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 This paper presents the formulation and validation of a dynamic head pose 

estimation (HPE) algorithm, addressing challenges related to diverse 

conditions, complex poses, and partial obstructions. The study aims to create 

a robust algorithm that maintains high accuracy in real-time applications 

across varying conditions. The algorithm was implemented and assessed 

using Dlib and MediaPipe models. The study involved 30 participants in 

face and head without obstacles, face with obstacles and head with obstacles 

conditions. The results demonstrated impressive performance in both 

controlled and spontaneous head movement categories. The algorithm 

achieved an average accuracy of 93% for head pose estimation and 88% in 

detecting visual attention under spontaneous head movement categories. A 

correlation coefficient of 0.866 indicates a strong positive linear association 

between performance and attention accuracy, indicating that performance 

improvements are intricately linked to proportional increases in attention 

accuracy. However, this does not necessarily imply causation. The findings 

provide valuable insights into the effectiveness of the proposed algorithms in 

assessing visual attention and demonstrate their potential applications in 

healthcare monitoring, educational intervention, and driver monitoring 

systems. The significance of these results lies in the ability to advance 

human-computer interaction, enhance healthcare diagnostics, and offer 

innovative solutions across various domains. 
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1. INTRODUCTION 

Real-time head pose estimation (HPE) is a crucial component in computer vision systems designed 

to interpret human attention, including applications such as driver monitoring [1]–[4], adaptive e-learning 

interfaces [5], [6], and human-robot interaction [7], [8]. These systems can infer engagement and attention 

levels by tracking head orientation, allowing for dynamic and responsive interactions. However, achieving 

high accuracy in varied conditions, such as changes in lighting, occlusions such as wearing glasses or hats, 

and spontaneous head movements, remains a technical challenge. 

Recent studies have proposed different methods to address these challenges such as using deep 

learning with data augmentation to handle diverse expressions, orientations and lighting environments [9], 

[10], applying attention mechanisms to focus on key facial regions despite occlusions [11], [12], employing 

three-dimensional (3D) morphable models to improve accuracy under partial visibility [13], [14], leveraging 

https://creativecommons.org/licenses/by-sa/4.0/
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robust facial landmark detection and tracking for occlusion resilience [15], [16], incorporating temporal 

models for handling spontaneous movements [17], and combining multi-modal data such as red-green-blue 

(RGB) and depth for enhanced robustness [18], [19]. Some algorithms employ advanced machine learning 

techniques to accurately determine an orientation of user head by analyzing facial features from video input 

[20], [21]. The capability is vital for enhancing interactive systems, such as educational technologies and 

sophisticated monitoring systems [22], where understanding gaze direction and head orientation can 

significantly improve system responsiveness and personalization [23]. While the studies demonstrated 

promising results, many relied on controlled environments or required specialized hardware, such as depth 

cameras or multiple sensors [24]. This limited their practicality in real-world scenarios and enabled more 

refined and accurate user interaction capabilities. Despite substantial advancements in the field, critical 

research gaps remain. Notably, few study have explored head pose estimation relying solely on RGB video 

under diverse and unconstrained real-world conditions [25]. Additionally, the robustness of existing methods 

against partial occlusions and spontaneous head movements has not been sufficiently validated [26]. 

Moreover, direct integration of head pose estimation with attention detection using low cost hardware remain 

limited [27], indicating a need for further investigation. 

This study addresses these gaps by proposing a dynamic HPE algorithm that integrates Dlib and 

MediaPipe models, evaluated under real-time conditions using a standard RGB webcam. The proposed 

method demonstrates effectiveness across three conditions: i) face and head without obstacles, ii) face with 

obstacles such as the presence of glasses, and iii) head partially obstructed by wearing a hat, under both 

controlled and spontaneous head movements conditions. The key contributions of this study are as follows: a 

development of a robust, low-cost head pose estimation method utilizing facial landmarks and Euler angles; 

an experimental design that incorporates both controlled and spontaneous head movements under varying 

obstacle conditions; a detailed analysis of visual attention through head pose estimation accuracy; and a 

correlation analysis between performance and attention detection accuracy. 

