International Journal of Electrical and Computer Engineering (IJECE)
Vol. 15, No. 6, December 2025, pp. 5827~5836
ISSN: 2088-8708, DOI: 10.11591/ijece.v15i6.pp5827-5836 O 5827

Identification types of plant using convolutional neural network

Radityo Hendratmojo Jati Notonegoro, Hustinawaty
Department of Information System Management, Universitas Gunadarma, Depok, Indonesia

Article Info

ABSTRACT

Article history:

Received Sep 25, 2024
Revised Jul 14, 2025
Accepted Sep 14, 2025

Artificial intelligence can be implemented in fields that related to
environmental education by providing knowledge for taxonomy which
recognize and identify plant species based on its features. The variety of plant
species that inhabit in a certain area allows many plant species to be found
that look similar so that difficult to distinguish and recognize a particular

plant. Convolutional neural network (CNN) often used in object detection,
you only look once (YOLO), one of CNN’s object detections, could identify
object in real time and obtained good performance and accuracy in several
Convolutional neural network researched. However, no studies have ever identified a plant from its flowers,
Identification leaves, and fruits. Therefore, the main object of this paper is identified types
Plant of plant with CNN (YOLOvVS). The YOLOv8 model with 0.01 learning rate,
Real time 32 batch size, stochastic gradient descent (SGD) optimizer obtained highest
You only look once precision of 69.62% and F1 score of 61.22%, recall of 54.73%, mAP50 and
mAP50 — 90 on the training data of 57.61% and 42.49%.
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1. INTRODUCTION

Artificial intelligence (AI) can significantly reduce human errors and save time and energy by
handling simple tasks efficiently. In the field of environmental education, Al can also play a key role—
particularly in taxonomy—by helping to identify and classify plant species based on their characteristics.
Given the wide variety of plant species in a specific region, many of which appear quite similar, Al can assist
in accurately distinguishing between them. This capability supports the conservation of endangered species
and enhances our understanding of unique, endemic plants that exist only in certain areas. Additionally, Al
can help identify edible and non-edible plants, as well as medicinal plants and economically valuable forest
species. This knowledge can contribute to sustainable resource management and improve the commercial
value of these plants. In agriculture, Al is useful for monitoring crop growth at every stage, enabling more
sustainable and optimized harvests.

Object detection is an image classification-based task that requires bounding boxes as markers and
identifies input images into appropriate categories [1]. The use of object detection to identify certain plants in
real time can make it easier to recognize a type of plant. Convolutional neural network (CNN) often used to
object detection, there are two types of detection algorithm, two stages and one stage. Two stages has
dedicated module for generating region proposals, module firstly identifies a variable number of object
proposals within an image, then the module classifying and localizing those proposals on second stage, like
regions with CNN (RCNN), while one stage, like you only look once (YOLO), provides object classification
and bounding boxes directly using a single feed forward fully convolutional neural network and key points of
different scales and aspect ratios to identify objects. This design offers advantages over two-stage detectors in
terms of real-time performance and simplicity [2]—[4].
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YOLO models could implemented in many things: real time detection for ginger shoot and seeds
[5], detection robots for picking mangos fruits in real time [6] and tomatoes for detecting ripe (mature),
unriped (immature), semi mature, and diseased fruits [7], [8], disease detection on tomato leaf [9], [10], jute
(Corchorus olitorius or Corchorus capsularis) disease from leaves and stem and pests (Jute Hairy
Caterpillar and Comophila sabulifers) [11], tea leaf disease (blight) and pest (Apolygus lucorum) [12],
determine which plant is healthy and has disease on soybean (Glycine max), okra (Abelmoschus esculentus),
and maize (Zea mays) leaves [13], white grape fruit real time counting and bunch detection for grape yield
decrease time estimation [14], Counting leaves of Arabidopsis plant (Arabidopsis thaliana) [15]. Based on
research by Khan ef al. [16] work on real time weeds detection in potato (Solanum tuberosum) crops using
YOLOV4-tiny, the adopted model get 49.4% accuracy on very limited dataset. Abozar et al. [17] detect the
damaged of the sugar beet (Beta vulgaris) roots by mechanical stress during harvesting using YOLOvV4, the
method be able to detect the damage with recall 92%, precision 94%, and F1 score 93% (better performance).
Research from Yao ef al. [18] detect the defect in kiwifruit using YOLOVS, the model reached 94.7% of
mAPS50. Another disease detector for tomato fruit with comparing method using obtained mAP Faster RCNN
(80.8%), SSD (76.7%), and YOLO version 4, 5, 7, 8 (88.4%, 91.2%, 91.6%, 91.9%) [19], the rice and cotton
disease using Fast RCNN, YOLO v7, YOLOv8 get mAP values (49.33%, 61.80%, 66.47%) for rice and
(76.88%, 78.36%, 79.56%) for cotton [20].

