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Classification of sentences in biomedical abstracts into predefined categories
is essential for enhancing readability and facilitating information retrieval in
scientific literature. We propose a novel hybrid model that integrates
bidirectional encoder representations from transformers (BERT) for
contextual learning, long short-term memory (LSTM) for sequential
processing, and sentence order information to classify sentences from
biomedical abstracts. Utilizing the PubMed 200k randomized controlled trial
(RCT) dataset, our model achieved an overall accuracy of 88.42%,
demonstrating strong performance in identifying methods and results
sections while maintaining balanced precision, recall, and F1-scores across
all categories. This hybrid approach effectively captures both contextual and
sequential patterns of biomedical text, offering a robust solution for
improving the segmentation of scientific abstracts. The model's design
promotes stability and generalization, making it an effective tool for
automatic text classification and information retrieval in biomedical
research. These results underscore the model's efficacy in handling
overlapping categories and its significant contribution to advancing
biomedical text analysis.
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1. INTRODUCTION

The surge in biomedical literature has made it increasingly difficult to extract valuable information
efficiently from scientific papers. As the volume of biomedical research continues to grow, many abstracts
are densely written, making them challenging to navigate and interpret [1], [2]. This issue is compounded by
the absence of structured semantic frameworks in these abstracts, which hinders effective data retrieval and
comprehension. While a variety of natural language processing (NLP) models have been developed to
address these challenges [3]-[5], existing approaches often struggle to balance the demands of contextual
understanding and sequential information within the text.

To address these challenges, this research introduces a novel hybrid model that integrates the
strengths of bidirectional encoder representations from transformers (BERT) for contextual learning and long
short-term memory (LSTM) for sequential learning. This combination aims to effectively segment and
classify biomedical research paper abstracts, optimizing their readability while preserving essential
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information. The model leverages the robust contextual understanding capabilities of BERT and the
sequential dependencies captured by LSTM, offering a more nuanced approach to text segmentation in
biomedical literature.

This study builds upon the PubMed 200k RCT dataset, a widely used resource for sentence
classification in medical abstracts [6]. While the original dataset comprises 2.3 million phrases from 200,000
randomized controlled trial abstracts, we have selected a subset of 500,000 sentences to train our model.
Each sentence in this dataset is mapped to one of five predefined categories: background, objective, method,
result, or conclusion, providing a structured framework for training and evaluation.

Our research leverages the computational capabilities of the Google Colab A100 GPU to efficiently
train and fine-tune the hybrid model within real-world resource constraints. By harnessing both contextual
and sequential features, this approach effectively enhances the readability and accessibility of scientific
abstracts. Additionally, the method maintains computational efficiency, ensuring that the hybrid model
remains viable for practical applications.

The primary objective of this work is to bridge gaps in current NLP approaches by offering a hybrid
model that excels in understanding context while preserving the logical flow of biomedical text. This model
improves the segmentation of biomedical abstracts by accurately dissecting their structural and semantic
components. Furthermore, it aims to set a new standard for readability and comprehension within the field of
biomedical research.

2. LITERATURE REVIEW

Biomedical text classification has seen significant advancements, particularly with the integration of
machine learning and deep learning models. Rios and Kavuluru [7] (convolutional neural networks (CNNs)
for biomedical text classification) demonstrated the effectiveness of CNNs in assigning medical subject
headings (MeSH) to biomedical articles, outperforming traditional methods like logistic regression and
support vector machines by improving macro F-scores. This work emphasized the advantages of CNNs in
handling large feature spaces and complex biomedical text structures.

On the other hand, Dramé et al. [8] explored a k-nearest neighbors (kNN) based and explicit
semantic analysis (ESA) based approach for large-scale biomedical text classification. Their kNN approach,
combined with random forest (RF), achieved competitive performance with an F-measure of 0.55, while their
ESA method underperformed. Their study highlighted the ongoing challenge of using partial information to
classify documents in the biomedical domain.

In a broader review of biomedical text mining, Cohen [9] summarized the current progress in
applying text mining techniques to tasks like named entity recognition, text classification, and hypothesis
generation. They highlighted substantial advancements in computational methodologies and algorithms,
enabling more effective extraction of meaningful patterns from biomedical texts. However, they noted that
despite these advancements, considerable challenges persist, particularly in improving system usability for
biomedical researchers and enhancing access to full-text articles, which are critical barriers limiting
widespread adoption and practical utility of biomedical text mining tools.