The rest of the paper is structured as follows: section 2 outlines the methodology, including 

algorithm development and experimental setup. Section 3 presents and discusses results regarding detection 

accuracy, visual attention, and comparisons with related works. Section 4 concludes with implications and 

recommendations for future research. 

 

 

2. METHOD 

This section follows a structured approach as illustrated in Figure 1, to systematically describe the 

research process in a reproducible and logical sequence. Four steps namely algorithm development, hardware 

setup, data collection, and data analysis, are described in detail, accompanied by proper justifications and 

standard procedures. The algorithm development and hardware setup subsections provide a comprehensive 

explanation of all tools and technologies utilized in this research. The experimental setups were designed to 

reflect real-world conditions thus, addressing the identified gaps for meaningful findings. 

 

 

 
 

Figure 1. A detailed step-by-step description of the research procedure 
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2.1.  Algorithm development 

OpenCV is a free and open-source library for computer vision and machine learning, offering 

interfaces for multiple programming languages, including C/C++, Python, Java, and MATLAB. It is 

compatible with Windows, Linux, Android, and Mac OS platforms. With more than 2,500 algorithms for 

computer vision and machine learning, the library includes functionalities for tasks like face detection and 

recognition [28]–[31]. Dlib is a community-driven C++ library that offers a variety of tools for machine 

learning, computer vision, and image processing. It includes functionalities for developing complex software, 

such as facial landmark detection, object detection and deep learning-based tasks. Dlib is widely utilized 

across various fields, including robotics, mobile devices, and high-performance computing environments 

[32], [33]. Essential HPE system development libraries include OpenCV for image processing, Dlib for facial 

landmark detection, NumPy for mathematical computations, and MediaPipe for real-time machine learning 

across multiple modalities. The time library, CSV module, DateTime, and OS also aid data logging, time 

handling, and system interactions. 

Figure 2 shows the four key stages of the HPE, which involve using Dlib and MediaPipe models. 

The process starts with Dlib's face detector and predictor, which are applied to identify facial landmarks. 

Next, MediaPipe is utilized to calculate the 3D orientation of the head [34]. The third stage involves solving 

the perspective-n-point (PnP) problem to obtain rotation and translation vectors [35]. Finally, these vectors 

are transformed into Euler angles, determining the direction of the head pose. 

 

 

 
 

Figure 2. Four stages of the head pose estimation (HPE) 

 

 

Face detector and landmark predictor are trained models distributed by Dlib that detect distinct 

facial landmarks. In real-time, the face mesh model will complete the face mapping with an estimated 478  

3-dimensional landmarks. The PnP problem is a classic problem in the field of visual computing. The camera 

pose is determined using a set of 3D points from the world coordinate system and their corresponding two-

dimensional (2D) projections on the image plane. In HPE, the 3D points represent facial landmarks with 

predefined positions, while the 2D points refer to their identified positions in the image. The rotation vector 

is a compact representation of the rotation. It uses Rodrigues' rotation formula to represent a 3D rotation by a 

single vector rather than a matrix. The direction of this vector indicates the rotation axis, while its magnitude 

signifies the rotation angle, measured in radians. The translation vector describes the object's position, in this 

case, the head, relative to the camera. It indicates how far and in which direction the object is from the 

camera in 3D space. The rotation matrix is a 3×3 matrix that comprehensively represents rotation. It can be 

derived from the rotation vector using Rodrigues' formula and is used to transform coordinates from one 

space to another. The rotation matrix R can be decomposed into three Euler angles: pitch (rotation around the 

x-axis), yaw (rotation around the y-axis), and roll (rotation around the z-axis), which provide a more intuitive 

representation of orientation. 

 

2.2.  Hardware setup 

The experiment utilized a high-definition 1080p 2-megapixel webcam, produced by AUKEY with 

1/2.9” CMOS image sensor and integrated stereo microphones. The frame rate was 30 frames per second 

(fps). The system specifications for running the program included: Windows 11 (64-bit), a 13th Gen Intel(R) 

Core (TM) i7-13700HX CPU, and 16.00 GB of memory. 

