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 Classification of sentences in biomedical abstracts into predefined categories 

is essential for enhancing readability and facilitating information retrieval in 

scientific literature. We propose a novel hybrid model that integrates 

bidirectional encoder representations from transformers (BERT) for 

contextual learning, long short-term memory (LSTM) for sequential 

processing, and sentence order information to classify sentences from 

biomedical abstracts. Utilizing the PubMed 200k randomized controlled trial 

(RCT) dataset, our model achieved an overall accuracy of 88.42%, 

demonstrating strong performance in identifying methods and results 

sections while maintaining balanced precision, recall, and F1-scores across 

all categories. This hybrid approach effectively captures both contextual and 

sequential patterns of biomedical text, offering a robust solution for 

improving the segmentation of scientific abstracts. The model's design 

promotes stability and generalization, making it an effective tool for 

automatic text classification and information retrieval in biomedical 

research. These results underscore the model's efficacy in handling 

overlapping categories and its significant contribution to advancing 

biomedical text analysis. 
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1. INTRODUCTION 

The surge in biomedical literature has made it increasingly difficult to extract valuable information 

efficiently from scientific papers. As the volume of biomedical research continues to grow, many abstracts 

are densely written, making them challenging to navigate and interpret [1], [2]. This issue is compounded by 

the absence of structured semantic frameworks in these abstracts, which hinders effective data retrieval and 

comprehension. While a variety of natural language processing (NLP) models have been developed to 

address these challenges [3]–[5], existing approaches often struggle to balance the demands of contextual 

understanding and sequential information within the text. 

To address these challenges, this research introduces a novel hybrid model that integrates the 

strengths of bidirectional encoder representations from transformers (BERT) for contextual learning and long 

short-term memory (LSTM) for sequential learning. This combination aims to effectively segment and 

classify biomedical research paper abstracts, optimizing their readability while preserving essential 
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information. The model leverages the robust contextual understanding capabilities of BERT and the 

sequential dependencies captured by LSTM, offering a more nuanced approach to text segmentation in 

biomedical literature. 

This study builds upon the PubMed 200k RCT dataset, a widely used resource for sentence 

classification in medical abstracts [6]. While the original dataset comprises 2.3 million phrases from 200,000 

randomized controlled trial abstracts, we have selected a subset of 500,000 sentences to train our model. 

Each sentence in this dataset is mapped to one of five predefined categories: background, objective, method, 

result, or conclusion, providing a structured framework for training and evaluation. 

Our research leverages the computational capabilities of the Google Colab A100 GPU to efficiently 

train and fine-tune the hybrid model within real-world resource constraints. By harnessing both contextual 

and sequential features, this approach effectively enhances the readability and accessibility of scientific 

abstracts. Additionally, the method maintains computational efficiency, ensuring that the hybrid model 

remains viable for practical applications. 

The primary objective of this work is to bridge gaps in current NLP approaches by offering a hybrid 

model that excels in understanding context while preserving the logical flow of biomedical text. This model 

improves the segmentation of biomedical abstracts by accurately dissecting their structural and semantic 

components. Furthermore, it aims to set a new standard for readability and comprehension within the field of 

biomedical research. 

 

 

2. LITERATURE REVIEW 

 Biomedical text classification has seen significant advancements, particularly with the integration of 

machine learning and deep learning models. Rios and Kavuluru [7] (convolutional neural networks (CNNs) 

for biomedical text classification) demonstrated the effectiveness of CNNs in assigning medical subject 

headings (MeSH) to biomedical articles, outperforming traditional methods like logistic regression and 

support vector machines by improving macro F-scores. This work emphasized the advantages of CNNs in 

handling large feature spaces and complex biomedical text structures. 

On the other hand, Dramé et al. [8] explored a k-nearest neighbors (kNN) based and explicit 

semantic analysis (ESA) based approach for large-scale biomedical text classification. Their kNN approach, 

combined with random forest (RF), achieved competitive performance with an F-measure of 0.55, while their 

ESA method underperformed. Their study highlighted the ongoing challenge of using partial information to 

classify documents in the biomedical domain. 

