 1. The architecture of LSTM

2.3. Bidirectional long-short term memory
Typically, an individual LSTM only functions in the forward direction of the information value. As a

result, there was only one way to deliver the information. Two LSTM layers work together in the Bi-LSTM
architecture [12], one layer handling forward information processing, and the second layer handling
backward execution, as illustrated in Figure 2. This architecture is superior to single LSTM and RNN
algorithms regarding earthquake magnitude prediction due to its ability to use previous and subsequent
information.

Backward
Layer 7 Il LsTM JI
Forward
Layer iﬁ{ f

Figure 2. Bidirectional LSTM
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2.4. Attention mechanism

Attention mechanism (ATT) plays a crucial role in sequence-to-sequence models, particularly when
dealing with long sequences or complex patterns. The attention mechanism allows the model to focus on
relevant parts of the input sequence, regardless of its length [26]. It assigns different weights to different time
steps to emphasize important information. Note that attention improves model performance by reducing
information loss risk. Instead of relying solely on the final hidden state of the LSTM, this model considers all
hidden states in each decoding step.

3. RESEARCH METHOD
3.1. Architecture of the proposed hybrid CNBLA model

In the pursuit of advancing the computational processing and analysis of seismic data, this paper
introduces a hybrid CNBLA model that integrates the strengths of convolutional layers, Bi-LSTM, and ATT
with innovative regularization techniques. The Hybrid CNBLA model amalgamates the key features of the
two preliminary models as follows. The first Multi-CNN-Bi-LSTM-ATT model leverages an ATT to
selectively emphasize significant segments of input sequences, thereby enhancing the model’s ability to
handle complex patterns over long durations. In contrast, the second Multi-CNN-LN-Bi-LSTM model
incorporates layer normalization (LN) [27] to stabilize the training process and mitigate the impact of input
scale variations. By combining these approaches, the proposed hybrid CNBLA model aims to harness the
robustness of layer normalization and the precision of attention-based mechanisms to deliver superior
performance when analyzing three-channel seismogram data. This integration was designed to optimize the
extraction and processing of temporal features, thereby improving the accuracy and efficiency of seismic
magnitude estimation. The hybrid CNBLA architecture is shown in Figure 3 provided a comprehensive
framework capable of addressing the challenges presented by the input data, leading to a more accurate and
reliable prediction model.

Convid_1

]
y ekl f FC_1
: FC_2 FC_3
- ™

/ f g | Y — vewriuce

i 4 Layer i~ £ Max- | < Fully
Convolutional '_13 Normalization J) Dropout J Pooling rolyiccninecied 'Rdu' connected+Linear

Figure 3. Architecture of hybrid CNBLA model for earthquake prediction

The proposed model used seismograms from three channels, each covering 30 s, to predict
earthquake magnitudes. The architecture comprises three convolutional layers with filter counts of 32, 64,
and 32, each with a kernel size of 3. Layer normalization was used to improve stability and efficiency during
training, and dropout and max pooling were used to decrease spatial dimensions while preserving essential
features.

The output of the CNN was used as Input for the Bi-LSTM architecture, which outperformed a
single LSTM in predicting earthquake magnitudes. Attention mechanism is added after Bi-LSTM to evaluate
all hidden states at each decoding step. The model incorporates two fully connected Dense layers, with the
initial layer consisting of 64 units and L2 regularization to minimize overfitting. Dropout regularization is
implemented to enhance model generalizability. The final output is created using a fully connected layer with
a single neuron, and a linear activation function is used to estimate the output amplitude.

To enable the proposed model to learn both accurate predictions and their inherent aleatoric
uncertainty (data noise), we use a custom loss function (7). This loss function achieves this by combining two

Hybrid CNBLA architecture for accurate earthquake magnitude forecasting (Somia A. Shams)
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key components: the weighted squared error and a direct penalty on the predicted uncertainty. This method
provided a variant of the common MSE loss but incorporated an additional scaling factor that was dependent
on the exponential function of variable s;. The parameter s; is extracted from the ypq.; tensor, which
represents the model's predictions. The ypq, ; tensor is expected to have at least two components along its last
axis: the predicted value yp4¢; and the secondary parameter s;. The s; parameter is used in the custom loss
function to model aleatoric uncertainty, which represents the inherent noise or variability in the data.
Specifically, s;i influences the weighting of the squared error term and adds a regularization-like term to the
loss. The exponential transformation 0.5. e®t adjusts the contribution of the squared error based on the value
OfS,‘.