Figure 3 illustrates the experimental setup, where a high-resolution webcam is employed to detect 

and record. The webcam is integrated into the system framework to ensure enhanced HPE. Throughout the 

experiment, the computer is connected to the webcam to monitor and track the progress. Notice that the built-

in computer webcam is not used due to its lower resolution. A chair is positioned in front of the camera to 

facilitate subject participation. Subjects are instructed to sit comfortably in the chair before beginning the 

study. Maintaining a distance of 0.5 meters or less between the chair and the camera is crucial to ensure 

precise face detection. This distance parameter is carefully selected to optimize system performance. The 

researcher oversees the study’s progress using the external webcam. 
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Figure 3. Experiment setup for performing head pose estimation (HPE) 

 

 

2.3.  Data collection 

Thirty students from Polytechnic Sultan Salahuddin Abdul Aziz Shah (PSSAAS), Shah Alam, aged 

19 and 27, participated in this study. Institutional approval was obtained, and written consent 

(REC4/2020/BM Pind. 2(2020)) was taken from all subjects. Two categories of data collection were 

conducted for each subject. First, the controlled category where the subject performed controlled head 

movements according to the instructions by the researcher. In the second phase, the subject carried out 

spontaneous head movements. Both categories were evaluated under three distinct conditions: face and head 

without obstacles, face with obstacles, and head with obstacles. Each condition involved a real-time head 

pose detection session lasting approximately 300 seconds, during which three types of outputs were 

simultaneously generated: video recording, extracted images, and corresponding CSV files containing head 

pose data. 

In the controlled category, the subjects were asked to sit comfortably on the provided chair. The 

researcher instructed the subjects to perform head movements once the system program was initiated. During 

this category, five specific head movements were recorded, each lasting between 20 and 30 seconds, resulting 

in the collection of more than 60 data points. Subjects were instructed to orient their head forward, upward, 

downward, and to the right and left, with horizontal rotations exceeding 75 degrees and vertical tilts 

exceeding 45 degrees. Subjects followed a structured sequence: beginning by facing forward (0°), then 

slowly tilted their heads upward to a full tilt of 45°. Afterwards, they tilted their heads downward to a full tilt 

of -45°. The next step required them to turn their heads to the right until reaching a tilt of -75°, and finally, 

they turned their heads to the left to a maximum tilt of 75°. In the second category, subjects could move their 

heads freely in front of the camera for 120 seconds without any specified directional constraints. 

The flowchart in Figure 4 illustrates detecting and estimating head pose using an RGB camera, 

Dlib’s face detector and MediaPipe’s face mesh. The process starts with the camera detecting a face. Once a 

face is detected, Dlib is employed to locate the facial features. MediaPipe face mesh detects landmarks, 

contributing to determining the orientation of the head. The algorithm then determines whether the head pose 

is in the specified position. If the head pose is detected, the system evaluates the direction in which the head 

is oriented. Depending on the direction, the appropriate text is displayed: “Looking Up” for head upward, 

“Looking Down” for head downward, “Forward” for head forward, “Looking Right” for head-turning right, 

and “Looking Left” for head-turning left. If the face is not in any true position, the system displays the text 

“Face not detected”. After determining the head orientation, the system saves the output image, video and 

CSV data, which are likely to contain details of the detected head poses. The process then concludes and is 

ready to start over with new detections. 

 

2.4.  Data analysis 

The effectiveness of the system is assessed based solely on the accuracy percentage. It is important 

to note that the predicted data output by the system may not always be entirely accurate, particularly when 

the head turn remains within a narrow range of degrees. Nonetheless, the system categorizes these 

movements as up, down, forward, right, or left head direction. To further evaluate the performance of the 

system, the results were classified based on four standard metrics: true positive (TP), false positive (FP), true 

negatives (TN) and false negatives (FN). A manual verification process was conducted by comparing the 

predicted head direction by the system against the actual head direction recorded in the video. Subsequently, 

the performance accuracy for each subject was calculated as the percentage of true detections relative to the 
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total number of detections, including both correct and incorrect predictions, across all conditions. The 

definitions of each metric are summarized in Table 1. These metrics provide a detailed view of the detection 

system capabilities and help identify specific errors contributing to overall accuracy and system robustness. 

 

 

 
 

Figure 4. Flowchart of head pose estimation data collection 

 

 

Table 1. Definitions of TP, FP, TN and FN for head pose estimation evaluation 
Category Definition 

True Positive (TP) The system correctly identifies the head pose, matching the actual direction. 
False Positive (FP) The system incorrectly predicts a head pose that did not occur. 