Mondal introduced biomedical BERT-based adversarial example generation (BBAEG) [10], a novel
adversarial example generation technique specifically for biomedical text classification. By leveraging
BERT-masked language model (MLM) predictions and synonym replacement for biomedical entities,
BBAEG demonstrated the potential of generating robust adversarial attacks that could expose vulnerabilities
in current biomedical NLP models, highlighting the need for more resilient predictive systems. Further
advancements in biomedical multi-label classification were explored by Zhang et al. [11], who introduced a
multi-layer self-attention mechanism combined with BERT to enhance classification accuracy. Their model
outperformed baselines in aspect category detection and biomedical document classification, showcasing the
utility of self-attention for capturing complex dependencies in biomedical texts.

Neumann et al. [12] contributed significantly to the field with ScispaCy, a specialized Python library
built upon spaCy, optimized specifically for processing biomedical texts. ScispaCy provides fast, scalable
models achieving near-state-of-the-art performance across multiple biomedical NLP tasks, such as named
entity recognition and parsing. Consequently, it serves as a robust and highly accessible tool, facilitating
wider adoption among biomedical researchers and practitioners.

Document-level biomedical relation extraction was systematically addressed by Yuan et al. [13]
through the introduction of the HTGRS framework, which employs hierarchical tree graphs and a dedicated
relation segmentation module. Their framework strategically models interactions between entity pairs,
significantly enhancing the accuracy of predicting relations across multiple biomedical entities. Experimental
evaluations demonstrated that their method consistently outperformed previous state-of-the-art models,
underscoring the value of structural modeling in biomedical relation extraction.
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Duan et al. [14] tackled the challenge of sequential sentence classification in biomedical literature
by proposing the boundary-aware dual biaffine model. Their innovative approach effectively leveraged
document structural information, enabling precise detection of sentence boundaries and relationships. This
method notably reduced classification errors, particularly in complex biomedical documents characterized by
intricate sentence sequences and relationships.

Finally, Wang et al. [15] provided a comprehensive survey on the use of pre-trained language
models (PLMs) in biomedical applications. They categorized the existing biomedical PLMs and discussed
their applications in various tasks, noting both the advancements and limitations in the field. This survey
emphasized the importance of cross-disciplinary collaboration to drive further innovation in biomedical
NLP.

3. RESEARCH METHOD

This section outlines the methodology employed to develop and evaluate the hybrid model used for
segmenting and classifying biomedical research paper abstracts. The model integrates BERT for contextual
learning and LSTM for sequential learning to enhance the readability and segmentation of these abstracts.
We utilized the PubMed 200k RCT dataset as a benchmark, focusing on a subset of 500,000 sentences to
ensure computational efficiency while maintaining robust model performance. The model was trained using
Google Colab’s A100 GPU, adhering to constraints of resource availability and computational efficiency. In
this section, we detail the dataset, model architecture, training procedure, and evaluation metrics used to
assess the performance of the hybrid model.

3.1. Dataset

The dataset used in this study is the PubMed 200k RCT dataset, a large-scale resource designed for
sequential sentence classification in biomedical abstracts. It comprises approximately 200,000 randomized
controlled trial abstracts, totaling 2.3 million sentences. Each sentence is labeled with one of five predefined
categories: background, objective, method, result, or conclusion. This dataset was released to address two
key challenges: the lack of large-scale datasets for sequential short-text classification and the need for better
tools to help researchers efficiently navigate lengthy biomedical abstracts.

For the purposes of this research, a subset of 500,000 sentences was sampled from the dataset to
balance computational efficiency and model performance. Specifically, 22.61% of the original dataset was
selected for training, which resulted in 500,102 samples in the training set and 29,493 samples in the test set.
Each sample includes the following fields:

— Text: The sentence from the abstract.

— Chars: A character-level representation of the sentence.

— Order: The sequential position of the sentence within the abstract.
— Label: The sentence's category (one of the five predefined classes).