This loss function is particularly interesting because it allows for dynamic adjustment of the error
term based on the value of s;.

. 2
LL' = 2(05 e’ (l}’true,i - Yhat,il) + 0'5-51') (7)

Where L; is the loss of element ; in the batch, and s; is a parameter that modulates the squared error's
influence on the total loss. The exponential function ensures that this scaling factor decreases as s; increases,
which can be interpreted as reducing the importance or weight of large errors when s; is high.

We used an adjustable learning rate technique in our implementation. The proposed model
adaptively modifies the learning rate during training, thereby enabling more effective convergence. We
calculated the learning rate using (8):

Ir, =lr,_, e (®)

Where A is the decay rate, which in this case is set to the square root of 0.1. The value of lambda was
determined through extensive experimentation with different configurations. We tested a variety of lambda
values to find the optimal setting that balanced convergence speed and stability during training. Our results
indicated that a lambda value of 0.1 consistently produced favorable results across multiple training runs,
contributing to a more stable learning process. This choice reflects our findings that this particular value
allowed the model to converge effectively without oscillations or divergence. The patience parameter was set
to 4 epochs, which indicates that the learning rate decreased if no progress was detected during this time
frame. The absence of a cooldown period (cooldown=0) permitted the immediate resumption of post-
reduction. This adaptive methodology enhances training by achieving a harmonious equilibrium between
swift initial learning and meticulous refinement in subsequent phases. This may result in enhanced model
performance and expedited convergence. This dual approach leverages the benefits of both normalization and
attention mechanisms to ensure robustness and superior performance in sequence processing tasks. All
parameters are shown in Tables 2 and 3.

Table 2. Description of proposed model and its parameters

Block Layers (Name) Description and parameter values
feature convld 1D conv layer with 32 filters, kernel size of 3 and L2 regularization = 0.001
extraction layer normalization
block Dropout rate of 0.2
max_poolingld with a pool size of 4
convld 1 1D conv layer with 64 filters, kernel size of 3 and L2 regularization = 0.001

layer normalization_1
Dropout rate of 0.2
max_poolingld with a pool size of 4
convld 2 1D conv layer with 32 filters, kernel size 3, and L2regularization = 0.001
layer normalization 2
Dropout rate of 0.2
max_poolingld with a pool size of 4

Sequence  Bi-LSTM The LSTM layer has 100 units, recurrent_dropout=0.2, and dropout regularization rate is 0.2.
learning
Attention  dense 1 A dense layer with a single output neuron is applied to the input using the tanh activation function.
block Attention
Prediction  dense 2 Dense layer with 64 units, L2 regularization = 0.001, and the ReLU activation function was applied.
block layer normalization 3
Dropout rate of 0.2
dense 3 Dense layer with 64 units, L2 regularization = 0.001, and ReLU activation function.
layer normalization 4
Dropout rate of 0.2
dense 4 A dense layer is applied with a linear activation function.
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Table 3. Parameter settings for the hybrid CNBLA model

Parameter Value
No. of training samples 50734
No. of validation samples 7248
No. of testing samples 14495
No. of epochs 200
Batch size 256
L2 regularization strength 0.001
Loss function The custom loss function as in (7)
optimizer Adam algorithm
Learning rate Automatically adjusts the learning rate during training, as shown in (8)
Early stopping monitor=validation loss, and patience = 5

3.2. Baseline model configuration
3.2.1. Multi CNN-Bi-LSTM-ATT model

The proposed neural network architecture integrates convolutional layers, Bi-LSTM, and an
attention mechanism. Following the attention mechanism, the architecture includes three fully-connected
dense layers to predict the output magnitude. The attention mechanism helps the model focus on pertinent
input, which improves its capacity to decode complex patterns over lengthy periods of time. This selective
attention enhances model performance, particularly on sequence-to-sequence tasks.