YOLO version 8 (YOLOVS) was chosen because it has advantages: not using anchor boxes,
reducing the number of prediction boxes, and accelerating non maximum impression [21]. This version of the
YOLO model is considered more effective because it has an updated feature map and convolutional network
[22], uses a task aligned assigner that computes a task alignment task matric using regression coordinates and
the classification scores, combine with the value of intersection over union (IoU), allows localization and
classification optimization simultaneously while suppressing prediction boxes which have low quality [23].
Many research in identifying plant using YOLO model implemented for detect and identify the diseases and
crop damages in real time, but implementation YOLO model with version 8 for identifying plant based on the
flowers, leaves, and fruits has not been carried out in the recognition of an object. The objective of this study
is identifying types of plant with YOLOvVS8 model based on its features.

2. METHOD

In this research, the process of creating the model for plant species identification involves several
key steps, as outlined in the main framework shown in Figure 1. The first step is to collect a diverse set of
image data that accurately represents the plant species under study. Once the data is gathered, the next stage
involves preprocessing, which includes resizing the images to a uniform size, annotating them to label the
plant species, and applying data augmentation techniques to increase the dataset's variability. After
preprocessing, the data is split into three distinct sets: a training set, a validation set, and a test set. The
training and validation sets are used to train and fine-tune the model, while the test set is used to evaluate its
performance. Roboflow is employed to manage the data and assist in model development, and the training
and evaluation of the identification model are carried out using Google Collab, providing a flexible
environment for deep learning tasks.
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Figure 1. Main workflow
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2.1. Data collection

The image data used as training, validation, and validation was collected from Kaggle
(https://www.kaggle.com), Global Biodiversity Information Facility (GBIF) (https://www.gbif.org), and
Roboflow universe (https://universe.roboflow.com) websites as many as 2,526 images with specifications of
640x640 pixels in JPEG and JPG formats. Data collected in the form of pictures of flowers, fruits, or leaves
from 25 different plant species, such as: adam hawa ungu (Tradescantia pallida), anggrek (Orchidaceae
spp.), heliconia (Heliconia latispatha), jengger ayam (Celosia argentea), kembang sepatu (Hibiscus rosa
sinensi), kencana ungu (Ruellia simplex), marigold (Tagetes spp.), bunga matahari (Helianthus spp.), kana
(Canna spp.), thunbergia (Thunbergia laurifolia), bunga telang (Clitoria ternatea), bunga patrakomala
(Caesalpinia pulcherrima), cabai (Capsium annum), daun bawang (Allium fistulosum), kembang bokor
(Hydrangea macrophylla), kemuning (Murraya paniculata), lidah mertua (Sansevieria trifasciata), miana
(Coleus scutellarioides), pacar air (Impatiens balsamina), pucuk merah (Syzygium myrtifolium), puring
(Codiaeum variegatum), sawi (Brassica spp.), selada (Lactuca sativa), sri rezeki (Aglaonema spp.), tomat
(Solanum lycopersicum). One of sample picture representing each type of plant collected in Figure 2.

