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 This article investigates the discount factor-based data-driven reinforcement 

learning control (DDRLC) algorithm for completely uncertain unmanned 

aerial vehicle (UAV) quadrotors. The proposed cascade control structure of 

UAV is categorized with two control loops of attitude and position sub-

systems, which are established the proposed discount factor-based DDRLC 

algorithm. Through the analysis of the Bellman function's time derivative 

from two perspectives, a revised Hamilton-Jacobi-Bellman (HJB) equation 

including a discount factor is developed. Then, in the view of off-policy 

consideration, an equation is formulated to simultaneously solve the 

approximate Bellman function and approximate optimal control law in the 

proposed DDRLC algorithm with guaranteed convergence. According to the 

modified state variables vector, the development of the discount factor-based 

DDRLC algorithm in each control loop is indirectly implemented by 

transforming the time-varying tracking error model into the time invariant 

system. Finally, a simulation study on the proposed discount factor-based 

DDRLC algorithm is provided to validate its effectiveness. To validate the 

tracking performance of the quadrotor, four performance indices are 

considered, including 𝐼𝐴𝐸𝑝 = 3.0527, 𝐼𝐴𝐸𝛺 = 0.1175, 𝐼𝑇𝐴𝐸𝑝 = 1.8408, 

and 𝐼𝑇𝐴𝐸𝛺 = 0.0144, where the subscript 𝑝 denotes position tracking error 

and 𝛺 denotes attitude tracking error. 
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1. INTRODUCTION 

In recent decades, unmanned aerial vehicles (UAVs) have been increasingly used to perform various 

tasks, such as surveillance, military, air traffic control, agriculture management [1]–[3]. To perform task 

effectively, it is often necessary to develop the trajectory tracking problem and optimal control performance. 

In practical application, these two control requirements are necessary to develop to the obstacle of external 

disturbance and dynamic uncertainties. Due to the complexity of UAV model with a high number of 

variables, an approach of model separation is considered with rotational and translational sub-systems 

[1]–[7]. In study [6], the control designs for position sub-system and attitude sub-system were implemented 

similarly by sliding mode control technique (SMC) and the addition of state observer, neural networks (NNs) 

were considered to handle the obstacle of external disturbance and dynamic uncertainties. Some extensions 

were developed for multi-rotor UAV model with unknown bounded time-varying disturbance by augmented 

disturbance observer (DO) based controller, which was implemented under the appointed-time prescribed 

performance (ATPP) technique [5]. In [2], an adaptive trajectory tracking control was proposed for UAV 

experiment systems after estimating the necessary variables based on image, inertia measurement. Moreover, 
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for general robotics control design studied in [8], output feedback law with state observer was presented for 

surface vessels (SVs) according to event-triggered rule. In order to further handle Backlash-Like hysteresis 

and external disturbance, an adaptive fuzzy dynamic memory-event-triggered mechanism was studied for a 

six-rotor UAV by Backstepping recursive framework with the first-order filtering technique [2]. But as far as 

we known, it can be found that there is little research attention on the optimal control UAV systems. 

With the complexity of UAV model and the diversification of practical tasks, it is difficult to obtain 

the control objectives of complex purposes only relying on a single UAV agent. Hence, UAV researches put 

forward the concept of multi-agent systems (MASs), which involves two research hotspots of consensus and 

formation control problems [1], [3], [7], [9]–[12]. In [9], a consensus control law was developed for multiple 

UAV systems with time delay and cascade model. However, the Kronecker product and Linear Matrix 

Inequalities (LMIs) were implemented in [9] due to the simplification of UAV model. The research 

conducted by [13] is concerned with the consensus controller with the sign function. Hence, the stability 

consideration requires the Fillipov theory employment. Additionally, the bearing persistence of excitation 

(PE) based leader-follower formation control strategy was proposed for multiple double-integrators in three 

dimensional (3D) space using the projection of vector on the plane orthogonal to 2-sphere [14]. When each 

agent was considered more complicated with Euler-Lagrange systems, the state representation can be used to 

obtain the event-triggered based consensus controller with Kronecker product [15]. The fault-tolerant 

consensus control problem for nonstrict-feedback nonlinear MASs with intermittent actuator faults was 

investigated state observer and backstepping technique [16]. Moreover, the formation control of multiple 

UAVs was also considered by model predictive control (MPC) with the affine tracking error model  

[17]–[19]. Despite this, studies [17]–[19] did not examine the stability properties of the closed-loop system 

when operating under MPC framework. For the formation tracking control problem, addressing the time-

varying formation (TVF) is also extremely crucial for meeting application requirement [1], [7], [10], [11]. 

According to linear UAV model, the TVF tracking control was investigated by Kronecker product 

consideration and LMIs technique [7]. Although the cost function was mentioned in [7] but the optimal 

control law has not been studied in this work. On the other hand, extended observer (ESO) based 

backstepping controller was proposed in the second-order attitude sub-system [1]. Furthermore, the 

estimation of yaw angle in virtual leader was carried out with the connection to the time-varying 

communication topology as well as the distributed formation tracking control was addressed in the position 

sub-system [1]. Based on the linear model of fixed-swing UAVs, the TVF tracking control was discussed by 

employing the solution of Riccati equation [10]. Notably, [11] tackled the TVF tracking control for multiple 

linear systems by extending Event-Triggered mechanism. Although there has been some research on the 

distributed control schemes for MASs especially the consensus and formation systems, most of the recent 

references have focused on simple UAV model and rarely considered the cascade UAV structure as well as 

optimization-based control formulation. 