3.2.2. Multi CNN-LN-Bi-LSTM model

This model modifies the Multi-CNN-Bi-LSTM-ATT model by substituting the attention mechanism
with layer normalization (LN) to demonstrate its effectiveness in a model without attention. LN is applied
after each learnable layer, such as CNN and fully connected layers. LN facilitates training by normalizing
the activations within each layer, thereby stabilizing the learning process and making it less sensitive to the
scale of the input features; however, it does not support capturing long-term dependencies or improving
the emphasis on critical inputs. Its primary job in this situation is to improve stability and training
effectiveness; however, it does not provide any additional input weighting capabilities, as attention
mechanisms do.

4. RESULTS AND DISCUSSION
4.1. Datasets description
4.1.1. Stanford earthquake dataset (STEAD) datasets

The STEAD dataset [5] is a large-scale, global dataset containing two classes of waveforms:
Seismic noise and local earthquake waveforms, which are recorded at local distances (within 350 km of
earthquakes). STEAD includes approximately 1.2 million waveforms recorded by seismometers located
worldwide and resampled at 100 Hz, with a duration of 60 s (6000 features). The local earthquake category
comprises approximately 1,050,000 three-component seismograms linked to 450,000 earthquakes that
occurred between January 1984 and August 2018. The seismic noise class comprises approximately 100,000
waveforms recorded in the United States and Europe since 2000. We require seismic waveforms from
continuous time series stored in the archives of the earthquake data management center (IRIS DMC), which
is a collaboration of many research organizations. There are three categories of access states: manual
selections, which human analysts choose; automatic selections, which are determined by automatic
algorithms; and automatic pickers, which are selected using an Al-based model. The STEAD dataset
comprises separate arrays with three waveforms

Representing three-component seismograms. Each waveform has 6000 characteristics. To prepare for
training, the proposed model does not use all the data from the STEAD dataset. It carefully selects a smaller
portion based on specific rules. These rules are designed to ensure data quality and relevance to earthquakes.
One example of these rules is selecting only data inputs labeled “trace category” as “earthquake local”. The
columns p_travel seconds, source_distance km, source magnitude, and source depth _km are not empty. We
used approximately 300,000 earthquake waveforms recorded at less than 1-degree epicentral distances. The
entire waveform (from 1 second before P to end of S coda) was equal to or less than 30 s. The magnitude
distribution of the occurrences is shown in Figure 4. All waveforms were band-pass filtered between 1.0 to
40.0 Hz with a signal-to-noise ratio greater than 20 db. To test the impact of factors such as magnitude type,
side effects, regional effects, and site-dependent learning, we divided the data into smaller subsets ranging
from 60K to 140K. We used 70% of each subset for training and 10% and 20% for validation and testing
regressivity.

Hybrid CNBLA architecture for accurate earthquake magnitude forecasting (Somia A. Shams)
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4.1.2. USGS dataset

The United States Geological Survey (USGS) provides real-world earthquake data on historical
carthquakes. The dataset used for this research from https://www.kaggle.com/datasets/warcoder/earthquake-
dataset which contains earthquake data collected from the USGS website by Kaggle. This dataset includes a
record of title, magnitude, date, time, intensity, maximum estimated instrumental intensity, tsunami, The total
number of seismic stations, The largest azimuthal gap between azimuthally adjacent stations, depth, latitude,

longitude and country of every earthquake.

4.2. Performance evaluation
We evaluated the performance of our models using the mean square error (MSE) [28], MAE, mean

absolute error standard deviation (MAE_STD), mean square error standard deviation (MSE_STD), and mean
combination error (MCE). Let n be the number of samples, and the values yi, y», y3, ..., yn be samples ones
that were observed in the dataset, and let the values yi, 35, )3, ..., ) the ones that were predicted by the
model. MSE, MAE _STD, E_STD, and (MCE) can be calculated using (9)-(13).