Daun Bawang

Pacar Air

Patrakomala

Figure 2. Types of plant sample

2.2. Preprocessing
The collected image data, which initially varies in pixel sizes, is resized to a standard resolution of
640x640 pixels to ensure consistency across the dataset. After resizing, the images are labeled and annotated
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with bound box around the object according to specific plant features such as the flower, leaf, and fruit to
facilitate accurate classification, as shown in Figure 3. To enhance the robustness of the model and improve
its generalization ability, data augmentation techniques are applied. These techniques include horizontal and
vertical flipping, 90° rotations in both clockwise and counter-clockwise directions, as well as upside-down
rotations. Additional augmentations such as varying the saturation between -50% and +50%, adjusting the
brightness between -20% and +20%, and modifying exposure between -15% and +15% help simulate
different environmental conditions. Furthermore, a blur effect of up to 1.5 px is applied to random images in
the training set. These augmentation methods significantly increase the dataset size by generating up to
4,206 images, as shown in Figures 4(a) to 4(m), reducing the risk of overfitting by ensuring the model is
exposed to a diverse range of image variations [24]. This also helps address class imbalances by artificially
increasing the representation of underrepresented classes in the dataset, improving the model’s ability to
generalize across different plant types [25].

Leaf and Flower Fruits Leaf and Fruits

Figure 3. Annotated and labeled the kemuning (Murraya paniculata) with bounding box

() w0 0) k) o m

Figure 4. Augmented image, (a) original, (b) flip (vertical), (c) flip (horizontal), (d) 90° rotations (clockwise),
(e) 90° rotations (counter clockwise), (f) 90° rotations (upside down), (g) saturation (50%), (h) saturation
(+50%), (i) brightness (darken: -20%), (j) brightness (brighten: +20%), (k) exposure (-15%),

(1) exposure (+15%), and (m) blur 1.5 px

2.3. Train

The dataset contains 25 classes: adam hawa ungu (101 images), anggrek (100 images), heliconia
(100 images), jengger ayam (102 images), kembang sepatu (100 images), kencana ungu (98 images),
marigold (98 images), bunga matahari (100 images), kana (105 images), thunbergia (101 images), bunga
telang (114 images), bunga patrakomala (102 images), cabai (102 images), daun bawang (109 images),
kembang bokor (100 images), kemuning (101 images), lidah mertua (99 images), miana (97 images), pacar
air (102 images), pucuk merah (88 images), puring (100 images), sawi (103 images), selada (104 images), sri
rezeki (100 images), tomat (100 images), and allocated as shown in Table 1 split into: 80% of the data is for
training the model, 10% is for validating the model and the remaining 10% is for testing the model. To
enhance the robustness and generalization capability of the model, data augmentation techniques were
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applied prior to the training phase. These augmented and pre-processed images were then used to train the
YOLOvV8 model under various experimental settings, using combinations of the stochastic gradient descent
(SGD) and Adam optimizers, batch sizes of 16 and 32, learning rates of 0.01 and 0.001, and training
durations of 25, 50, 75, and 100 epochs. These variations were designed to explore and identify the most
optimal set of parameters for accurate and efficient plant classification. The training process was conducted
on Google Colab, utilizing a cloud-based environment equipped with an NVIDIA Tesla T4 GPU, running on
CUDA version 12.0, and supported by 16 GB of memory. This hardware setup ensured sufficient
computational power for handling high-resolution image data and large model architectures, while also
accelerating training times across all experimental configurations. The details of the dataset allocation for
training, validation, and testing purposes are comprehensively presented in Table 1, which serves as a
reference for understanding the data distribution used throughout the model development process.