Implementing the optimal control law in real-world systems requires the use of iterative algorithms to 

compute solutions to the Hamilton-Jacobi-Bellman (HJB) equations for nonlinear systems or Riccati equations 

for linear systems, since analytical solutions are typically not feasible. To advance the implementation of 

optimal control in robotic systems, it is essential to incorporate reinforcement learning control (RLC) in 

conjunction with methods from approximate and adaptive dynamic programming (ADP), as highlighted in 

studies [12], [20]–[27]. In [12], [20]–[22], the actor/critic structure was realized via neural network (NN) 

approximation methods, with learning algorithms for weight adaptation proposed alongside optimization 

strategies, enabling the closed-loop system to satisfy both tracking performance and optimality requirements. 

However, it is necessary to eliminate external disturbance and dynamic uncertainties in the practical model, 

which are handle by traditional robust control design [12], [20]–[22]. A different approach of handling directly 

the external disturbance and dynamic uncertainties in optimal control law can be known in zero and non-zero 

sum game methods [28]–[30]. On the other hand, it is different from the simultaneous learning in actor/critic 

framework in [12], [20]–[22], authors in [31], [32] developed the sequential learning value iteration (VI) 

algorithm to obtain the Bellman function and optimal control law. Some researchers focused on using data-

driven RL to obtain the optimal control strategies for uncertain systems [6], [22], [28], [30], [33]–[37]. 

According to the data collection in time interval, the approximate optimal function can be computed from the 

approximate optimal control input without the knowledge of model. However, to handle the complete 

uncertainty in the inverse direction, the addition of off-policy technique or Q-learning is necessary to consider 

[2], [36], [37]. A data-driven reinforcement learning control strategy was recently introduced for quadrotors, 

demonstrating the capability to achieve optimal control while ensuring trajectory tracking, which is closely 

related to the focus of this article [37]. However, the data-driven RL approach in [37] was applied solely to the 

attitude subsystem of a UAV, and the associated cost function did not incorporate a discount factor. On 

account of the above results, we will further explorer the cascade UAV control structure, which involves two 

data-driven RL with a discount factor-based performance index, and this is another interest of this study.  
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This study investigates a cascade control architecture for a fully uncertain quadrotor UAV by 

employing two data-driven RL algorithms based on a performance index with a discount factor. Through 

constructing a data set tailored to this general class of affine continuous-time systems and integrating a RL 

strategy using an off-policy algorithm, a control framework is formulated for UAVs with unknown dynamics. 

The summary contributions of this study are given in the following: 

a. Based on the optimal control scheme with a discount factor-based performance index, we further 

introduce a RL algorithm for an affine continuous-time system to guarantee the finite value of the integral 

cost function with infinity terminal. 

b. We propose a novel data-driven RL based cascade control structure in both two sub-systems for 

completely uncertain UAVs by off-policy method. Compared with the current results [37], only 

considering the RL algorithm for the attitude sub-system without discount factor, a data-driven RL based 

cascade control structure is first proposed for completely uncertain UAVs with a discount factor-based 

performance index. Finally, simulation results are presented to validate the effectiveness of the proposed 

model-free, data-driven RL algorithm.  

 

 

2. CONTROLLER METHODOLODY FOR QUADROTOR  

As shown in Figure 1, the Earth-fixed frame and the body-fixed frame are established to describe the 

dynamic model of the quadrotor. The movements of this Quadrotor as shown in Figure 1 can be established 

by changes on four lift forces, which are generated by adjusting the angle velocities of four rotors. It can be 

seen that a vertical movement can be obtained by the variation of the sum of four lift forces on the four rotors. 

Due to the difference between the counter-torques achieved by the group of rotors (Rotor 1 and Rotor 3) and 

the group of rotors (Rotor 2 and Rotor 4), the yaw movement is established. Additionally, the pitch and roll 

movements can be generated by changing the lift forces of each pair, which result in the longitudinal motion 

and the lateral motion, as shown in Figure 1. The position of the UAV quadrotor and the quadrotor attitude 

are given as 𝑟 = [𝑟𝑥 , 𝑟𝑦 , 𝑟𝑧]
𝑇 ∈ ℝ3and 𝛺 = [𝜙, 𝜃, 𝜓]𝑇 ∈ ℝ3, respectively. It is worth noting that Euler angles 

Roll-Pitch-Yaw are satisfied the bound condition as −𝜋/2 < 𝜙 < 𝜋/2, −𝜋/2 < 𝜃 < 𝜋/2 and −𝜋 < 𝜓 < 𝜋. 

Moreover, the UAV quadrotor parameters are expressed in Table 1. 

 

 

 
 

Figure 1. Quadrotor model in North-East-Down (NED) coordinate 

 

 

Table 1. UAV parameters and variables  
UAV parameters variables 

𝑚 Weight of the quadrotor 

𝑔 Acceleration of the gravity 

𝜔1, 𝜔2, 𝜔3, 𝜔4 Angle velocity of each rotor 

𝑙 The arm length 

𝐽 = 𝑑𝑖𝑎𝑔{𝐽𝜙, 𝐽𝜃, 𝐽𝜓} ∈ ℝ3×3 The inertia matrix is symmetric and positive definite 

𝑘𝑓 , 𝑙𝑐, 𝑘𝜏 Positive parameters 

 

 

The rotation matrix 𝑅 ∈ 𝑆𝑂(3) representing the transformation from the Earth-fixed frame to the 

body-fixed coordinate system is given as (1): 
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𝑅𝑇 = [

𝑐𝜃𝑐𝜓 𝑐𝜃𝑠𝜓 −𝑠𝜃

𝑠𝜙𝑠𝜃𝑐𝜓 − 𝑐𝜙𝑠𝜓 𝑠𝜙𝑠𝜃𝑠𝜓 + 𝑐𝜙𝑐𝜓 𝑠𝜙𝑐𝜃

𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓 𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜙𝑐𝜓 𝑐𝜙𝑐𝜃

] (1) 

 

where 𝑐(•) = 𝑐𝑜𝑠(•) , 𝑠(•) = 𝑠𝑖𝑛(•). 

