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 Effective disease control requires the early identification and diagnosis of 

plant diseases, especially those affecting tomato leaves. A crucial stage in 

this process is segmenting images of diseased leaves, but this can be difficult 

because of the uneven shapes, varied sizes, vibrant colors, and frequently 

blurry borders of the affected portions, in addition to the messy 

backgrounds. We propose a deep learning-based strategy based on the U-Net 

architecture for addressing these issues, enabling precise segmentation and 

timely identification of tomato leaf diseases. With a DICE score of 0.93 and 

an accuracy of 93% in identifying healthy from diseased locations, this 

technique shows promise in helping farmers carry out focused interventions. 

Furthermore, the ResNet18 model has good levels of specificity, sensitivity, 

and accuracy when used to classify early and late blight. These outcomes 

highlight the way our suggested models perform in actual agricultural 

environments. Subsequent research endeavors will center on augmenting the 

model's generalizability in various agricultural settings and investigating 

multi-modal imaging methodologies. It is also intended for the advancement 

of mobile applications and edge computing to enable real-time disease 

monitoring and sustainable farming methods worldwide. 
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1. INTRODUCTION 

One of the most important crops in the world in terms of economic impact is the tomato (Solanum 

Lycopersicon), which adds vital nutrients and tastes to a wide range of diets. Tomato plants are prone to a 

number of illnesses, though, and this can negatively affect growers' profits, productivity, and quality. Tomato 

mosaic virus, powdery mildew, early and late blight, bacterial spot, and tomato blight are among the common 

diseases that harm tomato leaves [1]–[3]. The signs of these diseases include lesions, spots, discoloration, 

wilting, and deformities on the leaves. Eventually, these conditions result in a decrease in photosynthetic 

capability and hampered fruit development [4]–[7]. Early detection and management of these diseases are 

paramount for maintaining the health and productivity of tomato crops. Timely intervention strategies, such 

as targeted pesticide application, crop rotation, and resistant cultivar selection, can mitigate the spread and 

severity of diseases, thereby minimizing yield losses and ensuring food security. 

In recent years, advancements in artificial intelligence, particularly deep learning, have 

revolutionized various fields, including computer vision and agriculture. Deep learning techniques, especially 

https://creativecommons.org/licenses/by-sa/4.0/
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convolutional neural networks (CNNs), have shown remarkable performance in image recognition, object 

detection, and semantic segmentation tasks. Semantic segmentation, a pixel-level classification method, 

assigns each pixel in an image to a specific class label, enabling detailed understanding and analysis of visual 

data [8]–[16]. 

Among CNN-based architectures, U-Net has emerged as a powerful tool for semantic segmentation 

tasks, particularly in biomedical imaging and agricultural applications. The U-Net architecture comprises an 

encoder-decoder framework with symmetric contracting and expansive pathways, featuring skip connections 

that bridge corresponding layers of the encoder and decoder. This design facilitates the propagation of high-

resolution feature maps from the encoder to the decoder, enabling precise localization and segmentation of 

objects in images [17], [18]. 

Deep residual learning is used by ResNet18, a residual network (ResNet) architectural variation, to 

help in the training of extremely deep neural networks. It uses residual blocks and has eighteen layers, 

including convolutional, pooling, and fully connected layers. A shortcut link that skips one or more levels 

and a set of convolutional layers are present in every residual block. By permitting gradients to pass straight 

through the network, this shortcut, also known as a skip link, solves the vanishing gradient issue and 

preserves signal strength while enhancing training effectiveness. The architecture’s ability to maintain 

performance in deep networks without degradation is primarily attributed to these residual connections, 

enabling ResNet18 to achieve high accuracy on complex image recognition tasks while remaining 

computationally efficient [19]–[25]. 

Our approach achieves great precision and accuracy by accurately segmenting fatigued regions in 

tomato leaf images using a U-Net architecture. It ensures high specificity and sensitivity by classifying early 

and late blight using the ResNet18 model. This method improves sustainable farming practices by helping 

farmers treat diseases in a timely and focused manner. 

 

 

2. METHOD 

2.1.   Dataset 
The dataset used, comprises images of tomato leaves exhibiting various disease symptoms. A total 

of 2809 images were collected, capturing a diverse range of disease manifestations, including lesions, spots, 

discoloration, and deformities. These images were obtained from a Kaggle challenge. Each image in the 

dataset is accompanied by a corresponding ground truth mask delineating the unhealthy regions on the 

tomato leaves. These masks were manually annotated. The annotation process involved meticulous 

inspection and labeling of disease symptoms, ensuring comprehensive coverage of all affected regions. 