In a broader review of biomedical text mining, Cohen [9] summarized the current progress in 

applying text mining techniques to tasks like named entity recognition, text classification, and hypothesis 

generation. They highlighted substantial advancements in computational methodologies and algorithms, 

enabling more effective extraction of meaningful patterns from biomedical texts. However, they noted that 

despite these advancements, considerable challenges persist, particularly in improving system usability for 

biomedical researchers and enhancing access to full-text articles, which are critical barriers limiting 

widespread adoption and practical utility of biomedical text mining tools.  

Mondal introduced biomedical BERT-based adversarial example generation (BBAEG) [10], a novel 

adversarial example generation technique specifically for biomedical text classification. By leveraging 

BERT-masked language model (MLM) predictions and synonym replacement for biomedical entities, 

BBAEG demonstrated the potential of generating robust adversarial attacks that could expose vulnerabilities 

in current biomedical NLP models, highlighting the need for more resilient predictive systems. Further 

advancements in biomedical multi-label classification were explored by Zhang et al. [11], who introduced a 

multi-layer self-attention mechanism combined with BERT to enhance classification accuracy. Their model 

outperformed baselines in aspect category detection and biomedical document classification, showcasing the 

utility of self-attention for capturing complex dependencies in biomedical texts. 

Neumann et al. [12] contributed significantly to the field with ScispaCy, a specialized Python library 

built upon spaCy, optimized specifically for processing biomedical texts. ScispaCy provides fast, scalable 

models achieving near-state-of-the-art performance across multiple biomedical NLP tasks, such as named 

entity recognition and parsing. Consequently, it serves as a robust and highly accessible tool, facilitating 

wider adoption among biomedical researchers and practitioners. 

Document-level biomedical relation extraction was systematically addressed by Yuan et al. [13] 

through the introduction of the HTGRS framework, which employs hierarchical tree graphs and a dedicated 

relation segmentation module. Their framework strategically models interactions between entity pairs, 

significantly enhancing the accuracy of predicting relations across multiple biomedical entities. Experimental 

evaluations demonstrated that their method consistently outperformed previous state-of-the-art models, 

underscoring the value of structural modeling in biomedical relation extraction. 
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Duan et al. [14] tackled the challenge of sequential sentence classification in biomedical literature 

by proposing the boundary-aware dual biaffine model. Their innovative approach effectively leveraged 

document structural information, enabling precise detection of sentence boundaries and relationships. This 

method notably reduced classification errors, particularly in complex biomedical documents characterized by 

intricate sentence sequences and relationships. 

Finally, Wang et al. [15] provided a comprehensive survey on the use of pre-trained language 

models (PLMs) in biomedical applications. They categorized the existing biomedical PLMs and discussed 

their applications in various tasks, noting both the advancements and limitations in the field. This survey 

emphasized the importance of cross-disciplinary collaboration to drive further innovation in biomedical 

NLP. 

 

 

3. RESEARCH METHOD 

This section outlines the methodology employed to develop and evaluate the hybrid model used for 

segmenting and classifying biomedical research paper abstracts. The model integrates BERT for contextual 

learning and LSTM for sequential learning to enhance the readability and segmentation of these abstracts. 

We utilized the PubMed 200k RCT dataset as a benchmark, focusing on a subset of 500,000 sentences to 

ensure computational efficiency while maintaining robust model performance. The model was trained using 

Google Colab’s A100 GPU, adhering to constraints of resource availability and computational efficiency. In 

this section, we detail the dataset, model architecture, training procedure, and evaluation metrics used to 

assess the performance of the hybrid model. 

 

3.1.  Dataset 

The dataset used in this study is the PubMed 200k RCT dataset, a large-scale resource designed for 

sequential sentence classification in biomedical abstracts. It comprises approximately 200,000 randomized 

controlled trial abstracts, totaling 2.3 million sentences. Each sentence is labeled with one of five predefined 

categories: background, objective, method, result, or conclusion. This dataset was released to address two 

key challenges: the lack of large-scale datasets for sequential short-text classification and the need for better 

tools to help researchers efficiently navigate lengthy biomedical abstracts. 