Table 1. Dataset allocation

Dataset Train  Validation Testing
Types of plant 3660 423 423

2.4. Evaluate

The results of the model training get precision, recall, as well as the accuracy of the mean average
precision (mAP)50 and mAP50-90. The precision value measures the YOLOv8 model's prediction of
positive instances correctly, recall measures the identification of the YOLOvVS model against positive
instances, the F1 score is the average balance between precision and sensitivity, the F1 score is useful when
the method has low sensitivity but high precision or high sensitivity but low precision [26], measure the
classifier performance comprehensively [27], and a high F1 score indicates the model more robust [28], mAP
calculates average precision against sensitivity values in the range 0-1 [29], compares performance between
detectors [3], assesses the models of object detection performance across multiple categories [30], and
provides model summary [31]. mAP50 expresses average precision at the IoU threshold of 50% and
mAP50-90 expresses the average precision at the IoU threshold of 50% to 90% [10]. IoU calculate the
quantification similarity of predicted bounding box (k,) and ground truth bounding box (k) [32], IoU values
that exceed a certain threshold, can be considered to produce true positive detection results [33], and objects
that exceed IoU value of 50% can be classified as detected [34]. Average prediction (AP) value is needed to
compute mAP [35]. The equations of precision [36], recall [37], F1 score [38] and mAP are formulated in (1)
through (6).

TP

precision (P) = P (1)
recall (R) = TPT_:DFN (2)
FLscore = 22l st ®
loU = Lo “)
AP = [} P(R)dR ©))
mAP = %Z?’zlAPi (6)

In the evaluation of the YOLOvV8 model's performance, several key metrics were used to interpret
the accuracy and reliability of object detection and classification. True positive (TP) refers to instances where
the model correctly identifies and classifies a specific plant object, and the predicted bounding box overlaps
significantly with the ground truth. False positive (FP) occurs when the model correctly classifies an object
but the predicted bounding box does not correspond to any actual object, leading to a mismatch. Conversely,
False negative (FN) indicates that the model fails to detect or correctly classify a plant object that is present
in the image. N denotes the number of object categories being detected, while AP; represents the average
precision (AP) for the i-th category, reflecting how well the model performs per class.

The performance outcomes are further visualized using a series of evaluation graphs. The box loss
metric evaluates how accurately the predicted bounding boxes align with the true locations of the objects,
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serving as an indicator of localization performance. Classification loss (CLS loss) reflects how well the
model distinguishes between different plant categories, highlighting its classification accuracy. The
distribution focal loss (DFL loss) is particularly useful in scenarios involving class imbalance, as it helps
refine predictions for categories that are underrepresented in the dataset. Additional metrics include accuracy,
precision, and recall, which collectively describe the model's overall correctness and completeness in
detection. The mean average precision (mAP) is reported at both mAP50) and mAP50-90, providing a more
nuanced understanding of the model's robustness.

3.  RESULTS AND DISCUSSION

The YOLOvV8 model was trained through eight different experiments, each using a unique
combination of hyperparameters such as learning rate, batch size, and optimizer settings, all conducted over
100 epochs. The outcomes of these experiments were evaluated using key performance metrics including
precision, recall, F1 score, mean average precision at IoU thresholds of 0.50 (mAP50), and 0.50 to 0.95
(mAP50-90), with the summarized results presented in Table 2. In addition to the tabulated metrics, Table 2
also includes evaluation graphs illustrating the trends of box loss, classification loss (CLS loss), and
distribution focal loss (DFL loss), as well as curves depicting the evolution of accuracy, precision, recall, and
both mAP50 and mAP50-90 over the course of the training epochs. Furthermore, the table provides
information on the total time required for each experiment, enabling a comprehensive comparison of training
efficiency and model performance under different parameter settings.