For training the segmentation model, 2,809 images from the dataset were utilized, with their 

respective ground truth masks serving as the target labels for supervised learning. The training dataset 

includes a balanced distribution of images containing different disease types and severity levels, accounting 

for robust model training and generalization. To evaluate the performance of the segmentation model, a 

separate test set consisting of 100 images was curated. These test images were selected to encompass a wide 

range of disease scenarios encountered in practical agricultural settings, including common diseases such as 

bacterial spot, early blight and late blight. The corresponding ground truth masks for the test set were also 

provided to assess the model's accuracy and generalization capabilities on unseen data. 

The dataset undergoes preprocessing steps to ensure consistency and compatibility with the 

segmentation model. This includes resizing all images to a uniform resolution of 256×256 pixels, 

normalization to standardize pixel intensity values, and augmentation techniques such as random rotations, 

flips, and scaling to enhance the diversity of training samples and improve model robustness. The dataset 

utilized for classification of blight in this study is categorized into two distinct classes, early blight and late 

blight, consisting of 929 images of early blight and 1,780 images of late blight. To facilitate robust 

evaluation, a test set was meticulously curated, comprising 100 images, with an equal representation of 50 

images from each class. Also in this study evaluation, a carefully selected test set data for both potato and 

maize leaves were also used. 

 

2.2.  Network architecture  

 The deep learning architecture used in this study is the standard U-Net, a convolutional neural 

network specifically designed for semantic segmentation tasks. U-Net architecture captures contextual 

information while preserving spatial details. The U-Net architecture comprises an encoder-decoder 

framework with skip connections, as shown in Figure 1. 

The encoder route is made up of a series of convolutional and pooling layers that minimize spatial 

dimensions while capturing hierarchical characteristics. Repaired linear unit (ReLU) activation functions trail 

each convolutional layer, enabling non-linear transformations. The decoder route, which consists of up-
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convolutional layers to gradually regain spatial resolution, symmetrically mirrors the encoder. By creating 

skip links between the encoder and decoder's appropriate layers, feature maps may flow directly across 

different resolution levels. These skip connections are essential for enabling accurate object localization and 

segmentation by fusing the encoder's high-resolution feature maps with the decoder's low-resolution feature 

maps. In the context of U-Net architecture, “copy and crop” refers to the process of copying, cropping, and 

concatenating feature maps from the contracting (down sampling) path with feature maps from the expanding 

(up sampling) path. By preserving spatial information and combining high-level data from later layers with 

low-level characteristics from earlier layers, this improves segmentation accuracy. 

 

 

 
 

Figure1. U-Net architecture 

 

 

To fine-tune and localize the segmented objects, the concatenated feature maps go through further 

convolutional processes and activation functions at each decoding phase. While dropout layers may be 

inserted to reduce overfitting and enhance model generalization, batch normalization layers are included 

throughout the network to stabilize and speed up the training process. 

The last layer in the U-Net architecture creates pixel-wise probability maps by using a sigmoid 

activation function to show how likely it is that each pixel is part of the target class (e.g., healthy or sick 

patches on tomato leaves). Through training, the model compares the predicted probability maps with the 

ground truth masks in order to learn how to minimize a predetermined loss function, such as DICE loss was 

calculated using (1) and (2) as depicted below. 

 

𝐿 = −
1

𝑛
∑ (𝑦𝑖 log(𝑧𝑖) + (1 −  𝑦𝑖) log (1 − 𝑧𝑖))

𝑛

𝑖=1
   (1) 

 

Where n is the number of pixels, 𝑦𝑖  is the ground truth label for pixel I (0 or 1 for binary segmentation), 𝑧𝑖 is 

the predicted probability for pixel i. 

 

𝐿 = 1 −
∑ 𝑦𝑖 𝑧𝑖

𝑛
𝑖=1

∑ 𝑦𝑖 + ∑ 𝑧𝑖
𝑛
𝑖=1

𝑛
𝑖=1

    (2) 

 

Where 𝑦𝑖  is the ground truth for pixel 𝑖, 𝑧𝑖 is the predicted value for pixel 𝑖. 
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Figure 2 representation of the ResNet18 architecture shows its 18 layers-convolutional, pooling, and 

fully linked layers-arranged into a sequence of residual blocks. In ResNet18, each residual block is composed 

of two convolutional layers, batch normalization, and a ReLU activation function. The identity shortcut 

connections that allow the input to bypass one or more levels and be added directly to the output are what 

make these blocks special. Because the gradients may travel through the identity connections directly during 

backpropagation, this bypassing method substantially mitigates the vanishing gradient problem. This 

preserves the signal intensity and makes it easier to train even deeper networks. 