For the purposes of this research, a subset of 500,000 sentences was sampled from the dataset to 

balance computational efficiency and model performance. Specifically, 22.61% of the original dataset was 

selected for training, which resulted in 500,102 samples in the training set and 29,493 samples in the test set. 

Each sample includes the following fields: 

− Text: The sentence from the abstract. 

− Chars: A character-level representation of the sentence. 

− Order: The sequential position of the sentence within the abstract. 

− Label: The sentence's category (one of the five predefined classes). 

To preprocess the data, we employed a dual-level tokenization strategy, transforming the sentences 

at both the word and character levels. Character-level tokenization was achieved using a TextVectorization 

layer, configured with a custom vocabulary consisting of digits, punctuation marks, and ASCII characters. 

This approach captures the finer granularity of sentence structure, ensuring that every individual character 

contributes to the model's understanding of the input. 

For word-level tokenization, the vocabulary was derived from a cleaned version of the dataset, 

where punctuation and unnecessary symbols were systematically removed to standardize the text [16], [17]. 

The resulting sequences of words were padded to align with the 95th percentile of sentence lengths, 

optimizing computational efficiency by setting a practical input length threshold. This careful approach 

ensured longer sentences were effectively accommodated without losing essential semantic information. 

Label preprocessing involved converting categorical labels into numerical values through the use of 

a LabelEncoder, facilitating efficient computational handling. Subsequently, these numerical values were 

transformed via one-hot encoding, making them suitable for the multi-class classification task [18]. 

Consequently, this structured labeling approach enabled the model to classify each sentence accurately into 

one of the five predefined categories: background, objective, method, result, or conclusion. 

The dataset was then split into training, validation, and test sets, with an 80/20 division between 

training and validation. This balanced split facilitated effective training and model tuning while preserving 

a portion of the data for unbiased evaluation. This preprocessing framework laid the foundation for the 

efficient training of the hybrid BERT-LSTM model, which is detailed in the following section. 
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3.2.  Model architecture 

The proposed model integrates both contextual and sequential learning to effectively classify 

sentences from biomedical abstracts. This hybrid architecture combines the strengths of BERT for contextual 

embedding and LSTM for sequential understanding. In addition, it incorporates sentence order information to 

further improve classification performance. 

 

3.2.1. BERT encoder for contextual learning 

The core of the model is the BERT encoder, a state-of-the-art model known for its ability to capture 

deep contextual relationships in text [19]. For this research, we use the pre-trained "bert_base_en_uncased" 

model, which is fine-tuned on the biomedical text dataset to adapt it to domain-specific language [20]. The 

BERT tokenizer and preprocessor are initialized with a sequence length of 256 tokens, ensuring that 

sentences are truncated or padded to a consistent length [21], [22]. The BERT encoder takes as input the 

tokenized sentence 𝑥𝑖 = {𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛}, where 𝑥𝑖𝑗  represents the 𝑗-th token in the 𝑖-th sentence. The BERT 

model generates a deep contextual embedding: 

 

ℎbert = BERT(𝑥𝑖) ∈ 𝑅𝑑br   (1) 

 

where 𝑑bert is the dimensionality of the BERT embedding space (768 in the base model). The pooled output 

from the BERT encoder, ℎbert, is passed through a fully connected dense layer: 

 

ℎdense = ReLU(𝑊1ℎbert + 𝑏1)  (2) 

 

where 𝑊1 ∈ 𝑅𝑑dne × 𝑑br and 𝑏1 ∈ 𝑅𝑑dne are the learnable weights and biases of the dense layer. We apply 

L2 regularization to prevent overfitting, followed by a dropout layer to further improve generalization. 

