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 The paper considered issues the development of a self-organizing controller 

(SC) based on a neuro-fuzzy network that can approximate a nonlinear 

function with arbitrary accuracy. The SC in the form of neuro-fuzzy 

networks, possesses the nonlinear property that allows for an increased range 

of control over the plant, which imparts adaptive properties to the control 

systems. To reduce the dimensionality of the plant, it is proposed to split the 

model of the system into sub models with smaller dimensionality, due to 

which the duration of training of the neuro-fuzzy network is reduced and 

asymptotic stability is ensured as a whole. The proposed approach is also 

applicable to multidimensional control systems of the nonlinear dynamic 

plants. The simulation results showed that the synthesized SC provides good 

tracking characteristics, the tracking efficiency is no more than 10%, which 

meets the requirement of the control system. 
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1. INTRODUCTION 

The majority of the actual operating technological plants are characterized by complex nonlinear 

dynamic properties and the presence of interference of a random nature, which significantly complicates the 

application of typical linear adaptive control algorithms for controlling similar plants [1], [2]. In the presence 

of an accurate mathematical model of the controlled plant, methods based on the application of the principles 

of adaptive control with a reference model have proven themselves to be effective [3], [4]. In classical 

systems of adaptive control with a reference model, the detailed mathematical model of the plant must be 

known, and its structure and parameters of the system do not change in the process of functioning [5], [6]. In 

the adaptive systems, a construction application the identification approach [7], [8] arises, related to 

increased computing costs, since in this case there is a necessity to promptly process a large amount of 

information, which significantly complicates the solution of the task. The linear self-organizing controller 

(SC) is widely used in industry and has proven itself well in the steady-state operating mode of the plant, that 

is, around the nominal mode [9], [10]. The application of a SC with a linear control law under such 

conditions better adapts to changes in parameters and dynamic properties of the control plant [11], [12]. At 

the same time, industrial plants are characterized by the nonlinear properties, several types of uncertainties 

https://creativecommons.org/licenses/by-sa/4.0/
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and load changes [13], [14], which result in deterioration in the performance of the linear SC and require the 

use of the nonlinear law of the control. To overcome the difficulties associated with the presence of 

nonlinearity, it becomes necessary to use neural networks to approximate the nonlinear functions [15], [16]. 

It is known that neural networks have the properties of approximating any arbitrary nonlinear 

function, and they can be successfully applied to develop direct adaptive control of the nonlinear systems 

[17], [18]. In [19], an indirect adaptive control based on neural networks for controlling dynamic plants is 

presented. In the work [20], the application of SC for direct neural control for a class of structurally uncertain 

nonlinear plants is proposed. It should be noted that in conventional self-setting controllers, it is necessary to 

reconfigure their parameters each time the operating point changes, which leads to low performance in 

controlling the nonlinear plants [21]–[23].  

The aim of the work is to develop a method for synthesizing nonlinear dynamic plants based on the 

hybrid application of a neuro-fuzzy network with a synergetic approach, allowing one to determine the 

weight coefficients of the neuro-fuzzy network in real time and establish local stability of a closed-loop 

system. The SC built based on the neuro-fuzzy network can provide opportunities self-learn, related once for 

specific operating points, and it also allows you to proceed equally from one local model to another. 

 

 

2. METHOD 

Let the dynamics of the control system be described by a system of equations: 

 

𝑥̇1 = 𝑓1(𝑥1, 𝑥2), 𝑥̇2 = 𝑓2(𝑥1, 𝑥2, 𝑥3),   

 

𝑥̇𝑛 = 𝑓𝑛(𝑥1, 𝑥2, … , 𝑥𝑛 , 𝑢), 𝑦 = ℎ(𝑥), 𝑢 = 𝑢(𝑦),   

 

where 𝑥𝑖 is the vector of state variables, 𝑓𝑖 is the smooth continuous function, 𝑢 is a signal of the control,  

𝑦 is the vector of measured variables, ℎ(𝑥) is the differentiable function. The purpose of the control is a 

function of the macro variable ψ(𝑦), which represents and determines the desired diversity in the space of 

the system output coordinates. The condition for choosing the macro variable ψ(𝑦) is to ensure the 

asymptotic stability of the system under study. 