 

 

 
 

Figure 2. ResNet18 architecture for classifying blight 

 

 

The architecture is structured as follows: the initial layer is a 7×7 convolutional layer with 64 filters 

and a stride of 2, followed by a 3×3 max-pooling layer with a stride of 2. Subsequently, there are four stages, 

each containing two residual blocks. The first stage includes two blocks with 64 filters, the second stage has 

two blocks with 128 filters, the third stage contains two blocks with 256 filters, and the fourth stage consists 

of two blocks with 512 filters. To decrease the spatial dimensions of the feature maps, the initial convolution 

in the residual block has a stride of 2 in phases where the number of filters rises. A fully linked layer with 

SoftMax activation for classification and a global average pooling layer complete the network. The SoftMax 

activation function is used for the classification tasks in this study in order to differentiate between early and 

late blight in tomato leaves. SoftMax is used to transform the output logits into probability distributions so 

that the model can forecast the class with the highest probability. 

This residual learning framework allows ResNet18 to maintain high performance even with 

increased depth, as the residual connections provide a direct path for the gradient flow, thus enhancing the 

convergence rate and accuracy of the model. These architectural advances are utilized in this study's 

application of ResNet18 to provide effective and precise picture classification, with a specific focus on 

differentiating between early and late blight in plant photos. The network is a good fit for this challenging 

classification task because of its resilience and feature extraction effectiveness. 

 

2.3.  Training methods  

The U-Net model was trained for 100 epochs. During training, the DICE loss function was 

employed as the loss function. The DICE loss quantifies the similarity between predicted and ground truth 

segmentation masks, guiding the model towards precise segmentation of diseased areas on tomato leaves. To 

optimize the model parameters, the Adam optimizer was used.  

50 epochs were used to train the ResNet model. The loss function that was employed was binary 

cross entropy loss. Starting in the 40th epoch, early stopping was instituted. The 35th period produced the best 

model. Although this optimized model was initially trained on tomato leaves, its effectiveness was 

subsequently assessed on the potato and maize leaf datasets. 

 

 

3. RESULTS 

Figure 3 shows the evolution of the loss curve over 100 training epochs, illustrating the U-Net 

segmentation model's training process for tomato leaf disease detection. The loss function steadily decreases 

as the loss curve displays the distinctive “L” shape, which is consistent with the general trend seen during 

deep learning model training as shown in Figure 3. The DICE score and accuracy are the assessment metrics 

that are used to evaluate the segmentation model's performance. These measurements shed insight into how 

well the algorithm distinguishes sick areas on tomato leaves. 
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Figure 3. Loss curve 

 

 

Table 1 summarizes the segmentation model's accuracy, which was 92.5%, and its DICE score, 

which was 0.93. While the DICE score measures the overlap between the anticipated and ground truth masks, 

offering a reliable indicator of segmentation accuracy, the accuracy metric shows the proportion of properly 

identified pixels in the segmentation masks. 

 

 

Table 1. Performance metrics for Tomato dataset 
Metric Value 

Accuracy 92.5% 

DICE score 0.93 

 

 

A test set of 100 images, equally represented by 50 images from each class, was used to assess the 

ResNet18 model's effectiveness in differentiating between early and late blight. The sensitivity, specificity, 

and accuracy of the model's predictions were assessed, and for each of the three datasets, a confusion matrix 

and receiver operating characteristic (ROC) curve were used to visualize the results. The confusion matrix, 

depicted in Figure 4, summarizes the classification outcomes. The model correctly identified 47 out of 50 

early blight cases and 48 out of 50 late blight cases from Tomato leaf dataset. The confusion matrix, depicted 

in Figure 5(a), summarizes the classification outcomes. The model correctly identified 44 out of 50 early 

blight cases and 45 out of 50 late blight cases from Potato leaf dataset. The confusion matrix, depicted in 

Figure 5(b), summarizes the classification outcomes. The model correctly identified 41 out of 50 early blight 

cases and 42 out of 50 late blight cases from Maize leaf dataset.  

The sensitivity and specificity, or true positive and true negative rates, were computed from the 

confusion matrix. 96% of real late blight instances were found to be successfully detected, which is known as 

the sensitivity. 94% of true early blight cases were successfully recognized, according to the specificity. 

Using the Tomato Leaf dataset, the model's overall accuracy-which is measured as the percentage of properly 

identified occurrences among all instances-was 95%. The accuracy, specificity, and sensitivity for three 

distinct datasets are shown in Figure 6.  