1\ AN\2
MSE=2%"" (y-7) ©
i=1
n Ay
MaEg = 2= (10)
MABSTD = [“S1,(1y; — il - MAB)? an

i=1

MSE_STD = \/izn (Gi-9) - MSE)2 (12)

MCE =x* MAE + (1—x) * VMSE (13)
where: a is a weighting factor between 0 and 1

4.3. Experimental results and discussion
All tests were performed using Google's Kaggle, the Keras framework, which can operate on top of

TensorFlow, and the Python programing language. All experiments were conducted on an NVIDIA Tesla
K80 graphical processing unit (GPU) with 32 GB RAM. Furthermore, the Windows 10 operating system was

used.
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This section presents three adapted prediction models. The first model is the Multi CNN-Bi-LSTM-
ATT, which incorporates an attention mechanism. The second model is the Multi-CNN-LN-Bi-LSTM, which
utilizes layer normalization. Finally, the hybrid CNBLA model integrates the strengths of the two previous
approaches. Several experiments were carried out to explore the hyperparameter values of the proposed
model. The parameter values that achieved the highest performance in this study are summarized in Table 3.

4.3.1. Multi CNN-Bi-LSTM-ATT model for earthquake prediction

In this section, we assess the performance of the Multi CNN-Bi-LSTM-ATT model for earthquake
prediction. Figure 5 offers a compelling visual overview of the model's effectiveness, demonstrating its
superior accuracy, consistency, and efficiency in predicting earthquake magnitudes. The figure features a line
graph that depicts the training and validation loss of the proposed model across several epochs. The x-axis
represents the number of epochs, while the y-axis displays the corresponding loss values. A lower loss value
indicates improved model performance. The blue line illustrates the training loss, which begins at a high
value in the early epochs and decreases rapidly. As training progresses, the loss continues to decline, albeit at
a slower rate.

It was found that the model learned effectively from the training set after approximately 80 epochs.
In the testing phase, Multi CNN-Bi-LSTM-ATT achieved MAE=0.19, MAS STD=0.21, MSE=0.083,
MSE_STD=0.22, and MCE=0.03. Figure 6 illustrates the relationship between the measured and predicted
magnitudes. The horizontal axis represents the measured magnitude documented in the earthquake event
catalog measurements, while the vertical axis represents the predicted magnitude produced by the model. The
computed linear regression line is displayed by the diagonal line at the center of the plot. Thus, we can
deduce that the CNN-Bi-LSTM-ATT model demonstrates a satisfactory fit for the data because the data point
is close to the theoretical regression line.
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Figure 5. Training of the Multi-CNN-Bi-LSTM-ATT  Figure 6. Measured and predicted magnitudes of the
model and validation loss over a no. of epochs Multi CNN-Bi-LSTM-ATT model

4.3.2. Multi-CNN-LN-Bi-LSTM model for enhanced earthquake prediction

The next step investigates the effect of incorporating a normalization layer to enhance the
performance of earthquake prediction. Figure 7 demonstrates that the model has learned effectively from the
training set. Around epoch 35, the training loss plateaued, while the validation loss continued to fluctuate.
This behavior indicates that the model is successfully learning from the data during the training process. The
Multi-CNN-LN-Bi-LSTM model achieved in the testing phase, MAE=0.16, MAS _STD=0.18, MSE=0.058,
MSE STD=0.17, and Mean combination error=0.017. Figure 8 illustrates the relationship between the
measured and predicted magnitudes. The computed linear regression line is displayed by the diagonal line at
the center of the plot. Thus, we can deduce that Multi- CNN-LN-Bi-LSTM model demonstrates a satisfactory
fit for the data because the data point is close to the theoretical regression line.

4.3.3. Hybrid CNBLA model for improving earthquake prediction

A novel Hybrid CNBLA model is proposed, which combines the advantageous features of
convolutional layers, Bi-LSTM, and ATT with creative regularization techniques. The combination of LN
and ATT reduces the influence of input scale fluctuations, allowing the model to train successfully while not

Hybrid CNBLA architecture for accurate earthquake magnitude forecasting (Somia A. Shams)
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negatively influencing the data. This combination improves the model's robustness, allowing it to better
tackle the problems posed by seismic data, resulting in higher generalization to previously unexplored data,
as shown in the following result. The inclusion of both strategies enables more efficient learning, where LN
supports faster convergence and AT ensures that the model learns from the most relevant input, resulting in
faster weight modifications during training. Our hybrid CNBLA model aims to leverage the resilience of
layer normalization and the accuracy of attention-based processes to achieve enhanced performance when
analyzing three-channel seismogram data. To enhance the precision and effectiveness of seismic magnitude
estimation, this integration was developed to optimize the extraction and processing of temporal information.
The implementation of the hybrid CNBLA architecture depicted in Figure 9 offers a comprehensive
framework that effectively tackles the issues posed by the input data, resulting in a prediction model that is
both more precise and reliable. Figure 10 Illustrates the relationship between the measured and predicted
magnitudes. The computed linear regression line is displayed by the diagonal line at the center of the plot.
Thus, we can deduce that the Hybrid CNBLA model exhibits a satisfactory fit for the data because the data
point is close to the theoretical regression line. In the testing phase, the hybrid proposed model outperformed
the others, with the lowest MAE=0.15, MAS STD=0.17, MSE=0.054, MSE STD=0.15, and MCE=0.015.
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4.4. Comparative study and discussion