To solve this issue, it is necessary to synthesize a law of control  𝑢(𝑦) that will bring the system 

trajectories to the vicinity of the desired variety and stabilize it from that vicinity [24]. It should be noted that 

qualitative information about the process is presented in the form of a function 𝑓𝑖(∙), and the state vector is 

not available for measurements. We will select a nonlinear law of control based on the method of analytical 

design of aggregated controllers (ADAC), which allows for the minimization of the objective function: 

 

𝐽 = ∫ 𝐹 (𝜓2, (
𝑑𝜓

𝑑𝑡
)
2

, … , (
𝑑𝑚𝜓

𝑑𝑡𝑚
)
2

, 𝑇1
2, … , 𝑇𝑚

2) 𝑑𝑡
∞

0
  

 

where 𝜓𝑠 is an objective function, 𝐹(∙) and parameters of 𝑇𝑠 characterized the nature of the system and 

determined the dynamics of its movement by a macro variable. Based on the formulation of the issue and the 

desired type of transient process, the type of function 𝐹 is selected. By definition of the ADAC method, the 

desired motion of the system of the nth order can be presented as a certain function 

 

∑ 𝑇𝑖
𝑑𝑛𝜓

𝑑𝑡𝑛
𝑛
𝑖=1 + 𝜓 = 0.  

 

Ensuring the stability of the system and giving its desired nature is implemented by choosing the coefficients 

𝑇𝑖 . To obtain an analytical view of the control law, we differentiate the functional by time: 

 

𝜓̇ =
𝜕𝜓

𝜕𝑡
+ ∑

𝜕𝜓

𝜕𝑦

𝜕𝑦

𝜕𝑥𝑖
𝑥̇𝑖 =

𝜕𝜓
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+ ∑

𝜕𝜓

𝜕𝑦

𝜕𝑦

𝜕𝑥𝑖
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+ 𝐹1 (𝑥1, 𝑥2, … , 𝑥𝑛 ,

𝜕𝜓

𝜕𝑡
)𝑛

𝑖=1
𝑛
𝑖=1   

 

𝜓̈ =
𝜕𝜓̇
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=

𝜕𝜓̇
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𝜕𝑥𝑖
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𝜕𝑡2
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𝜕𝑡2
+ ∑

𝜕𝐹1

𝜕𝑥𝑖
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To obtain the control law in analytical form, we expand the derivatives of the function 𝜓. The main 

disadvantage of this approach to obtaining the control law is the possibility of measuring the system state 

vector, i.e. the system must be fully observable. Let us consider the case when some of the variables are not 

available for measurement, i.e. unobservable. To restore unmeasured coordinates, we use the inverse function 

ℎ𝑘
−1, which can be determined based on the measured output variables. 

To restore the unobserved variables, we take derivatives of the measured variables: 
 

𝑥𝑘+1 = 𝑓𝑘
−1(𝑥1, … , 𝑥𝑘 , 𝑥̇𝑘), 

𝑥𝑘+2 = 𝑓𝑘+1
−1 (𝑥1, … , 𝑥𝑘 , 𝑥𝑘+1, 𝑥̇𝑘+1) = 𝑓𝑘+1

−1 (𝑥1, … , 𝑥𝑘 , 𝑓𝑘
−1(𝑥1, … , 𝑥𝑘 , 𝑥̇𝑘), 𝑥̇𝑘+1). (1) 

 

Let’s differentiate the expressions 𝑥𝑘+1. We get 

 

𝑥̇𝑘+1 =
𝑑

𝑑𝑡
(𝑓𝑘

−1(∙)) = ∑
𝜕𝑓𝑘

−1

𝜕𝑥𝑖
𝑥̇𝑖

𝑘
𝑖=1 +

𝜕𝑓𝑘
−1

𝜕𝑥̇𝑘
𝑥̈𝑘 = 𝐷𝑘+1(𝑥1, … , 𝑥𝑘 , 𝑥̇𝑘 , 𝑥̈𝑘).  