True Negative (TN) The system correctly recognizes that no change in head pose occurred when 

there was no significant movement. 
False Negative (FN) The system fails to detect an actual head pose, classifying it incorrectly or 

missing it altogether. 

 

 

The performance of the system was evaluated based on the accuracy metric. Accuracy is the 

proportion of correct predictions, including true positives (TP) and true negatives (TN), relative to the total 

number of predictions. It is calculated using (1):  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)  (1) 

 

This metric reflects the overall correctness of the head pose estimation system across all conditions 

and participants. On the other hand, accurate detections are where the prediction by the system corresponds 

with the exact pose, thus enhancing the accuracy of the system. The performance accuracy related to visual 

attention will also be calculated and visualized, providing insights into the visual attention levels under 

different conditions. Visual attention was quantified by calculating the proportion of forward head pose 

detections (𝑁𝑓,𝑖) relative to the total number of detections (𝑁𝑡,𝑖) recorded by the system. Visual attention was 

computed using (2): 
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𝑉𝑖𝑠𝑢𝑎𝑙 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 = (𝑁𝑓,𝑖 / 𝑁𝑡,𝑖) × 100 (2) 

 

These metrics were used to quantify the individual level of visual attention during experimental sessions. 

This method was chosen due to its low computational cost and real-time efficiency, making it ideal for 

practical applications. Unlike deep-learning-based approaches that require large datasets and high processing 

power, our algorithm leverages facial landmarks and Euler angles for accurate and robust head pose 

estimation using a simple webcam setup. 

 

 

3. RESULTS AND DISCUSSION 

This study aimed to develop a real-time head pose estimation system using Dlib and MediaPipe that 

remains effective under various head movement conditions and facial obstructions. In this study, thirty 

students participated. Two categories of data collection were conducted for each subject: controlled head 

movement and spontaneous head movement. Next, both categories were evaluated under three conditions: 

face and head without obstacles, face with obstacles, and head with obstacles. Further, this section provides 

an in-depth analysis of the study data to achieve that objective. To evaluate the validity of the algorithm, the 

analysis focuses on the accuracy rate, which is categorized into controlled and spontaneous head movements. 

Additionally, the effectiveness of the algorithm in detecting visual attention will also be analyzed.  

 

3.1.  Controlled head movement 

In this experiment, the subjects were directed to move their heads to achieve five specific head 

orientations gradually. The results shown in Figure 5 illustrate that the average performance was highest, 

reaching 99%, in conditions where both the face and head were visible without obstacles. The accuracy 

decreased slightly to 98% in both face and head with obstacle conditions, indicating that obstacles marginally 

impacted the overall performance but maintained high accuracy levels across all conditions. The slight 

decrease in accuracy happens because obstacles can block light, causing shadows or uneven lighting on the 

face, which makes it harder for the system to recognize head positions correctly. Even so, the system still 

shows a prominent level of efficiency. 

 

 

 
 

Figure 5. Average of performance accuracy in the controlled head movement category 

 

 

3.2.  Spontaneous head movement 

This section will examine the results of an experiment in which subjects move their head freely and 

unpredictably without any specific guidance. The experiment was repeated three times under different 

conditions: face and head without obstacles, face with obstacles, and head with obstacles. 

Figure 6 shows the average performance accuracy in percentages of the system under different 

conditions: face and head without obstacles, face with obstacles, and head with obstacles. The highest 

accuracy of 90% is observed when there are no obstacles, indicating optimal performance with clear visibility 

of the face and head. The accuracy decreases slightly to 87% when obstacles are present on the face, such as 

glasses, and further to the head with obstacles, such as a cap. Despite these reductions, the system maintains 

high accuracy, demonstrating robustness in various real-world scenarios. The slight drop in accuracy with 

face obstacles suggests that these might hinder landmark detection more than head obstacles. Sudden head 

movements or poor lighting conditions also affected landmark detection. These limitations highlight the need 

for further refinement, such as incorporating multi-view cameras or training with a more diverse dataset. 