Table 4 presented a comparative analysis of various model architectures on the STEAD dataset
during testing phase. The comparison of the proposed model and the baseline models using the performance
metrics are summarized in Table 4.
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Table 4. Comparative results of different models for proposed model on STAND dataset

Dataset Model Architecture MAE MAE STD MSE MSE STD MCE
STEAD LSTM [16] 0.2234 0.2304 0.103 0.2599 1.0
Bi-LSTM [16] 0.222 0.2226 0.099 0.231 1.0
Bi-LSTM-attention [16] 0.224 0.227 0.102 0.243 1.0
Transformer [16] 0.20879 0.2088 0.0872 0.2095 1.0
MagNet [15] 0.201 0.22 0.089 0.228 0.02
Multi-CNN-Bi-LSTM-ATT (baseline_model) 0.19 0.21 0.083 0.226 0.03
Multi-CNN-LN-Bi-LSTM (baseline_model) 0.16 0.18 0.058 0.17 0.017
Hybrid CNBLA (Proposed Model) 0.15 0.17 0.054 0.15 0.015

The model of LSTM establishes the baseline with an MAE of 0.2234 and an MSE of 0.103. This
model is followed by a bidirectional variant, Bi-LSTM, which achieves a slightly improved MAE of 0.222
and an MSE of 0.099. These results suggest a marginal benefit in capturing temporal dependencies with
bidirectional processing, but the improvements are limited. Incorporating an attention mechanism into the
Bi-LSTM model results in an MAE of 0.224 and MSE of 0.102, which are comparable to the standard
Bi-LSTM. This indicates that the simple addition of attention alone does not substantially enhance the
model’s performance. The attention mechanism in this context may not effectively capture the long-term
dependencies within the seismic sequences. Transformer architecture [16] significantly improves, achieving
an MAE of 0.20879 and an MSE of 0.0872. The transformer's self-attention mechanism seems to better
understand the relationships in the seismic data, leading to better performance compared to recurrent-based
architectures. The model also demonstrates greater stability with lower standard deviations (MAE STD:
0.2088, MSE_STD: 0.2095), highlighting the transformer’s consistent predictive ability. The author in [15]
designed a regressor (MagNet) combining convolutional and recurrent neural networks which increase
architectural complexity to efficiently predict the correlations between seismic wave amplitudes and
magnitudes. The model achieves an MAE of 0.20 and an MSE of 0.089 when using this architecture for the
STEAD dataset.

The multi-CNN-Bi-LSTM-ATT architecture further improves the results, obtaining an MAE of 0.19
and an MSE of 0.083. This model has convolutional layers for extracting features, Bi-LSTM for recognizing
temporal patterns, and an attention mechanism to pay attention to important inputs. The combination of these
components enhances the model’s ability to extract meaningful features from seismic data, as reflected in the
reduced errors. The standard deviations for this architecture are 0.21 for MAE and 0.226 for MSE, indicating
reasonable stability. The Multi-CNN-LN-Bi-LSTM model, which replaces the attention mechanism with
layer normalization (LN), demonstrates a notable leap in performance. This model achieves an MAE of 0.16
and an MSE of 0.058, demonstrating the impact of LN in stabilizing the training process and improving both
accuracy and consistency. The standard deviations of MAE and MSE further decrease to 0.18 and 0.17,
respectively. The MCE for this model is also significantly lower at 0.017, underscoring the importance of
layer normalization in this architecture.