In the view of [1], the complete quadrotor dynamic model can be represented as (2): 

 
𝑚𝑟̈ = 𝑅𝑓             

𝐽𝛺̈ = 𝐶(𝛺,𝛺̇)𝛺̇ +𝜏 
        (2) 

 

where the parameters are given in Table 1 and the Coriolis matrix 𝐶(𝛺,𝛺̇) ∈ ℝ3×3 is described in [2]. 

Additionally, the force 𝑓 ∈ ℝ3×1 is relative to the body fixed frame of the quadrotor can be obtained as (3): 

 

𝑓 = [0 0 𝑓]
𝑇

− 𝑅𝑇[0 0 𝑚𝑔]𝑇  (3) 

 

where the lifting force 𝑓 ∈ ℝ and the torque 𝜏 = [𝜏𝜙 𝜏𝜃 𝜏𝜓] ∈ ℝ3are given as (4), (5): 

 

𝑓 = 𝑘𝑓(𝜔1
2 + 𝜔2

2 + 𝜔3
2 + 𝜔4

2)   (4) 

 

𝜏𝜙 = 𝑙𝑐𝑘𝑓(𝜔2
2 − 𝜔4

2), 𝜏𝜃 = 𝑙𝑐𝑘𝑓(𝜔1
2 − 𝜔3

2), 𝜏𝜓 = 𝑘𝜏(𝜔1
2 − 𝜔2

2 + 𝜔3
2 − 𝜔4

2)

 

(5) 

 

In where, the control signals of the quadrotor (2) are defined as (6): 

 

𝑢𝑓 = 𝜔1
2 + 𝜔2

2 + 𝜔3
2 + 𝜔4

2, 

𝑢𝜙 = 𝜔2
2 − 𝜔4

2, 𝑢𝜃 = 𝜔1
2 − 𝜔3

2 

𝑢𝜓 = 𝜔1
2 − 𝜔2

2 + 𝜔3
2 − 𝜔4

2. (6) 

 

The control objective of this paper is to develop a data-driven RL algorithm based on the optimal 

control scheme to achieve an optimized tracking control law for a quadrotor, enabling the quadrotor to 

effectively track the desired trajectory with high accuracy. The optimal control signal ensures trajectory 

tracking while simultaneously achieving approximate optimality by minimizing the objective function. 

Additionally, the data-driven RL-based optimal control law is developed for not only the position sub-system 

but also the attitude sub-system without the knowledge of the UAV model. 

𝑅𝑒𝑚𝑎𝑟𝑘 1. Unlike the conventional trajectory tracking control purpose in UAV control systems [1], [3], [6], 

[7], [11], the control objective in this paper considers both the trajectory tracking performance and the 

optimal control problem. In addition, both subsystems as shown in Figure 2 achieve a unified framework of 

optimal control and stability, which is typically difficult to attain due to the time-varying dynamics of the 

closed-loop systems. 

 

 

 
 

Figure 2. The quadrotor control schematic 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 5, October 2025: 4542-4554 

4546 

In this section, a data-driven reinforcement learning approach is introduced to address the trade-off 

between tracking performance and optimality within the quadrotor control system. The control architecture 

illustrated in Figure 2 integrates both position and attitude control strategies under the application of a 

discount factor. These controllers are updated concurrently using the collected data to handle system 

uncertainties effectively. 

 

2.1.  Discount factor-based RL control design for augmented quadrotor system  

First of all, we consider a nonlinear affine system as (7): 

 
𝑑

𝑑𝑡
𝜂(𝑡) = 𝑓(𝜂(𝑡)) + 𝑔(𝜂(𝑡))𝑢(𝑡).   (7) 

 

and the associated cost function is defined by (8): 

 

𝑉(𝜂(𝑡), 𝑢(𝑡)) = ∫ [𝜂(𝜏)𝑇𝑄𝜂(𝜏) + 𝑢(𝜏)𝑇𝑅𝑢(𝜏)]
∞

𝑡
𝑑𝜏.   (8) 

 

where 𝑄 ∈ ℝ𝑛×𝑛 > 0, 𝑅 ∈ ℝ𝑛×𝑛 > 0 are both symmetric positive definite matrices. The tracking error model 

of nonlinear affine systems (7) with the desired trajectory 𝜂𝑑(𝑡), which is established by a command 

generator model 
𝑑

𝑑𝑡
𝜂𝑑(𝑡) = ℎ(𝜂𝑑(𝑡)), ℎ(0) = 0, can be formulated as (9): 

 

 

𝑑

𝑑𝑡
𝑒(𝑡) = 𝑓(𝜂(𝑡)) − ℎ(𝜂𝑑(𝑡)) + 𝑔(𝜂(𝑡))𝑢(𝑡).  (9) 

 

where 𝑒(𝑡) = 𝜂(𝑡) − 𝜂𝑑(𝑡), ℎ(𝜂𝑑(𝑡))is the unknown function. Hence, according to tracking error model (9) 

and the command generator model ℎ(𝜂𝑑(𝑡)), we achieve the following augmented system: 