To preprocess the data, we employed a dual-level tokenization strategy, transforming the sentences
at both the word and character levels. Character-level tokenization was achieved using a TextVectorization
layer, configured with a custom vocabulary consisting of digits, punctuation marks, and ASCII characters.
This approach captures the finer granularity of sentence structure, ensuring that every individual character
contributes to the model's understanding of the input.

For word-level tokenization, the vocabulary was derived from a cleaned version of the dataset,
where punctuation and unnecessary symbols were systematically removed to standardize the text [16], [17].
The resulting sequences of words were padded to align with the 95™ percentile of sentence lengths,
optimizing computational efficiency by setting a practical input length threshold. This careful approach
ensured longer sentences were effectively accommodated without losing essential semantic information.

Label preprocessing involved converting categorical labels into numerical values through the use of
a LabelEncoder, facilitating efficient computational handling. Subsequently, these numerical values were
transformed via one-hot encoding, making them suitable for the multi-class classification task [18].
Consequently, this structured labeling approach enabled the model to classify each sentence accurately into
one of the five predefined categories: background, objective, method, result, or conclusion.

The dataset was then split into training, validation, and test sets, with an 80/20 division between
training and validation. This balanced split facilitated effective training and model tuning while preserving
a portion of the data for unbiased evaluation. This preprocessing framework laid the foundation for the
efficient training of the hybrid BERT-LSTM model, which is detailed in the following section.
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3.2. Model architecture

The proposed model integrates both contextual and sequential learning to effectively classify
sentences from biomedical abstracts. This hybrid architecture combines the strengths of BERT for contextual
embedding and LSTM for sequential understanding. In addition, it incorporates sentence order information to
further improve classification performance.

3.2.1. BERT encoder for contextual learning

The core of the model is the BERT encoder, a state-of-the-art model known for its ability to capture
deep contextual relationships in text [19]. For this research, we use the pre-trained "bert base en_uncased"
model, which is fine-tuned on the biomedical text dataset to adapt it to domain-specific language [20]. The
BERT tokenizer and preprocessor are initialized with a sequence length of 256 tokens, ensuring that
sentences are truncated or padded to a consistent length [21], [22]. The BERT encoder takes as input the
tokenized sentence x; = {X;1, X;2, ..., Xin}, Where x;; represents the j ™ token in the i*" sentence. The BERT
model generates a deep contextual embedding:

hyor = BERT(x;) € R%r (1)

where dy. is the dimensionality of the BERT embedding space (768 in the base model). The pooled output
from the BERT encoder, hy., is passed through a fully connected dense layer:

hdense = ReLU(Wl hbert + bl) (2)

where W, € Rddne X dbr and b; € Rddne are the learnable weights and biases of the dense layer. We apply
L2 regularization to prevent overfitting, followed by a dropout layer to further improve generalization.

3.2.2. LSTM for sequential learning

In parallel with BERT’s contextual embedding, the model incorporates an LSTM network to capture
word-level sequential dependencies [23], [24]. The sentence x; is first tokenized into words, which are then
embedded into a 128-dimensional vector space using an embedding layer:

Eyorq = Embedding(x;) € Rn X debd ?3)

where n is the number of words in the sentence and d.g,.q = 128 is the dimensionality of the word
embedding space. The embedded sequence is processed by the LSTM layer to capture temporal
dependencies:

hlstm = LSTM(EWOrd) € Rdh (4)

where d|,, = 32 represents the hidden state size of the LSTM. This captures sequential patterns that are not
explicitly modeled by the BERT encoder. The LSTM output is passed through a fully connected dense layer
with 16 units:

hlstm_dense = ReLU(WZ hlstm + bz) (5)

A dropout layer with a rate of 0.5 is applied to prevent overfitting during training. This component focuses on
capturing sequential relationships between words [25], [26], providing a complementary view to BERT's
contextual embeddings.