The hybrid CNBLA proposed model, which integrates convolutional layers, Bi-LSTM, attention,
and layer normalization, achieves the best overall performance. This model records an MAE of 0.15 and an
MSE of 0.054, with the lowest standard deviations (MAE_STD: 0.17, MSE_STD: 0.15) and a remarkably
low MCE of 0.015. When you combine layer normalization and attention mechanisms, they make training go
faster and predictions more accurate. This lets the model work well with seismic data.

A clear trend emerges when examining the MCE across models. The basic architectures, including
LSTM, Bi-LSTM, and transformer, exhibit relatively high MCEs around 1.0. However, the integration of
more advanced components—such as attention mechanisms, convolutional layers, and layer normalization—
leads to dramatic improvements. The Multi-CNN-Bi-LSTM-ATT model reduces the MCE to 0.03, while the
Multi-CNN-LN-Bi-LSTM achieves 0.017. The hybrid CNBLA model further reduces the MCE to 0.015,
demonstrating the effectiveness of hybrid architectures in capturing complex seismic patterns. Figure 11
illustrates the efficiency of the proposed hybrid model, which exhibits the lowest deviation metrics (MAE,
MAE STD, MSE, and MSE STD) when evaluated with an unknown test dataset, in comparison to other
state-of-the-art models.

Comparing the suggested model with two baseline models and five state-of-the-art techniques shows
how effective it is at estimating earthquake magnitude. For routine seismic monitoring and early warning
systems, our hybrid CNBLA model performs better, with MSE and MAE values of 0.054 and 0.15,
respectively. According to this comparison investigation, better seismic data analysis performance is correlated
with more complex architecture. When moving from simple LSTM models to more complex hybrid
architectures, MAE, MSE, and MCE consistently improve; each change improves accuracy and stability. The
hybrid CNBLA proposed model was also tested using USGS dataset. Table 5 presents a comparative study
between the hybrid CNBLA proposed model and the other adopted ones using this dataset.
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Figure 11. Comparison of proposed model and state-of-the-art on STEAD dataset

Table 5. Comparative results of different models for proposed model on USGS dataset

Dataset Model architecture MAE MAE STD MSE MSE STD
USGS Bi-LSTM [16] 0.277642 0.1728135 0.10694 0.1158977
Bi-LSTM-attention [16] 0.2670741  0.1660221  0.0988919  0.1027874

Transformer [16] 0.2582806 0.145861 0.082423 0.07721
MagNet [15] 0.2626354  0.1502673  0.0915576  0.0811363

Multi-CNN-Bi-LSTM-ATT (baseline_model)  0.2589762  0.1487923  0.0892078  0.0777827
Multi-CNN-LN-Bi-LSTM (baseline_model) ~ 0.2581094  0.1416009  0.0866713  0.077774
Hybrid CNBLA (Proposed Model) 0.2526728  0.143346 0.0843916  0.0759424

In Table 5, the hybrid CNBLA model outperforms both the basic Bi-LSTM and its attention-
enhanced version in terms of accuracy and consistency. While adding attention to Bi-LSTM reduces MAE by
3.7% and MSE by 7.5%, hybrid CNBLA further improves these metrics—achieving an additional 5.4%
reduction in MAE and 14.7% in MSE. It also shows the lowest MSE standard deviation, indicating more
stable performance. When comparing our hybrid CNBLA with the transformer and MagNet, two distinct
tendencies become evident. The transformer, although proficient in collecting long-range dependencies
through self-attention, produces a MAE of 0.2583 and a mean squared error (MSE) of 0.0824. In contrast,
MagNet’s convolution-driven design attains a somewhat elevated MAE of 0.2626 and an MSE of 0.0916.
Our hybrid CNBLA demonstrates superior performance, achieving an MAE of 0.2527 and an MSE of
0.0844. It enhances the transformer by almost 2.2 percent in MAE and exceeds MagNet by over 3.8 percent
in MAE and 7.9 percent in MSE. This suggests that although the transformer is proficient in modeling global
temporal structures and MagNet in extracting localized waveform features, neither can independently capture
the multi-scale patterns seen in seismic data as successfully as our integrated approach.