 

3.2.2. LSTM for sequential learning 

In parallel with BERT’s contextual embedding, the model incorporates an LSTM network to capture 

word-level sequential dependencies [23], [24]. The sentence 𝑥𝑖 is first tokenized into words, which are then 

embedded into a 128-dimensional vector space using an embedding layer: 

 

𝐸word = Embedding(𝑥𝑖) ∈ 𝑅𝑛 × 𝑑ebd  (3) 

 

where 𝑛 is the number of words in the sentence and 𝑑embed = 128 is the dimensionality of the word 

embedding space. The embedded sequence is processed by the LSTM layer to capture temporal 

dependencies: 

 

ℎlstm = LSTM(𝐸word) ∈ 𝑅𝑑lt  (4) 

 

where 𝑑lstm = 32 represents the hidden state size of the LSTM. This captures sequential patterns that are not 

explicitly modeled by the BERT encoder. The LSTM output is passed through a fully connected dense layer 

with 16 units: 

 

ℎlstm_dense = ReLU(𝑊2ℎlstm + 𝑏2)  (5) 

 

A dropout layer with a rate of 0.5 is applied to prevent overfitting during training. This component focuses on 

capturing sequential relationships between words [25], [26], providing a complementary view to BERT's 

contextual embeddings. 

 

3.2.3. Incorporating sentence order information 

The order in which sentences appear within an abstract is critical for understanding their role in the 

overall narrative. To leverage this, the sentence’s position 𝑜𝑖  is fed into a simple dense network: 

 

ℎorder = ReLU(𝑊3𝑜𝑖 + 𝑏3)  (6) 

 

where 𝑜𝑖  is a scalar representing the sentence order, and 𝑊3 ∈ 𝑅𝑑odr × 𝟙,  𝑏3 ∈ 𝑅𝑑odr are the weights and 

biases of the fully connected layer. This encoding provides additional insight into the function of the sentence 

based on its position in the abstract. 
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3.2.4. Fusion of features 

The outputs from the BERT encoder, LSTM, and order processing layers are concatenated to create 

a unified representation of the sentence: 

 

ℎconcat = [ℎdense, ℎlstm_dense, ℎorder]  (7) 

 

This combined vector ℎconcat ∈ 𝑅𝑑cna is then passed through a fully connected dense layer with 8 units and a 

ReLU activation function [27]: 

 

ℎfinal = ReLU(𝑊4ℎconcat + 𝑏4)  (8) 

 

To reduce overfitting, a dropout layer with a rate of 0.2 is added. Finally, a SoftMax layer [28] is applied to 

produce the probability distribution 𝑝 ∈ 𝑅𝟝 over the five sentence categories: 

 

𝑝 = Softmax(𝑊5ℎfinal + 𝑏5)  (9) 

 

where 𝑝𝑖  represents the probability that the sentence belongs to category 𝑖. 
Figure 1 provides a detailed breakdown of the model’s architecture, outlining the various layers, 

their respective output shapes, and the number of parameters associated with each. Directly following the 

table, Figure 2 offers a visual representation of the model's structure. The architecture consists of three main 

components: the BERT encoder for capturing contextual information, the LSTM layer for modeling word-

level sequences, and the dense layers processing sentence order information. These components are 

combined to form a comprehensive feature representation, which is then passed through fully connected 

layers for final classification. The model contains over 109 million trainable parameters, ensuring flexibility 

and capacity for learning complex patterns in biomedical text. 

 

 

 
 

Figure 1. Model summary and detailed breakdown of architecture 
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Figure 2. Architecture of the proposed hybrid model 
 

 

3.3.  Training procedure 

 To train the hybrid model, the dataset was split into training and validation sets, with 80% used for 

training and 20% for validation. The inputs included tokenized sentence text for both word-level and 

contextual-level embedding (using BERT) as well as sentence order information. These components were 

essential for feeding into the BERT encoder, LSTM, and order model layers, respectively. 
 

3.3.1. Optimizer and loss function 

  The model was compiled using the Adam optimizer [29], with a learning rate of 2 × 10−5. This 

small learning rate was selected to balance fast convergence and stable training. The model’s performance 

was optimized using categorical crossentropy, the standard loss function for multi-class classification tasks 

[30]. This function is defined as: 
 

𝐿 = − ∑ 𝑦𝑖
5
𝑖=1 log(𝑝𝑖) (10) 

 

where 𝑦𝑖 is the true label (one-hot encoded), and 𝑝𝑖  is the predicted probability for each class. 