3.2.3. Incorporating sentence order information
The order in which sentences appear within an abstract is critical for understanding their role in the
overall narrative. To leverage this, the sentence’s position o; is fed into a simple dense network:

horder = ReLU(W3Oi + b3) (6)
where o; is a scalar representing the sentence order, and W; € Rdodr X 1, b3 € Rdodr are the weights and

biases of the fully connected layer. This encoding provides additional insight into the function of the sentence
based on its position in the abstract.
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3.2.4. Fusion of features
The outputs from the BERT encoder, LSTM, and order processing layers are concatenated to create
a unified representation of the sentence:

hconcat = [hdense' hlstmﬁdense' horder] (7)

This combined vector gy, € R% is then passed through a fully connected dense layer with 8 units and a
ReLU activation function [27]:

hﬁnal = ReLU(W4hconcat + b4) (8)

To reduce overfitting, a dropout layer with a rate of 0.2 is added. Finally, a SoftMax layer [28] is applied to
produce the probability distribution p € R® over the five sentence categories:

p = Softmax(Wshgna + bs) )

where p; represents the probability that the sentence belongs to category i.

Figure 1 provides a detailed breakdown of the model’s architecture, outlining the various layers,
their respective output shapes, and the number of parameters associated with each. Directly following the
table, Figure 2 offers a visual representation of the model's structure. The architecture consists of three main
components: the BERT encoder for capturing contextual information, the LSTM layer for modeling word-
level sequences, and the dense layers processing sentence order information. These components are
combined to form a comprehensive feature representation, which is then passed through fully connected
layers for final classification. The model contains over 109 million trainable parameters, ensuring flexibility
and capacity for learning complex patterns in biomedical text.

Layer (type) output Shape Param # | Connected to
token_input (InputLayer) ( ) 0| -
text_vectorizer ( , 54) 0 | token_input[e][e]

(TextVectorization)

sentence_input ( ) 0| -
(InputLayer)

word_embedding ( » 54, 128) 3,456 | text_vectorizer[o][e]

(Embedding)

not_equal (MNotEqual) ( » 54) 0 | text vectorizer[8][0]

bert_text_classifier_pre.. | [( , 256), ( s 0 | sentence_input[e][e]

(BertTextClassifierPrepr.. | 256), ( , 256)]

lstm (LSTM) ( » 32) 20,608 | word_embedding[e][e],
not_equal[e][e]

order_input (InputLayer) ( , 1) 0| -

bert_encoder [( , 768), ( B 109,482,240 | bert_text classifier ..

(BertBackbone) 256, 768)] bert_text classifier ..
bert_text classifier ..

dense (Dense) ( , 16) 528 | lstm[e][@]

dense_2 (Dense) ( y 32) 64 | order_input[e][e]

dense 1 (Dense) ( » 32) 24,608 | bert_encoder[o][@]

dropout_12 (Dropout) ( , 16) 0 | dense[@][@]

dense_3 (Dense) ( » 16) 528 | dense_2[@][®]

dropout_13 (Dropout) ( » 32) o | dense_1[@][e]

concatenate (Concatenate) | ( , 64) 0 | dropout_12[e][e],
dense_3[@][e],
dropout_13[e][@]

fcltotal (Dense) ( » 8) 520 | concatenate[@][@]

dropout_14 (Dropout) ( , 8) 0 | fcltotal[e][e]

output (Dense) ( » 5) 45 | dropout_14[e][e]

Figure 1. Model summary and detailed breakdown of architecture
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token input (InputLayer)

text_vect
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torizer (TexIVeriori/aiion)
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s shape: (None, 32) | Ouapust shape: (None, 16) Input shape: (None, 1) | Cuput srape: (None, 32) Infu shane: (None, 768) | Outpue shape: (None, 32)
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dropout 13 (Dropout)

ez shape: (None, 16) | Ouopust shape: (None, 16) | | Input shape: (None, 32) | Outrus sheew: (None, 16) .2 shape: (None, 32) | Ousput enape: (None, 32)

| Ingut snaos: [(None, 16), (None, 16), (None, 32)] | Cutput sape: (None, 64)
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dropout_14 {Dropout)

output (Dense)

Figure 2. Architecture of the proposed hybrid model

3.3. Training procedure

To train the hybrid model, the dataset was split into training and validation sets, with 80% used for
training and 20% for validation. The inputs included tokenized sentence text for both word-level and
contextual-level embedding (using BERT) as well as sentence order information. These components were
essential for feeding into the BERT encoder, LSTM, and order model layers, respectively.