Overall, 88% of the accuracy for spontaneous head movement categories indicated that the system is highly 

reliable. Still, future improvements could focus on increasing accuracy in the presence of obstacles to further 

enhance performance.  
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Figure 7 presents performance accuracy in percentages for head pose estimation across thirty 

subjects, S1 to S30, in three conditions. The face and head without obstacles category consistently show 

higher performance across most samples than the other two conditions, with many scores nearing or 

exceeding 90%. This demonstrates that the system reliably detects both face and head with no obstructions, 

exhibiting stable and consistent results. The scores in this category are tightly grouped, indicating predictable 

and dependable performance in explicit, obstacle-free situations. 

The face with obstacles category shows more variation in scores, ranging from as low as 80 in some 

cases, such as S4, S5, and S17, to higher values in others like S1, S20, and S23. Performance drops 

significantly for some subjects like S10, S17, and S27, indicating that obstacles affect face detection more 

than head detection. This suggests that face detection is susceptible to visual obstructions, leading to lower 

accuracy than in obstacle-free situations. However, 7 of the 30 subjects such as S1, S2, S16, S20, S23, S26, 

and S28 achieved higher accuracy in the face with obstacles condition, likely because of distinct facial 

features, such as prominent cheekbones or jawlines, which made it easier for the system to recognize their 

faces despite the obstacles. 

For the head with obstacle conditions, detection accuracy fluctuates similarly to face detection but 

tends slightly lower overall. However, head detection outperforms face detection in samples like S7 and S26, 

because obstacles significantly impact face visibility more than head orientation. This implies that head 

detection is more resilient to obstructions than face detection, maintaining better accuracy in challenging 

conditions. 

In another observation, up to 98% of the highest accuracies are observed in the face & head without 

obstacles, particularly for subjects like S1, S3, S4, and S8. This suggests that the absence of obstacles 

significantly improves head pose estimation accuracy. However, some subjects, such as S7, S13, and S25, 

display more balanced accuracy across all conditions, indicating less impact from obstacles. Conversely, 

subjects like S3, S6, and S11 experience lower accuracy in the head with obstacle conditions, where accuracy 

dips to around 80%, although they still perform well in other conditions. 

 

 

 
 

Figure 6. Average of performance accuracy for a spontaneous head movement category  

 

 

 
 

Figure 7. Performance accuracy for thirty subjects in the spontaneous head movement category  

 

 

3.3.  Visual attention 

The effectiveness of the algorithm in detecting visual attention is evaluated using the dataset from 

the spontaneous head movement setting under three different conditions. Its accuracy is measured by 

analyzing prediction outputs when participants directly face the camera, indicating visual attention. The 

algorithm's results are cross-validated against video recordings to ensure accuracy. 
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Figure 8 compares the attention levels in percentage for thirty subjects under three conditions. It 

shows significant variations across subjects and conditions. Several subjects, such as S7, S8, S9, and S24, 

achieve perfect or near-perfect attention levels 100% across all conditions, indicating a robust attention 

estimation system for these individuals. However, attention levels drop noticeably for others, such as S14, 

S29, and S30, especially in the face with obstacles, where values dip as low as 70%. The presence of 

obstacles, particularly affecting the head, reduces the system's ability to estimate attention accurately, such as 

for S15, S24, and S29, where the value reduces by around 26%. In comparison, attention estimation remains 

high in most subjects with face and head without obstacles. The obstacles create a more challenging 

environment, resulting in lower performance. This suggests the system could be sensitive to visual 

obstructions, with accuracy dropping in more occluded conditions, especially when the head is partially 

blocked. Improving performance under these challenging conditions could enhance the system's overall 

reliability. 

Figure 9 depicts visual attention accuracy for three conditions: face and head without obstacles is 

90%, face with obstacles is 88%, and head with obstacles is 86%. Based on spontaneous head movement, 

these results indicate that obstacles slightly affect attention accuracy, but the variations are minimal. Overall, 

88% of the accuracy of visual attention for spontaneous head movement categories indicated that the system 

is highly reliable. The high accuracy percentages across all conditions suggest that the system effectively 

detects visual attention, even when subjects face obstructions, demonstrating its robustness and reliability. 