 

The resulting expression is the basis for calculating the control law in analytical form, i.e. this 

expression allows using not only the measured variables but also the numerical values of the derivatives of 

the coordinates (from of the variables). Let the dynamics of some nonlinear system be represented in (2): 

 

𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘), 𝑢(𝑘), 𝑘),  (2) 

 

where 𝑥(𝑘) is the vector of system state variables, 𝑢(𝑘) is the vector of control, 𝑓 is some nonlinear function,  
𝑘 is the number of tacts. 

To solve the task of synthesizing a synergetic controller, it is initially necessary to select macro 

variables that are a function of the system’s state variables: 

 

Ψ = Ψ(𝑥(𝑘), 𝑘).  (3) 
 

The purpose of control is to ensure asymptotic stability of the system at Ψ = 0. The dynamics of a macro 

variable are characterized by the speed and trajectory of convergence to an invariant diverse (attractor) [25]. 

In this case, 𝑇𝑠 is represented as: 

 

𝑇 [
Ψ(𝑘+1)−Ψ(𝑘)

𝑇𝑠
] + Ψ(𝑘) = 0,  (4) 

 

here 𝑇 is characterizes the rate of convergence of a function (variable). Taking this into account, we rewrite 

(4) in the following form: 

 

𝑇 (
𝑇

𝑇𝑠−𝑇
) ⋅

𝑇

𝑇𝑠
⋅ Ψ(𝑘 + 1) + Ψ(𝑘) = 0.  (5) 

 

The discrete form of writing (1) is: 

 

{
  
 

  
 

𝑥1(𝑘 + 1) = 𝑥2(𝑘),

𝑥2(𝑘 + 1) = 𝑥3(𝑘),
⋮

𝑥𝑛−1(𝑘 + 1) = 𝑥𝑛(𝑘),

𝑥𝑛(𝑘 + 1) = 𝑓(𝑥(𝑘)) + 𝑢(𝑘) + 𝑑(𝑘),

𝑦(𝑘) = 𝑥1(𝑘)

  (6) 

 

where 𝑓(𝑥(𝑘)) - the nonlinear function, 𝑥(𝑘) = [𝑥1(𝑘), 𝑥2(𝑘), … , 𝑥𝑛(𝑘)]
𝑇 ∈ 𝑅𝑛 - the vector of measured 

variables of the system’s states, 𝑢(𝑘) and 𝑦(𝑘) - input and output of the system, and 𝑑(𝑘) - external 

disturbance. 

The control error signals are defined as follows: 

 
𝑒1(𝑘) = 𝑥1(𝑘) − 𝑦𝑑(𝑘),

⋮
𝑒2(𝑘) = 𝑥2(𝑘) − 𝑦𝑑(𝑘 + 1),

𝑒𝑛(𝑘) = 𝑥𝑛(𝑘) − 𝑦𝑑(𝑘 + 𝑛 − 1),
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where 𝑦𝑑(𝑘) - a reference trajectory. Let’s define a macro variable as follows form: 

 

Ψ(𝑘) = 𝐾1𝑒1(𝑘) + 𝑒2(𝑘) = ∑ 𝐾𝑖𝑒1(𝑘) + 𝑒𝑛(𝑘)
𝑛−1
𝑖=1 , (7) 

 

Ψ(𝑘 + 1) = 𝐾1𝑒1(𝑘 + 1) + 𝑒2(𝑘 + 1)  (8) 

 

where 𝐾1 - the adjustable parameter of the control 

 

𝑒1(𝑘 + 1) = 𝑥1(𝑘 + 1) − 𝑦𝑑(𝑘 + 1)  (9) 

 

𝑒2(𝑘 + 1) = 𝑥2(𝑘 + 1) − 𝑦𝑑(𝑘)  (10) 

 

Ψ(𝑘 + 1) = 𝐾1𝑥1(𝑘 + 1) − 𝐾1𝑦𝑑(𝑘 + 1) + 𝑥2(𝑘 + 1) − 𝑦𝑑(𝑘) (11) 

 