 

 

𝑑

𝑑𝑡
𝜁(𝑡) = 𝐹(𝜁(𝑡)) + 𝐺(𝜁(𝑡))𝑢(𝑡). (10) 

 

where 
 

 𝜁(𝑡) = [𝑒(𝑡) 𝜂𝑑(𝑡)]𝑇 , 𝐹(𝜁(𝑡)) = [
𝑓(𝑒(𝑡) + 𝜂𝑑(𝑡)) − ℎ(𝜂𝑑(𝑡))

ℎ(𝜂𝑑(𝑡))
] , 𝐺(𝜁(𝑡)) = [

𝑔(𝑒(𝑡) + 𝜂𝑑(𝑡))

0
]   (11) 

 

The optimal control law 𝑢∗(𝑡) is designed to minimize the discounted cost function associated with the 

augmented system (10).  

 

𝑉(𝜁(𝑡), 𝑢(𝑡)) = ∫ 𝑒−𝜆(𝜏−𝑡)∞

𝑡
𝑈(𝜁(𝜏), 𝑢(𝜏))𝑑𝜏,   (12) 

 

where 𝜆 > 0is a discount factor, 𝑈(𝜁(𝜏), 𝑢(𝜏)) ≜ 𝜁(𝜏)𝑇𝑄𝜁(𝜏) + (𝑢(𝜏))
𝑇
𝑅𝑢(𝜏), 𝑄 = [𝑄 0

0 0
] and 𝑅 = 𝑅. 

The addition of the discount factor 𝜆 in the cost function (12) is able to guarantee that it will be finite value 

although the integral terminal is infinity. Therefore, it is unnecessary to explicitly define the admissible 

control set, as discussed in [2]. The set ϒ(𝑈) is defined as the constraint set of control input 𝑢(𝜁) such that 

the cost function (12) is finite. Based on the dynamic programming principle, the tracking Bellman function 

for the augmented system (10) can be expressed as the following static function: 

 

𝑉∗(𝜁(𝑡)) = 𝑚𝑖𝑛
𝑢(𝜁(𝑡))∈𝛶(𝑈)

𝑉(𝜁(𝑡), 𝑢(𝜁(𝑡)))  (13) 

 

Based on two approaches for computing the time derivative of the Bellman function 𝑉∗(𝜁(𝑡)) in (13), the 

associated Hamiltonian function under a discount factor 𝜆 > 0 is formulated. The first approach involves a 

direct computation, as detailed:  

 
𝑑

𝑑𝑡
𝑉∗(𝜁(𝑡))  =

𝜕𝑉∗

𝜕𝜁

𝑑𝜁

𝑑𝑡
=

𝜕𝑉∗

𝜕𝜁
(𝐹(𝜁(𝑡)) + 𝐺(𝜁)𝑢∗(𝑡)).      (14) 

 

where 𝑢∗(𝑡) denotes the optimal control input. According to the Bellman principle, a second approach for 

computing the time derivative of the Bellman function 𝑉∗(𝜁(𝑡))is formulated by utilizing the static Bellman 

function in (13): 
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𝑉∗(𝜁(𝑡)) = ∫ 𝑒−𝜆(𝜏−𝑡)
𝑡+𝛿

𝑡

𝑈(𝜁(𝜏), 𝑢∗(𝜏))𝑑𝜏 + 𝑒−𝜆𝛿 ∫ 𝑒−𝜆(𝜏−(𝑡+𝛿))
∞

𝑡+𝛿

𝑈(𝜁(𝜏), 𝑢∗(𝜏))𝑑𝜏 

 = ∫ 𝑒−𝜆(𝜏−𝑡)𝑡+𝛿

𝑡
𝑈(𝜁(𝜏), 𝑢∗(𝜏))𝑑𝜏 + 𝑒−𝜆𝛿𝑉∗(𝜁(𝑡 + 𝛿)) (15) 

 

The representation (15) obtains that: 

 

 
𝑉∗(𝜁(𝑡))−𝑉∗((𝜁(𝑡+𝛿))

𝛿
=

1

𝛿
∫ 𝑒−𝜆(𝜏−𝑡)𝑡+𝛿

𝑡
𝑈(𝜁(𝜏), 𝑢∗(𝜏))𝑑𝜏 +

(𝑒−𝜆𝛿−1)

𝛿
𝑉∗(𝜁(𝑡 + 𝛿)).     (16) 

 

In the view of (16) and (14) as 𝛿 → 0, we achieve that the static Bellman function 𝑉∗(𝜁(𝑡)) can be soved by 

the optimal control signal 𝑢∗(𝑡) using the following partial derivative equation as (17) 

 

𝑈(𝜁(𝑡), 𝑢∗(𝑡)) − 𝜆𝑉∗((𝜁(𝑡)) +
𝜕𝑉∗

𝜕𝜁
(𝐹(𝜁(𝑡)) + 𝐺(𝜁)𝑢∗(𝑡)) = 0.     (17) 

 

Conversely, to determine the optimal control input 𝑢∗(𝑡) using the static Bellman function 𝑉∗((𝜁(𝑡)) and 

based on the Bellman principle, the corresponding optimization problem can be formulated as (18): 

 

𝑉∗(𝜁(𝑡)) = 𝑚𝑖𝑛
𝑢(𝑠)∈𝛶(𝑈)