Secondly, in terms of stability throughout numerous iterations, the Transformer’s MSE standard
deviation of 0.0772 and MagNet’s 0.0811 both surpass the Hybrid CNBLA’s 0.0759. This indicates that the
incorporation of convolutional feature extractors (as utilized in MagNet) and recurrent-attention algorithms
(as employed in the Transformer) inside a unified, normalized framework results in reduced average errors
and enhanced reliability in performance. This increased robustness is essential for earthquake forecasting:
early-warning systems require accurate magnitude estimations and consistent model behavior under different
initial conditions. The Hybrid CNBLA leverages the complementary strengths of CNNs, Bi-LSTMs, layer
normalization, and attention, surpassing each particular baseline and providing a balanced solution
unattainable by either pure Transformer or pure convolutional architectures alone. Figure 12 shows a
comparative performance matrix of seven deep-learning architectures—Bi-LSTM, Bi-LSTM+Attention,
Transformer, MagNet, Multi-CNN-Bi-LSTM+ATT, Multi-CNN-LN-Bi-LSTM, and the proposed Hybrid
CNBLA—on the USGS earthquake dataset (2001-2023). Across all models, we report MAE, standard
deviation of MAE (MAE_STD), mean squared error (MSE), and standard deviation of MSE (MSE_STD).
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Figure 12. Comparison of proposed model and state-of-the-art on USGS dataset

The results clearly indicate that recurrent models enhanced with attention or convolutional
preprocessing outperform the plain Bi-LSTM, but the most significant gains arise from the integrated
Hybrid CNBLA design. Attention alone yields modest improvements by allowing the network to focus on
salient temporal features, cutting MAE and MSE by approximately 3.7% and 7.5%, respectively.
Convolutional layers in the multi-CNN hybrids contribute to local feature extraction, further reducing error
and variability.

The Transformer’s strong performance underscores the value of self-attention for capturing global
dependencies, achieving the lowest variability in MAE. However, the Hybrid CNBLA combines the best of
both worlds: convolutional preprocessing filters out noise and emphasizes local seismic patterns,
bidirectional LSTMs model sequence context, layer normalization stabilizes training, and attention highlights
critical time steps. This synergy results in the lowest average errors and the tightest error distributions
(MAE_STD and MSE_STD), demonstrating both high accuracy and robustness.

4.5. Architectural considerations and scalability
Our proposed hybrid model, integrating (CNN, BiLSTM, Attention) stands out for its superior
performance in intricate earthquake magnitude prediction. This advanced design is critical for discerning the
subtle, long-range connections within extensive seismic data, a capability vital for precise earthquake
precursor detection. While this powerful architecture introduces a computational footprint, notably a
dominant O(L?) complexity from the attention mechanism for long sequences, this is a necessary trade-off for
achieving unparalleled accuracy in such a critical application. Despite these inherent complexities, our model
is engineered for substantial scalability through its robust implementation within the TensorFlow Keras
framework. We employ a multifaceted strategy:
a. Implemented distributed training using #f.distribute. Strategy for enhancing parallel processing on
GPUs/TPUs.
b. Enhanced data management utilizing the #f.data API for efficient batch processing and streaming,
alleviating memory limitations.
c. Enhancement of deployment using quantization and pruning to reduce model size and improve inference
speed for real-time applications.
This comprehensive method confirms that the model's intentional complexity is justified by performance
criteria and that its design is inherently suitable for scaling, ensuring practical viability and extensibility for
future large-scale seismological applications.

5.  CONCLUSION

This paper presents a new automatic earthquake detection model that uses a hybrid neural network
architecture to enhance the processing of seismic data. The proposed model efficiently improves the
extraction and analysis of temporal characteristics from raw seismic waveforms by using convolutional
layers, Bi-LSTM, and attention processes. The proposed model demonstrates superior performance compared
to the other models in magnitude estimation when evaluated against two datasets: the STEAD and USGS
datasets. It is evaluated using two datasets, resulting in MSE of 0.054 and 0.0843, and MAE values of 0.15
and 0.2526, respectively. The findings emphasize the capacity of sophisticated neural network structures to
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enhance the precision and effectiveness of earthquake magnitude forecasts. This strategy not only improves
the regular monitoring of seismic activity and boosts earthquake's dependability early warning systems,
providing crucial seconds for taking precautionary measures. Subsequent efforts will focus on enlarging the
dataset and investigating supplementary improvements to neural networks to enhance earthquake prediction
capabilities to a greater extent.
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