Ψ(𝑘 + 1) = 𝐾1𝑥2(𝑘) − 𝐾1𝑦𝑑(𝑘 + 1) + 𝑓(𝑥(𝑘)) + 𝑢(𝑘) + 𝑑(𝑘) − 𝑦𝑑(𝑘) (12) 

 

Designating 𝛼 =
𝑇

𝑇𝑠
(

𝑇

𝑇𝑠−𝑇
) and и consolidating (11) and (4) we get 

 

𝛼[𝐾1𝑥2(𝑘) − 𝐾1𝑦𝑑(𝑘 + 1) + 𝑓(𝑥(𝑘)) + 𝑢(𝑘) + 𝑑(𝑘) − 𝑦𝑑(𝑘)] + Ψ(𝑘) = 0 (13) 

 

In this case, 

 

𝛼 =
𝑇

𝑇𝑠
(

𝑇

𝑇𝑠−𝑇
).  (14) 

 

Then the synergetic control law has the form: 

 

𝑢(𝑘) = 𝑓(𝑋(𝑘)) − 𝐾1𝑥2(𝑘) + 𝐾1𝑦𝑑(𝑘) + 𝑦𝑑(𝑘) − 𝑑(𝑘) −
1

𝛼
Ψ(𝑘). (15) 

 

If the nonlinear function 𝑓(𝑥(𝑘)) is known, the law of synergetic control is easily obtained. When 

the nonlinear function 𝑓(𝑥(𝑘)) is unknown, it is more convenient and simpler to use an adaptive synergetic 

fuzzy controller using a neuro-fuzzy network. The generalized structure, synthesized synergetic control 

system with a neuro-fuzzy controller, is shown in Figure 1. The neuro-fuzzy network includes indications of 

the order of one-dimensional basis functions 𝑦(𝑘), the number of basis functions and the weights of neurons 

determined by the gradient method. The input of this network receives a sequence of reference signals 
|𝑦(𝑘)… 𝑦(𝑘 − 𝑛𝑟 + 1), 𝑟(𝑘) … 𝑟(𝑘 − 𝑛𝑟 + 1)|. The output of the network is a linear combination of the 

weights and the fuzzified input. Designing the neuro-fuzzy network involves choosing basis functions, ranges 

of input and output variables, and the number of neurons. 

The network output 𝑢(𝑘) is determined by the centre of gravity method. 

 

𝑢(𝑡) = 𝑎𝑇(𝑥)𝜃,  (16) 

 

where х(к) represents the input vector; 

 

𝑥(𝑡) = |𝑦(𝑘), … , 𝑦(𝑘 − 𝑛𝑦 + 1), 𝑟(𝑘), … , 𝑟(𝑘 − 𝑛𝑟 + 1)|, (17) 

 

𝜃[𝜃1…𝜃2…𝜃𝑝]
𝑇
 - the neural network weighting coefficients, 𝑝 – is the number of the weighting coefficients. 

The multivariate basis function is a transformed input vector: 

 

𝑎𝑖(𝑥) = ∏ 𝜇
𝐴𝑙
𝑖

𝑛
𝑙=1 (𝑥𝑙(𝑘)),    𝑓𝑜𝑟  𝑖 = 1,2, … , 𝑝  (18) 

 

where 𝑛 = 𝑛𝑦 + 𝑛𝑟 - the number of input parameters of the state vector 𝑥(𝑘). These properties are also 

applicable to multivariate basis functions: 

 

𝑢(𝑘) = ∑ 𝜃𝑖𝑎𝑖(𝑥) = ∑ 𝜃𝑖∏ 𝜇
𝐴𝑙
𝑖(𝑥𝑙(𝑘)).