(∫ 𝑈(𝜁(𝑠), 𝑢(𝑠))𝑑𝑠
𝑡+𝛿

𝑡
+ 𝑒−𝜆𝛿𝑉∗((𝜁(𝑡 + 𝛿)))      (18) 

 

Since 𝛿 → 0+, (18) leads to the corresponding optimization problem as (19):  

 

 
𝑚𝑖𝑛

𝑢(𝑡)(𝜁)∈𝛶(𝑈)
[𝑈(𝜁(𝑡), 𝑢(𝑡)) − 𝜆𝑉∗(𝜁(𝑡)) +

𝜕𝑉∗

𝜕𝜁
(𝐹(𝜁(𝑡)) + 𝐺(𝜁(𝑡))𝑢(𝑡))] = 0.      (19) 

 

Defining the modified Hamiltonian function in the presence of a discount factor 𝜆 > 0 as (19), 

 

𝐻(𝜁, 𝑢(𝑡), 𝛻𝑉, 𝑉) = (𝜁(𝑡))𝑇𝑄𝜁(𝑡) + (𝑢(𝑡))𝑇𝑅 𝑢(𝑡) − 𝜆𝑉(𝜁(𝑡)) + 𝛻𝑉𝑇(𝜁(𝑡))(𝐹(𝜁(𝑡)) +
𝐺(𝜁(𝑡))𝑢(𝑡))        (20) 

 

where 𝛻𝑉(𝜁) ≜
𝜕𝑉(𝜁)𝑇

𝜕𝜁
, it follows that the optimal control solution is then obtained by (19) as (20),  

 

𝑢∗(𝜁(𝑡)) = argmin
𝑢∈𝛶(𝛺)

[𝐻(𝜁, 𝑢(𝑡), 𝛻𝑉∗(𝜁(𝑡)))] = −
1

2
𝑅−1𝐺𝑇(𝜁(𝑡))𝛻𝑉∗(𝜁(𝑡))   (21) 

 

Additionally, substituting the optimal control law 𝑢∗(𝜁(𝑡)) (21) into (19), it implies the partial derivative 

equation (PDE) is expressed as (22):  

 

𝐻∗(𝜁(𝑡), 𝑢∗(𝑡), 𝛻𝑉∗, 𝑉∗(𝑡)) = 𝜁(𝑡)𝑇𝑄𝜁(𝑡) −
1

4
𝛻𝑉∗𝑇(𝜁(𝑡))𝐺(𝜁(𝑡))𝑅−1𝐺𝑇(𝜁(𝑡))𝛻𝑉∗(𝜁(𝑡)) −

𝜆𝑉∗(𝜁(𝑡)) + 𝛻𝑉∗𝑇(𝜁(𝑡))𝐹(𝜁(𝑡)) = 0.            (22) 

 

𝑅𝑒𝑚𝑎𝑟𝑘 2. Including a positive discount factor 𝜆 > 0 ensures that the cost function in (8) remains finite, 

even when the state variable 𝜂(𝑡) does not converge to zero as 𝑡 → ∞. This consideration leads to the 

appearance of the term "𝜆𝑉∗(𝜁) " in (19) resulting in necessary adjustments within the discount factor-based 

RL control framework described in sections 2.2 and 2.3. 

 

2.2.  Data-driven proportional-integral position controller 

In this section, a cascade control framework for a quadrotor UAV as shown in Figure 2 is 

formulated following the model separation in (2), where each subsystem applies a discount factor-based 

optimal control approach. However, due to the inherent uncertainties and nonlinearities present in (22), 

obtaining a direct analytical solution is infeasible. As a result, a data-driven RL algorithm is employed to 

estimate the static Bellman function 𝑉∗(𝜁) corresponding to the optimal control policy 𝑢∗(𝜁) for each 

subsystem. 

The dynamic model of the position sub-system (2) can be modified as (23): 

 

𝑟̈ =
1

𝑚
𝑘𝑓𝑢𝑓𝑅[0 0 1]𝑇 − 𝑔[0 0 1]𝑇 =

1

𝑚
𝑘𝑓𝑢𝑟    (23) 
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where 𝑢𝑟 = 𝑢𝑓𝑅[0 0 1]𝑇 −
𝑚𝑔

𝑘𝑓
[0 0 1]𝑇. For developing the control design of the position sub-system 

(23), the tracking error model is necessary to made with the time invariant model as shown in (7). Therefore, 

the state variables vector 𝑥𝑟 = (𝑟𝑥 , 𝑟̇𝑥 , 𝑟𝑦 , 𝑟̇𝑦 , 𝑟𝑧 , 𝑟̇𝑧)
𝑇 ∈ ℝ6is applied to reduce the order of (23). Hence, the 

model (23) can be transformed into the first order system as (24): 

 

𝑥̇𝑟 = 𝐴𝑟𝑥𝑟 + 𝐵𝑟𝑢𝑟    (24) 

 

where 

 

𝐴𝑟 = 𝑑𝑖𝑎𝑔(𝑎𝑟 , 𝑎𝑟 , 𝑎𝑟) ∈ ℝ6×6, 𝑎𝑟 = [
0 1
0 0

] and 𝐵𝑟 =
𝑘𝑓

𝑚
[
0 1 0
0 0 0
0 0 0

0 0 0
1 0 0
0 0 1

]

𝑇

.  