 

 

 
 

Figure 8. Visual attention accuracy while the subject's face and head without obstacles, face with obstacles 

and head with obstacles 

 

 

 
 

Figure 9. Visual attention accuracy for three varying conditions 

 

 

3.4.  Correlation analysis 

Figure 10 shows the performance and attention accuracy percentages under three conditions: face 

and head without obstacles, face with obstacles, and head with obstacles. Both values remain consistently 

high across all conditions, with performance accuracy at 90% in the first condition and slightly lower (87%) 

for the other two. Attention closely follows performance accuracy, matching it at 90% in the first condition, 

slightly surpassing it in the second (88% vs. 87%), and lower in the third (86% vs. 87%). The correlation 

between performance and attention accuracy, calculated at 0.866, indicates a strong positive relationship, 

meaning changes in one variable are mirrored by changes in the other. This consistency suggests the system 

is resilient to obstacles, maintaining high performance and attention levels even when the face or head is 
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partially obscured. While head obstacles have a slightly more substantial effect on performance and attention 

accuracy than facial obstacles, the system remains robust overall.  

The proposed algorithm demonstrates improved real-time head pose estimation accuracy using only 

RGB input compared to prior research. For instance, Owen et al. [32] achieved 86.85% accuracy in HPE in 

the sleepiness detection system, while our method achieved over 93% accuracy. Hammadi et al. [24] reported 

high performance using multimodal data but required pose tracking equipment. In contrast, our method uses 

only a simple webcam setup, making it more accessible. Although previous studies demonstrated good 

accuracy using OpenCV-based methods, the systems tended to become unstable during fast or unexpected 

head movements [5]. In this research, integrating MediPipe with its stable facial landmark tracking capability 

helped maintain accuracy, especially in spontaneous head movement category. These results align with our 

initial expectation that combining Dlib and MediaPipe would improve real-time head pose estimation 

accuracy, even under natural head movements and minimal hardware conditions. 

 Moreover, our strong correlation coefficient (0.866) between head pose and attention estimation 

supports similar findings by Liu et al. [36] and Afroze et al. [7], who noted the importance of facial 

orientation in human-computer interaction. These findings are valuable for developing accessible and cost-

effective attention tracking systems, which can benefit educators, therapists, and researchers working with 

children, especially those with special needs.  

Combining high accuracy, low hardware requirements, and robustness in obstacle-rich conditions 

can help develop real-time attention tracking systems for classrooms, therapy sessions, or interactive learning 

environments. Future research should explore integrating deep learning for occlusion robustness, multi-

camera setups for enhanced tracking, and eye-tracking technology to refine attention analysis further. 

Combining head pose with facial expression analysis can also be extended to detect emotional response or 

engagement levels. However, the system showed some sensitivity to rapid lighting changes and complex 

occlusions, indicating the need for further refinement in more diverse environments. 

 

 

 
 

Figure 10. Comparison of performance and attention accuracy across different conditions 

 

 

4. CONCLUSION 

This study successfully achieved real-time head pose estimation using Dlib and MediaPipe, 

demonstrating reliable facial landmark detection across a broad range of head orientations. Compared to the 

standard OpenCV algorithm, the proposed method showed superior performance in terms of robustness and 

adaptability. Two experiment setups were used to evaluate the algorithm: one with controlled head 

movement and another with spontaneous head movements, both tested under three conditions (face and head 

without obstacles, face with obstacles and head with obstacles). The algorithm achieved over 93% accuracy 

in head pose estimation and at least 88% in detecting visual attention, even with facial obstacles. These 

findings suggest that the proposed HPE algorithm is practical and adaptable, with minimal performance 

degradation under real-world conditions, such as occlusions and natural movements. This has significant 

implications for the research field, particularly in applications related to human-computer interaction, 

assistive technologies, and educational or therapeutic settings involving visual attention monitoring. For the 

community, particularly in robot-assisted therapy or classroom engagement monitoring contexts, this 

research opens the door to more accessible, noninvasive tools for understanding attention and interaction 

patterns. Moving forward, multi-view estimation and advanced feature extraction enhancements could 

improve performance, making the technology even more resilient and applicable in diverse situations and 

uncontrolled environments. Ultimately, this study contributes to a growing body of work to bridge the gap 

between computer vision and real-world human behavior analysis, offering practical solutions with the 

potential for wide-reaching social impact. 
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