𝑛
𝑙=1

𝑝
𝑖=1

𝑝
𝑖=1   (19) 
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Training a neuro-fuzzy network involves determining the setting parameters of the neural network 

weights. The weight coefficients of the fuzzy network are adjusted during the training process using the back 

distribution method: 

 

𝜃𝑖(𝑘 + 1) = 𝜃𝑖(𝑘) − 𝑔
𝜕𝐽

𝜕𝜃𝑖
= 𝜃𝑖(𝑘) − 𝑔𝑒

𝜕𝐽

𝜕𝜃𝑖
,    𝑓𝑜𝑟 𝑖 = 1,2, . . . , 𝑝 (20) 

 
𝜕𝑒

𝜕𝜃𝑖
=

𝜕𝑦

𝜕𝜃𝑖
=

𝜕𝑦

𝜕𝜃𝑢

𝜕𝑢

𝜕𝜃𝑖
=

𝜕𝐽

𝜕𝜃𝑖
𝑎𝑖(𝑥).  (21) 

 

We will decompose neuro – fuzzy controllers into two parts: static nonlinear and adaptive linear parts, 

which are trained in the same way as neural networks. The nonlinear property of the control plant and the neuro, 

fuzzy controller makes it difficult to ensure global stability of the closed, loop control system. The 

disadvantages of the analytical solution include the need for a task with the characteristics of the control plant. 

 

 

 
 

Figure 1. Generalized structure of a neuro-fuzzy network 

 

 

3. RESULTS AND DISCUSSION. 

The dynamics of a nonlinear system is represented as (22): 

 

{

𝑥1(𝑘 + 1) = 𝑥2(𝑘),

𝑥2(𝑘 + 1) = 𝑓(𝑥(𝑘))

𝑦(𝑘) = 𝑥1(𝑘)

+ (𝐾/𝑇)𝑢(𝑘) + 𝑑(𝑘),  (22) 

 

where 𝑓(𝑥(𝑘)) = −⌊𝑎1𝑥2 + 𝑎2𝑥2
3(𝑘)⌋/𝑇 - the nonlinear function. 𝑦𝑑(𝑘) = 𝑠𝑖𝑛(𝑘𝜋/20) - the trajectory of 

external disturbance. Initial conditions: 

 

𝑑(𝑘) = {
0,                             𝑖𝑓  𝑘 ≤ 500

0.1 𝑡𝑎𝑛ℎ(0.5𝑘), 𝑖𝑓   𝑘 > 500
 

 

We select membership functions in the form 𝜇(𝑥𝑖) = 𝑒
(−0.5(𝑥𝑖+6−2(𝑗+1))

2
)
, 𝑗 = 1, … , 5 for states of the 

system 𝑥𝑖 , 𝑖 = 1, 2; step of the discretization 𝑇𝑠 = 0.02 𝑠. 
Let us conduct a simulation experiment, the results of which are presented in Figure 2. It is clear from 

the graph that a certain law of synergetic control provides good tracking qualities. Herewith, the proposed 

adaptive synergetic controller 𝑢(𝑘) has limitations, see in Figure 3. Comparison of the obtained result with 

the results of the authors [26]–[28] shows that the proposed method for synthesizing a nonlinear self-

organizing controller provides better efficiency. The limitation of the proposed approach is the dependence of 

the quality of the neural network on the number of training samples. In the future, it is necessary to consider 

the possibilities of using a state observer in the case when not all states of the system are available for 

measurement to develop the control system for the nonlinear dynamic plant. 
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Figure 2. The reference characteristic of  

the transient process 

 

Figure 3. The results of the tracking 

 

 

4. CONCLUSION 

The paper considered the issues of studying the synergetic adaptive control law for a class of 

nonlinear systems with discrete time. The stability analysis of the adaptive synergetic control system is based 

on the application of Lyapunov theory. The synthesized adaptive synergetic self – organizing controller takes 

into account the nonlinear nature of the plant and allows its parameters to adapt to changes in the 

environment. The controller synthesis is carried out by a hybrid application of methods of the synergetic 

control theory and fuzzy systems. The proposed method of the synergetic control guarantees the reliability 

and asymptotic stability of the control system and makes it possible to use the nonlinear control laws. To 

overcome the difficulties associated with the uncertainty of the state function of plans, the use of the 

Mamdani neural network model is proposed. The sigmoid function is used as a membership function, which 

is distinguished by its simplicity of implementation, with the possibility of differentiating input variables. 

The obtained control law has an analytical dependence, which significantly increases the possibilities of its 

implementation on industrial controllers. 
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