 

3.3.2. Learning rate scheduler 

 To further optimize the learning process, a custom learning rate scheduler was used. For the first 

three epochs, the learning rate was kept constant, but after the third epoch, the learning rate was reduced by a 

factor of 𝑒−0.1 at each epoch. This dynamic adjustment helped fine-tune the model as it approached 

convergence, slowing down learning to avoid overshooting optimal weights [31], [32]. The learning rate 

scheduler is defined as: 
 

lr_scheduler(epoch,lr) = if epoch < 3 then lr else lr ⋅ 𝑒−0.1  (11) 
 

This approach ensured that the model learned more aggressively in the initial epochs while gradually refining 

the weights as training progressed. 
 

3.3.3. Callbacks 

 To ensure the model did not overfit and to speed up convergence, two key callbacks were employed: 

− Early stopping: This callback monitored the validation accuracy and stopped training if there was no 

improvement for 3 consecutive epochs. The best weights were restored after training, ensuring that the 

model used the parameters from the epoch that yielded the highest validation accuracy. 
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− Learning rate scheduler: The custom learning rate scheduler described above dynamically adjusted the 

learning rate based on the training epoch. 

 

3.3.4. Training configuration 

 The model was trained for 10 epochs, with a batch size of 16. This relatively small batch size 

allowed the model to effectively capture the complex relationships in the data without overwhelming 

memory. The training input consisted of: 

− Sentence text: Passed to both the token and sentence models. 

− Sentence order: Passed to the order model. 

Training was performed on a Google Colab A100 GPU, leveraging the GPU's high computational power to 

speed up training and manage the resource-intensive nature of BERT fine-tuning. 

 

3.4.  Evaluation metrics 

After training, the model was evaluated on the test set to assess its performance. The evaluation 

focused on measuring key metrics that demonstrate the model’s accuracy, precision, recall, and F1-score, 

providing a comprehensive view of its classification performance [33], [34]. This thorough assessment 

ensures the reliability and generalizability of the proposed model in handling various biomedical abstracts. 
 

3.4.1. Test inputs 

The test set consisted of 29,493 sentences, which were processed in the same way as the training 

and validation data. The model took as input: 

− Sentence text: Tokenized and passed to both the BERT encoder and LSTM layers. 

− Sentence order: A float value indicating the order of each sentence in the abstract. 

 

3.4.2. Evaluation process and performance metrics 

To evaluate the model, we build a custom function adapted to our hybrid model. This function 

computes the model's predictions by applying the SoftMax output to derive class probabilities and then 

selecting the class with the highest probability using argmax. These predictions were then compared against 

the true labels from the test set to compute the following metrics:  

− Accuracy: The proportion of correct predictions out of all predictions. It provides a high-level measure of 

how well the model classified the sentences: 

 

Accuracy =
Correct Predictions

Total Predictions
 (12) 

 

− Precision (Micro-Averaged): Precision measures how many of the predicted positive instances were 

correct, and is calculated as: 

 

Precision =
True Positives

True Positives+False Positives
  (13) 

 

Micro-averaging computes this metric by aggregating contributions from all classes. 

− Recall (Micro-Averaged): Recall measures how many of the actual positive instances were correctly 

identified by the model. It is defined as: 
 

Recall =
True Positives

True Positives+False Negatives
  (14) 

 

− F1-score (Micro-Averaged): The F1-score is the harmonic mean of precision and recall, providing a 

balanced measure that considers both false positives and false negatives: 

 

F1 = 2 ⋅
Precision⋅Recall

Precision+Recall
  (15) 

 

 

4. RESULTS AND DISCUSSION 

The performance of the proposed hybrid model was evaluated on the test set, and the results 

demonstrate a strong ability to classify sentences from biomedical abstracts into their respective categories. 

The evaluation metrics including accuracy, precision, recall, and F1-score indicate that the model effectively 

captures both contextual and sequential information in the text. The model achieved an overall accuracy of 
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88.42%, with a precision, recall, and F1-score of 88.42% across all categories, reflecting a balanced 

performance across different evaluation dimensions and highlighting the model's ability to correctly classify 

the sentences while maintaining a high degree of precision and recall. 