 

Moreover, due to the time varying of the desired trajectory 𝑟𝑟𝑒𝑓(𝑡) = [𝑟𝑥
𝑟𝑒𝑓(𝑡), 𝑟𝑦

𝑟𝑒𝑓(𝑡), 𝑟𝑧
𝑟𝑒𝑓(𝑡)]

𝑇
∈ ℝ3, to 

transform the tracking error model of the position sub-system (24) into the time invariant model (7), it is 

necessary to utilize the following assumptions: 

𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 1. The desired trajectory 𝑟𝑟𝑒𝑓(𝑡) = [𝑟𝑥
𝑟𝑒𝑓(𝑡), 𝑟𝑦

𝑟𝑒𝑓(𝑡), 𝑟𝑧
𝑟𝑒𝑓(𝑡)]

𝑇
∈ ℝ3 is bounded and its time 

derivative 
𝑑

𝑑𝑡
𝑟𝑟𝑒𝑓(𝑡) is the Lipschitz function.  

𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 2. The reference vector 𝑥𝑟
𝑟𝑒𝑓

= [𝑟𝑥
𝑟𝑒𝑓

, 𝑟̇𝑥
𝑟𝑒𝑓

, 𝑟𝑦
𝑟𝑒𝑓

, 𝑟̇𝑦
𝑟𝑒𝑓

, 𝑟𝑧
𝑟𝑒𝑓

, 𝑟̇𝑧
𝑟𝑒𝑓

]
𝑇

∈ ℝ6 can be completely 

expressed as (25),  

 
𝑑

𝑑𝑡
𝑥𝑟

𝑟𝑒𝑓(𝑡) = 𝐴𝑟𝑑𝑥𝑟
𝑟𝑒𝑓(𝑡)   (25) 

 

Therefore, in the view of (24) and (25), it obtains the time invariant model (7) as: 

 

𝑑

𝑑𝑡
𝑋𝑟 = [

𝑒̇𝑟

𝑥̇𝑟
𝑟𝑒𝑓] = [

𝐴𝑟 𝐴𝑟 − 𝐴𝑟𝑑

06,6 𝐴𝑟𝑑
] 𝑋𝑟 + [

𝐵𝑟

06,3
] 𝑢𝑟  

 

where  

 

𝑒𝑟 = 𝑥𝑟 − 𝑥𝑟
𝑟𝑒𝑓

, 𝑋𝑟 = [
𝑒𝑟

𝑥𝑟
𝑟𝑒𝑓]    (26) 

 

The tracking cost function is modified as (27): 

 

𝑉𝑟(𝑋𝑟(𝑡)) = ∫ 𝑒−𝜆(𝑠−𝑡)∞

𝑡
× [𝑋𝑟(𝑠)

𝑇𝑄𝑟𝑋𝑟(𝑠) + 𝑢𝑟(𝑠)
𝑇𝑅𝑟𝑢𝑟(𝑠)]𝑑𝑠  (27) 

 

where 𝑄𝑟 = [
𝑄𝑒𝑟 06,6

06,6 06,6
] and 𝑄𝑒𝑟 ∈ ℝ6×6, 𝑅𝑟 ∈ ℝ3×3 are symmetric matrices with positive definiteness. Note 

that, the term 𝑒−𝜆(𝜏−𝑡) is added to (27) for ensuring the finite cost function while 𝑋𝑟 = [
𝑒𝑟

𝑥𝑟
𝑟𝑒𝑓] does not 

converge to zero as time approaches infinity. According to (17)-(21) and the off-policy technique [3], the 

data-driven algorithm is proposed to develop the position controller as follows: 

 

Algorithm 1. Data-driven algorithm for position controller 

1. Initialization: Employing the stabilizing policy 𝑢𝑟
0(𝑋𝑟) and the additional noise 𝑒𝑟(𝑡) to satisfy PE 

condition. Collecting the input-output data in the quadrotor system and establishing the threshold 𝜖𝑟  

2. Policy evaluation: Based on the control input 𝑢𝑟
𝑖 (𝑋𝑟) = 𝑢̂𝑟

𝑖 (𝑋𝑟) + 𝑒𝑟  and the control policy 𝑢̂𝑟
𝑖 (𝑋𝑟), we 

solve the (28) to find simultaneously 𝑉𝑟
𝑖+1(𝑋𝑟) and 𝑢𝑟

𝑖+1(𝑋𝑟):  

 

𝑉𝑟
𝑖+1(𝑋𝑟(𝑡 + 𝛥)) − 𝑒𝜆𝛥𝑉𝑟

𝑖+1(𝑋𝑟(𝑡)) = −∫ 𝑒−𝜆(𝜏−𝑡−𝛥)(𝑋𝑟(𝜏)
𝑇𝑄𝑟𝑋𝑟(𝜏) + (𝑢̂𝑟

𝑖 )𝑇𝑅𝑟𝑢̂𝑟
𝑖 +

𝑡+𝛥

𝑡

2𝑢̂𝑟
𝑖 𝑅𝑟𝑒𝑟) 𝑑𝜏; 𝑢̂𝑟

𝑖 (𝑡) = 𝑢𝑟
𝑖 (𝑡) + 𝑒𝑟(𝑡)   (28) 
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3. Policy improvement: Obtain the control policy 𝑢𝑟
𝑖 (𝑋𝑟) = 𝑢𝑟

𝑖+1(𝑋𝑟), 𝑖 → (𝑖 + 1) and go to step 2 until 

‖𝑢𝑟
𝑖+1 − 𝑢𝑟

𝑖 ‖ < 𝜖𝑟.  