3.3.1. Optimizer and loss function

The model was compiled using the Adam optimizer [29], with a learning rate of 2 X 107>, This
small learning rate was selected to balance fast convergence and stable training. The model’s performance
was optimized using categorical crossentropy, the standard loss function for multi-class classification tasks
[30]. This function is defined as:

L =—X%i,yilog(p) (10)
where y; is the true label (one-hot encoded), and p; is the predicted probability for each class.

3.3.2. Learning rate scheduler

To further optimize the learning process, a custom learning rate scheduler was used. For the first
three epochs, the learning rate was kept constant, but after the third epoch, the learning rate was reduced by a
factor of e™%1 at each epoch. This dynamic adjustment helped fine-tune the model as it approached
convergence, slowing down learning to avoid overshooting optimal weights [31], [32]. The learning rate
scheduler is defined as:

Ir_scheduler(epoch,Ir) = if epoch < 3 thenIrelselr - 701 (11)

This approach ensured that the model learned more aggressively in the initial epochs while gradually refining
the weights as training progressed.

3.3.3. Callbacks
To ensure the model did not overfit and to speed up convergence, two key callbacks were employed:
— Early stopping: This callback monitored the validation accuracy and stopped training if there was no
improvement for 3 consecutive epochs. The best weights were restored after training, ensuring that the
model used the parameters from the epoch that yielded the highest validation accuracy.
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— Learning rate scheduler: The custom learning rate scheduler described above dynamically adjusted the
learning rate based on the training epoch.

3.3.4. Training configuration

The model was trained for 10 epochs, with a batch size of 16. This relatively small batch size
allowed the model to effectively capture the complex relationships in the data without overwhelming
memory. The training input consisted of:
— Sentence text: Passed to both the token and sentence models.
— Sentence order: Passed to the order model.
Training was performed on a Google Colab A100 GPU, leveraging the GPU's high computational power to
speed up training and manage the resource-intensive nature of BERT fine-tuning.

3.4. Evaluation metrics

After training, the model was evaluated on the test set to assess its performance. The evaluation
focused on measuring key metrics that demonstrate the model’s accuracy, precision, recall, and F1-score,
providing a comprehensive view of its classification performance [33], [34]. This thorough assessment
ensures the reliability and generalizability of the proposed model in handling various biomedical abstracts.

3.4.1. Test inputs
The test set consisted of 29,493 sentences, which were processed in the same way as the training
and validation data. The model took as input:
— Sentence text: Tokenized and passed to both the BERT encoder and LSTM layers.
— Sentence order: A float value indicating the order of each sentence in the abstract.

3.4.2. Evaluation process and performance metrics
To evaluate the model, we build a custom function adapted to our hybrid model. This function
computes the model's predictions by applying the SoftMax output to derive class probabilities and then
selecting the class with the highest probability using argmax. These predictions were then compared against
the true labels from the test set to compute the following metrics:
— Accuracy: The proportion of correct predictions out of all predictions. It provides a high-level measure of
how well the model classified the sentences:

Correct Predictions
Accuracy = ————

(12)

Total Predictions

— Precision (Micro-Averaged): Precision measures how many of the predicted positive instances were
correct, and is calculated as:

.. True Positives
Precision = — — (13)
True Positives+False Positives

Micro-averaging computes this metric by aggregating contributions from all classes.

— Recall (Micro-Averaged): Recall measures how many of the actual positive instances were correctly
identified by the model. It is defined as:

True Positives

Recall =

(14)

True Positives+False Negatives

— Fl-score (Micro-Averaged): The Fl-score is the harmonic mean of precision and recall, providing a
balanced measure that considers both false positives and false negatives:

Fl=2. Precision-Recall (15)

Precision+Recall

4. RESULTS AND DISCUSSION

The performance of the proposed hybrid model was evaluated on the test set, and the results
demonstrate a strong ability to classify sentences from biomedical abstracts into their respective categories.
The evaluation metrics including accuracy, precision, recall, and F1-score indicate that the model effectively
captures both contextual and sequential information in the text. The model achieved an overall accuracy of
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88.42%, with a precision, recall, and Fl-score of 88.42% across all categories, reflecting a balanced
performance across different evaluation dimensions and highlighting the model's ability to correctly classify
the sentences while maintaining a high degree of precision and recall.