The training and validation loss of the model showed consistent improvement over seven epochs, as 

illustrated in Figure 3. The training loss decreased from 1.14 to 0.41, while the validation loss followed a 

similar pattern, reducing from 0.50 to 0.39, with minor fluctuations toward the end. This convergence of both 

losses indicates that the model was effectively learning the patterns from the data without overfitting, 

maintaining stability throughout training. The total training time for this process was approximately  

534.47 minutes (~8.9 hours), significantly reduced using a Google Colab A100 GPU, making the training 

efficient given the model's complexity and the size of the dataset. 

As shown in Table 1, the model demonstrated strong performance in the 'Methods' and 'Conclusions' 

categories, with F1-scores of 93.56% and 88.79%, respectively, highlighting its ability to effectively 

differentiate these well-defined sections of biomedical abstracts. However, its performance in the 

'Background' and 'Objective' categories was comparatively lower, with F1-scores of 74.03% and 70.47%, 

reflecting challenges in distinguishing these sections. The weighted averages for precision, recall, and  

F1-score 88.53%, 88.42%, and 88.45%, respectively underscore the model’s overall effectiveness in 

managing class imbalance within the dataset. 

 

 

 
 

Figure 3. Training and validation loss over epochs 

 

 

Table 1. Classification performance by category 
 Accuracy Recall F1 Score Support 

Background 0.7221 0.7593 0.7402 2663 

Conclusions 0.8661 0.9108 0.8879 4426 
Methods 0.9361 0.9350 0.9356 9751 

Objective 0.7134 0.6963 0.7047 2377 

Results 0.9273 0.9005 0.9137 10276 

Accuracy - - 0.8842 29493 

Weighted Avg 0.8853 0.8842 0.8845 29493 

 

 

The results indicate that the hybrid model, which combines BERT's contextual embeddings with 

LSTM's ability to capture sequential dependencies, is highly effective for multi-class sentence classification 

in biomedical abstracts. The high accuracy and balanced precision and recall across most categories 

demonstrate the model's robustness and generalization capability. The exceptional performance in the 

'Methods' and 'Results' categories can be attributed to the distinct language and structure typically found in 

these sections, which the model could learn effectively. 

The lower performance in the 'Background' and 'Objective' categories suggests that these sections 

may contain more nuanced language or share similarities with other sections, making them harder to classify. 

This overlap could be due to the introductory nature of these sections, where background information often 

sets the stage for the objectives of the study. Future work could focus on enhancing the model's ability to 

distinguish between these overlapping categories by incorporating additional linguistic features or leveraging 

domain-specific knowledge. 
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Moreover, the consistent decrease in training and validation loss over the epochs without significant 

fluctuations indicates that the model did not overfit and can generalize well to unseen data. This trend 

underscores the robustness of the training procedure and the stability of the model’s architecture. The 

substantial training time further highlights the computational intensity of training such deep learning models; 

however, the use of high-performance computing resources like GPUs significantly alleviates this challenge. 

In conclusion, the hybrid model demonstrates strong potential for automating the classification of 

sentences in biomedical literature, thereby facilitating more efficient information retrieval and knowledge 

extraction. Future enhancements could further improve the model’s performance, particularly in challenging 

categories, making it an even more valuable tool for biomedical researchers and practitioners. Ongoing 

refinements to the model’s architecture and optimization strategies may yield even more robust and scalable 

solutions in the long term. 

 

 

5. CONCLUSION 

In this study, we introduced a hybrid model that combines BERT for contextual learning, LSTM for 

sequential processing, and sentence order information to classify sentences in biomedical abstracts. The 

model achieved strong performance on the PubMed 200k RCT dataset, with an overall accuracy of 88.42% 

and balanced precision, recall, and F1-score across categories. It excelled in classifying methods and results 

sections, though further improvements could be made in distinguishing background and objective sentences. 

By effectively integrating both contextual and sequential information, our model demonstrates its potential 

for improving the readability and segmentation of complex biomedical texts. The use of fine-tuning, learning 

rate scheduling, and early stopping contributed to the model's convergence and stability, ensuring robust 

generalization to unseen data. This hybrid approach offers a valuable tool for enhancing the automatic 

processing of biomedical literature, enabling more efficient information retrieval for researchers. Future work 

could explore further refinements in classification accuracy, particularly in overlapping categories, and the 

integration of additional techniques such as attention mechanisms to enhance performance. 
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