 

In the Algorithm 1, the solution of Bellman equation (24) is improved by data collection by the following 

modification: 

 

𝑉𝑟
𝑖+1(𝑋𝑟(𝑡 + 𝛥)) − 𝑉𝑟

𝑖+1(𝑋𝑟(𝑡)) = −∫ (𝑋𝑟
𝑇(𝜏)𝑄𝑟𝑋𝑟(𝜏) + (𝑢𝑟

𝑖 )𝑇(𝑋𝑟(𝜏))𝑅𝑟𝑢𝑟
𝑖 (𝑋𝑟(𝜏)))

𝑡+𝛥

𝑡
𝑑𝜏 +

∫ 𝜆
𝑡+𝛥

𝑡
𝑉𝑟

𝑖+1(𝑋𝑟(𝜏))𝑑𝜏 + 2∫ (𝑢𝑟
𝑖+1(𝑋𝑟(𝜏)))

𝑇𝑡+𝛥

𝑡
𝑅𝑟𝑢𝑟

𝑖 (𝑒𝑟(𝜏))𝑑𝜏            (29) 

 

After achieving the position control signal 𝑢𝑟 in the quadrotor control structure as shown in  

Figure 2, we proceed to compute the reference of attitude control scheme [𝜙𝑑 𝜃𝑑 𝜓𝑑]𝑇 as follows. 

According to 𝑢𝑟 = 𝑢𝑓𝑅[0 0 1]𝑇 −
𝑚𝑔

𝑘𝑓
[0 0 1]𝑇, it follows that: 

 

𝑢𝑟 +
𝑚𝑔

𝑘𝑓
[0 0 1]𝑇 = 𝑢𝑓 [

(𝑠𝑖𝑛 𝜙)(𝑠𝑖𝑛 𝜓) + (𝑐𝑜𝑠 𝜙)(𝑐𝑜𝑠 𝜓)(𝑠𝑖𝑛 𝜃)

(𝑐𝑜𝑠 𝜙)(𝑠𝑖𝑛 𝜃)(𝑠𝑖𝑛 𝜓) − (𝑐𝑜𝑠 𝜓)(𝑠𝑖𝑛 𝜙)

(𝑐𝑜𝑠 𝜙)(𝑐𝑜𝑠 𝜃)
]    (30) 

 

By setting the yaw angle reference 𝜓𝑑(𝑡) as a constant number to synchronize in practical applications, based 

on (30), we can achieve the desired 𝑢𝑓 , 𝜙𝑑, 𝜃𝑑 as (31):  

 

𝑢𝑓 =

(𝑢𝑟𝑧 +
𝑚𝑔
𝑘𝑓

)

(𝑐𝑜𝑠 𝜙)(𝑠𝑖𝑛 𝜃)
 

𝜙𝑑 = 𝑎𝑟𝑐𝑠𝑖𝑛 (
𝑢𝑟𝑥 𝑠𝑖𝑛 𝜓 − 𝑢𝑟𝑦𝑐𝑜𝑠𝜓

𝑢𝑓

) , 

𝜃𝑑 = 𝑎𝑟𝑐𝑠𝑖𝑛 (
𝑢𝑟𝑥𝑐𝑜𝑠𝜓+𝑢𝑟𝑦𝑠𝑖𝑛𝜓

𝑢𝑓 𝑐𝑜𝑠 𝜓
).     (31) 

 
2.3.  Data-driven RL based attitude controller 

In this part, a data-driven RL-based attitude control law is similarly designed as above to obtain the 

input signals 𝑢𝛺 for satisfying optimal tracking performance with the desired trajectory (31). The attitude 

dynamic model (2) can be rewritten by (32): 

 

𝛺̈ = 𝐽−1𝜏 − 𝐽−1𝐶(𝛺,𝛺̇)𝛺̇      (32) 

 

By considering the attitude state vector 𝑥𝛺 = [𝜙, 𝜙̇, 𝜃, 𝜃̇, 𝜓, 𝜓̇]𝑇and referring to the attitude control structure 

illustrated in Figure 2, the design approach mirrors the position control strategy described in subsection 2.3. 

Based on (32), the augmented attitude dynamics can be reformulated as (33): 

 

𝑑

𝑑𝑡
𝑋𝛺 = [

𝑒̇𝛺

𝑥̇𝛺𝑑
] = [

𝐹𝛺 𝐹𝛺 − 𝐹𝛺𝑑

06,6 𝐹𝛺𝑑
] 𝑋𝛺𝑑 + [

𝐺𝛺

06,3
] 𝑢𝛺    (33) 

 

Accordingly, the attitude control strategy is summarized in the Algorithm 2: 

 

Algorithm 2. Data-driven RL based attitude control scheme 

1. Initialization: Employing the stabilizing policy 𝑢𝑠
0(𝑋𝑠) and the additional noise 𝑢𝑠𝑒(𝑡) to satisfy PE 

condition. Collecting the input-output data of the quadrotor system. 