The ROC curve for Tomato leaf dataset, shown in Figure 7, illustrates the model's diagnostic ability. 

AUC was calculated to be 0.95, indicating a high level of discriminative power between the two classes. The 

ROC curve demonstrates that the model performs consistently well across various threshold levels. 
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Figure 4. Confusion matrix for early blight and late blight Tomato dataset 

 

 

  
(a) (b) 

 

Figure 5. Confusion matrix for early blight and late blight for (a) Potato dataset and (b) Maize dataset 

 

 

 
 

Figure 6. Sensitivity, specificity and accuracy plots for various leaf datasets 
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Figure 7. AUC and ROC curve 
 

 

4. DISCUSSION 

The utilization of the U-Net architecture in this study has showed promising outcomes for early 

detection and precise mapping of tomato leaf diseases. With an accuracy of 92.5% and a DICE score of 0.93, 

the model effectively distinguished between healthy and diseased regions, demonstrating its potential to aid 

farmers in implementing targeted intervention strategies. This application of deep learning-based 

segmentation techniques holds significant implications for sustainable agriculture, empowering farmers with 

timely information to optimize resource utilization and mitigate yield losses.  

The assessment findings show that the ResNet18 model performs well across three datasets: tomato, 

potato, and maize leaves, for both the early blight and late blight classification tasks. With respect to the tomato 

leaf dataset, the model achieved a 95% accuracy rate by accurately identifying 47 out of 50 early blight photos 

and 48 out of 50 late blight images. This high accuracy rate shows that the model can generalize effectively to 

new, unobserved data, which makes it a useful tool for real-world plant disease detection applications. The 

model's ability to accurately identify cases of late blight, which is essential to stopping the spread of this more 

aggressive blight type, is demonstrated by its sensitivity of 0.96. Similarly, the specificity of 0.94 demonstrates 

the model's effectiveness in accurately detecting early blight, thereby reducing false positives and ensuring that 

healthy plants are not mistakenly treated for late blight. The ROC curve and the corresponding AUC of 0.95 

further corroborate the model's excellent discriminative capabilities. The ROC curve illustrates that the 

ResNet18 model maintains a high true positive rate while keeping the false positive rate low across different 

threshold settings, which is essential for making reliable predictions in varying operational scenarios. 

Similar results were obtained for the potato leaf dataset, where the model achieved an accuracy of 

89% by accurately identifying 44 out of 50 early blight photos and 45 out of 50 late blight images. The ROC 

AUC of 0.89 for this dataset also shows the sensitivity and specificity, suggesting strong performance in 

differentiating between early and late blight. Because of its great accuracy, the model may also be trusted to 

identify potato leaf blight, hence assisting disease control initiatives. For the maize leaf dataset, the model 

correctly identified 41 out of 50 early blight images and 42 out of 50 late blight images, achieving an 

accuracy of 83%. The ROC AUC of 0.83, while slightly lower than the other datasets, still signifies a solid 

performance in differentiating between the types of blight. The model’s consistent performance across 

different crops showcases its versatility and robustness in plant disease detection, making it a valuable asset 

for agricultural disease management. 

These results underscore the model's overall reliability and effectiveness, demonstrating its potential 

for broad application in agricultural disease detection and management. Moving forward, future research 

endeavors could explore avenues to enhance model generalization across diverse agricultural contexts and 

integrate multi-modal imaging techniques for comprehensive disease diagnosis. The adoption of these 

technologies could be further accelerated by efforts to develop mobile and edge computing solutions for in-

the-field real-time disease monitoring (such as drone-based monitoring systems), which would ultimately 

strengthen and sustain agricultural systems across the globe.  
 

 

5. CONCLUSION  

This work demonstrates the effectiveness of deep learning models in early detection and 

categorization of tomato, potato, and maize leaf diseases. Precise identification of afflicted locations was 
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made possible by the U-Net architecture's excellent accuracy and DICE scores. Impressive sensitivity, 

specificity, and overall accuracy were demonstrated by the ResNet18 model in its classification of early and 

late blight across all three datasets. For tomato leaves, the model achieved 95% accuracy, with a sensitivity of 

0.96 and specificity of 0.94. For potato leaves, the model resulted in 89% accuracy and an ROC AUC of 

0.89. About maize leaves, the model's accuracy was 83%, and its ROC AUC was 0.83. These findings 

demonstrate how these models, which offer accurate and dependable disease detection and classification for 

many crops, might enhance agricultural disease control strategies. Future research should concentrate on 

enhancing model generalization across various crops and using cutting-edge imaging techniques to further 

maximize real-time, in-field disease monitoring and intervention. 
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