Table 2. Precision, recall, F1 score, mAP50, and mAP50-90 values

Learning Batch Optimizer Precision Recall F1 mAP50 mAP50-90 Time
rate Size (%) (%) (%) (%) (%)
0.01 16 SGD 63.11 53.44 57.88 56.35 41.14 125m 23s
0.01 16 Adam 65.17 51.53 57.48 53.44 37.22 125m 31s
0.01 32 SGD 69.62 54.73 61.22 57.61 42.49 123m 40s
0.01 32 Adam 56.23 52.76 54.30 52.86 37.20 125m 34s
0.001 16 SGD 55.61 57.17 56.44 55.49 39.71 113m 8s
0.001 16 Adam 60.07 58.59 59.28 58.97 43.55 114m 59s
0.001 32 SGD 62.24 58.99 60.64 55.94 39.85 110m 44s
0.001 32 Adam 63.89 53.85 58.52 57.53 42.05 111m 12s

The result in Figure 5 shows the train box loss decreasing trend over the training epochs, indicating
that the model is learning to predict more accurate bounding boxes as training progresses. It seems to plateau
towards the end, suggesting convergence. Also, the train class loss exhibits a decreasing trend, implying that
the model is improving its ability to classify objects correctly during training. It also appears to be
converging. Follows a similar decreasing pattern, the train DFL loss suggesting that the model is becoming
better at predicting the precise distribution of bounding box coordinates. Generally, increases over training,
the train precision indicating that the model is making fewer false positive bounding box predictions as it
learns. It fluctuates, which is common during training. Shows an increasing trend initially on train recall,
meaning the model is learning to detect more of the actual objects present. It seems to plateau or slightly
decrease towards the end, which could be a sign of overfitting if the validation recall doesn't follow the same
trend. The validation box loss decreases initially on but then seems to stabilize and might even slightly
increase or fluctuate in the later epochs. This suggests that the model's ability to generalize its bounding box
predictions on unseen data might have plateaued or started to slightly degrade. Decreases in the early stages
but then plateaus and shows some fluctuations on validation class loss. This indicates that the classification
performance on unseen data is no longer significantly improving. Similar to the box loss, the validation DFL
loss shows an initial decrease followed by stabilization and some fluctuations. Increases significantly in the
beginning and then starts to plateau. This suggests that the overall detection performance at a 50% IoU
threshold on the validation set has reached a certain level and is no longer improving much. Shows a similar
trend to mAP50 but with generally lower values, as expected due to the stricter IoU thresholds. The
plateauing indicates that the model's ability to precisely localize objects on unseen data is also not improving
significantly. Overall, the model on training phase losses is generally decreasing, indicating that the model is
learning on the training data. However, the validation phase losses and mAP metrics have plateaued,
suggesting that the model might have reached its optimal performance on the unseen data or is starting to
overfit to the training data. Figure 6 shows the confusion matrix of 0.01 learning rate, 32 batch size, and SGD
optimizer.
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Figure 5. Model result of 0.01 learning rate, 32 batch size, and SGD optimizer
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Figure 6. The confusion matrix of 0.01 learning rate, 32 batch size, and SGD optimizer

4. CONCLUSION

The YOLOv8 model with 0.01 learning rate, 32 batch size, SGD optimizer obtained highest
precision of 69.62% and F1 score of 61.22%, recall of 54.73%, mAP50 and mAP50 — 90 on the training data
of 57.61% and 42.49% for 123m 40s. The confusion matrix indicates the proportion of predictions for each
actual class. The numbers outside the main diagonal clearly indicate classification errors. The main errors of
the model lie in the difficulty of distinguishing between plants and the background, as well as confusion
between certain plant classes, this because most of images collected in dataset have many objects complexity
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at background. the high valued classes, Sawi and Selada, those images do not have much object at
background so the model could easily recognize the object. Besides, the label also using other parts like,
flower, leaves, and fruits of the plants and not all of the type in dataset have those parts. In future, the
collected data should reduce the image background to avoid data complexity, gather more image data and
augmentation to avoid overfitting, and adjusting model hyperparameter such as learning rate and optimizer to
prevent underfitting and instability in training process.
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