2. Policy evaluation: Based on the control signal 𝑢𝑠
𝑖 (𝑋𝑠) = 𝑢̂𝑠

𝑖(𝑋𝑠) + 𝑒𝑠 and the control policy 𝑢𝑠
𝑖 (𝑋𝑠), we 

solve the (34) to find simultaneously 𝑉𝑠
𝑖+1(𝑋𝑠) and 𝑢𝑠

𝑖+1(𝑋𝑠):  

 

𝑉𝑠
𝑖+1(𝑋𝑠(𝑡 + 𝛥)) − 𝑉𝑠

𝑖+1(𝑋𝑠(𝑡)) = −∫ (𝑋𝑠
𝑇(𝜏)𝑄𝑠𝑋𝑠(𝜏) + (𝑢𝑠

𝑖 )𝑇(𝑋𝑠(𝜏))𝑅𝑠𝑢𝑠
𝑖(𝑋𝑠(𝜏)))

𝑡+𝛥

𝑡
𝑑𝜏 +

∫ 𝜆
𝑡+𝛥

𝑡
𝑉𝑠

𝑖+1(𝑋𝑠(𝜏))𝑑𝜏 + 2∫ (𝑢𝑠
𝑖+1(𝑋𝑠(𝜏)))

𝑇𝑡+𝛥

𝑡
𝑅𝑠𝑢𝑠

𝑖(𝑒𝑠(𝜏))𝑑𝜏       (34) 

 

3. Policy improvement: Obtain the control policy 𝑢𝑠
𝑖(𝑋𝑠) = 𝑢𝑠

𝑖+1(𝑋𝑠), 𝑖 → (𝑖 + 1) and go to step 2 until 

‖𝑢𝑠
𝑖+1 − 𝑢𝑠

𝑖‖ < 𝜖𝑠 
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𝑅𝑒𝑚𝑎𝑟𝑘 3. Two data-driven RL algorithms incorporating a discount factor are proposed for the quadrotor, 

addressing both the attitude and position subsystems. This work extends the study in [37], which focused 

solely on RL control for the attitude subsystem without considering a discount factor. 

 

 

3. SIMULATION RESULTS 

In this section, we use the example of quadrotor to illustrate the proposed data RL algorithm with 

the following parameter as follows:  

 

𝑚 = 2.0(𝑘𝑔), 𝑘𝑤 = 1(𝑁𝑠2), 𝑘𝑡 = 1(
𝑁𝑠2

𝑚
), 𝑔 = 9.8 (

𝑚

𝑠2), 𝑙𝜏 = 0.2(𝑚), 

𝐽 = 10−3𝑑𝑖𝑎𝑔(5.1,5.1,5.2)(𝑘𝑔.𝑚2).  

 

The desired trajectory of the position controller is chosen as: 𝑟𝑑(𝑡) = [0.5𝑡,  0.5𝑡,  1.5 + 𝑡]𝑇, it can be 

obtained that the (25) is guaranteed with matrix  

 

𝐴𝑟𝑑 =

[
 
 
 
 
 
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0]

 
 
 
 
 

 

 

Moreover, the cost function utilizes the weight matrices 𝑄𝑒 = 100𝐼6, 𝑅𝑝 = 𝐼3, 𝑄𝛩𝑒 = 100𝐼6, 

𝑅𝛩 = 𝐼3, 𝜆 = 0.01, 𝑇𝑠𝑡𝑒𝑝 = 0.01, and a discount factor of 𝜆 = 0.01. During the initial data collection phase 

[17], two proportional-derivative (PD) controllers are applied to the position and attitude loops to gather data 

for the learning process. To ensure the persistence of excitation (PE) conditions required for the proposed 

algorithms, noise signals defined as 𝑢𝑝𝑒 = ∑ 0100
𝑚=1 . 01𝑠𝑖𝑛(𝑤𝑚𝑡) and 𝑢𝛩𝑒 = ∑ 0500

𝑚=1 . 002𝑠𝑖𝑛(𝑤𝑚𝑡), where 

each 𝑤𝑚 is randomly selected within [−100, 100], are injected into the position and attitude control inputs, 

respectively. For the critic and actor neural networks, second-order and first-order polynomial activation 

functions are employed, respectively. It is worth noting that the tracking performance of the proposed data-

driven RL-based position and attitude controllers is illustrated in Figures 3 to 7, demonstrating fast 

convergence with only four iterations required for the algorithm weights to stabilize. Moreover, the position 

tracking errors converge to zero within 4 seconds, while the attitude tracking errors reach zero in 

approximately 0.5 seconds, as illustrated in Figures 3 and 5, respectively. Furthermore, Figure 7 

demonstrates the quadrotor’s trajectory tracking performance relative to a predefined reference path, showing 

that the quadrotor’s position closely follows the reference trajectory with high accuracy. Furthermore, to 

evaluate the effectiveness of the tracking performance, numerous performance indices, including the integral 

of absolute error (IAE) and the integral of absolute time-weighted error (IATE), are presented as shown in 

Table 2. 

 

 

 
 

Figure 3. The position tracking error 
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Figure 4. The convergence of training weights in position controller 

 

 

 
 

Figure 5. The tracking of orientation angles 

 

 

 
 

Figure 6. The convergence of training weights in attitude controller 
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Figure 7. The trajectory tracking of RL control 

 

 

Table 2. Numerous performance indices  
Performance indices 𝐼𝐴𝐸𝑝 𝐼𝐴𝐸Ω 𝐼𝑇𝐴𝐸𝑝 𝐼𝑇𝐴𝐸Ω 

Value 3.0527 0.1175 1.8408 0.0144 

 

 

4. CONCLUSION 

A novel data-driven reinforcement learning algorithm incorporating a discount factor was proposed 

for application in the two subsystems of a UAV quadrotor to address performance challenges in fully 

uncertain UAV systems. Utilizing the off-policy approach, the model-free cascade control framework was 

constructed to simultaneously obtain the optimal control law and the corresponding Bellman function. The 

network weights were adjusted to approximate the solution of the modified Hamilton-Jacobi-Bellman (HJB) 

equation, with theoretical guarantees of both convergence and stability. A numerical example was provided 

to demonstrate the effectiveness of the proposed discount factor-based data-driven RL algorithm in the UAV 

control context. 
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