The training and validation loss of the model showed consistent improvement over seven epochs, as
illustrated in Figure 3. The training loss decreased from 1.14 to 0.41, while the validation loss followed a
similar pattern, reducing from 0.50 to 0.39, with minor fluctuations toward the end. This convergence of both
losses indicates that the model was effectively learning the patterns from the data without overfitting,
maintaining stability throughout training. The total training time for this process was approximately
534.47 minutes (~8.9 hours), significantly reduced using a Google Colab A100 GPU, making the training
efficient given the model's complexity and the size of the dataset.

As shown in Table 1, the model demonstrated strong performance in the 'Methods' and 'Conclusions'
categories, with Fl-scores of 93.56% and 88.79%, respectively, highlighting its ability to effectively
differentiate these well-defined sections of biomedical abstracts. However, its performance in the
'Background' and 'Objective' categories was comparatively lower, with F1-scores of 74.03% and 70.47%,
reflecting challenges in distinguishing these sections. The weighted averages for precision, recall, and
Fl-score 88.53%, 88.42%, and 88.45%, respectively underscore the model’s overall effectiveness in
managing class imbalance within the dataset.

Training and Validation Loss over Epochs

—®— Training Loss
114 Validation Loss

1.0 4

0.9

0.8

Loss

0.7 4

0.6 1

0.59

0.4+

0.3

Epochs

Figure 3. Training and validation loss over epochs

Table 1. Classification performance by category
Accuracy  Recall  F1 Score Support

Background 0.7221 0.7593  0.7402 2663
Conclusions 0.8661 09108  0.8879 4426
Methods 0.9361 0.9350  0.9356 9751
Objective 0.7134 0.6963  0.7047 2377
Results 0.9273 0.9005  0.9137 10276
Accuracy 0.8842 29493

Weighted Avg 0.8853 0.8842  0.8845 29493

The results indicate that the hybrid model, which combines BERT's contextual embeddings with
LSTM's ability to capture sequential dependencies, is highly effective for multi-class sentence classification
in biomedical abstracts. The high accuracy and balanced precision and recall across most categories
demonstrate the model's robustness and generalization capability. The exceptional performance in the
'Methods' and 'Results' categories can be attributed to the distinct language and structure typically found in
these sections, which the model could learn effectively.

The lower performance in the 'Background' and 'Objective' categories suggests that these sections
may contain more nuanced language or share similarities with other sections, making them harder to classify.
This overlap could be due to the introductory nature of these sections, where background information often
sets the stage for the objectives of the study. Future work could focus on enhancing the model's ability to
distinguish between these overlapping categories by incorporating additional linguistic features or leveraging
domain-specific knowledge.
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Moreover, the consistent decrease in training and validation loss over the epochs without significant
fluctuations indicates that the model did not overfit and can generalize well to unseen data. This trend
underscores the robustness of the training procedure and the stability of the model’s architecture. The
substantial training time further highlights the computational intensity of training such deep learning models;
however, the use of high-performance computing resources like GPUs significantly alleviates this challenge.

In conclusion, the hybrid model demonstrates strong potential for automating the classification of
sentences in biomedical literature, thereby facilitating more efficient information retrieval and knowledge
extraction. Future enhancements could further improve the model’s performance, particularly in challenging
categories, making it an even more valuable tool for biomedical researchers and practitioners. Ongoing
refinements to the model’s architecture and optimization strategies may yield even more robust and scalable
solutions in the long term.

5. CONCLUSION

In this study, we introduced a hybrid model that combines BERT for contextual learning, LSTM for
sequential processing, and sentence order information to classify sentences in biomedical abstracts. The
model achieved strong performance on the PubMed 200k RCT dataset, with an overall accuracy of 88.42%
and balanced precision, recall, and F1-score across categories. It excelled in classifying methods and results
sections, though further improvements could be made in distinguishing background and objective sentences.
By effectively integrating both contextual and sequential information, our model demonstrates its potential
for improving the readability and segmentation of complex biomedical texts. The use of fine-tuning, learning
rate scheduling, and early stopping contributed to the model's convergence and stability, ensuring robust
generalization to unseen data. This hybrid approach offers a valuable tool for enhancing the automatic
processing of biomedical literature, enabling more efficient information retrieval for researchers. Future work
could explore further refinements in classification accuracy, particularly in overlapping categories, and the
integration of additional techniques such as attention mechanisms to enhance performance.
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