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Spectrum sensing (SS) is essential for cognitive radio (CR) networks to
enable secondary users to opportunistically access unused spectrum without
interfering with primary users. This article proposes a novel multi-user
detection (MUD) and square-law combining (SLC) framework for SS in
multiple-input multiple-output (MIMO) and orthogonal frequency division
multiplexing (OFDM) CR networks. Traditional SS methods, especially
energy detection (ED), often underperform in low signal-to-noise ratio
(SNR) conditions, resulting in high false alarm rates due to noise uncertainty
and multi-user interference. The multi-user detection-square-law combining
(MUD-SLC) framework addresses these limitations by using MUD to
separate user signals and SLC to combine energy from multiple antennas,
significantly improving probability of detection (PD) while maintaining a
low false alarm probability (Pfa). Simulation results show that the proposed
approach achieves a PD of 0.81 at Pfa=0.15 and SNR=15 dB, outperforming
conventional and advanced SS methods. Moreover, MUD-SLC demonstrates
a considerable boost in detection performance, even in the presence of
severe interference and noise uncertainty, leading to more reliable spectrum
utilization in systems. The framework also maintains a lower Pfa, especially
in dynamic wireless environments. This research work contributes to
improving the efficiency and reliability of SS in CR networks.

This is an open access article under the CC BY-SA license.

00

Corresponding Author:
Srikantha Kandhgal Mochigar

Department of Electronics and Communication Engineering, Proudhadevaraya Institute of Technology,
Hosapete, affiliated to Visvesvaraya Technological University

Belagavi-590018, Karnataka, India
Email: srikanthkm2019@gmail.com

1. INTRODUCTION

The rapid expansion of wireless communication has resulted in an increasingly congested radio
spectrum, creating challenges for efficient spectrum utilization. Conventional static spectrum allocation
techniques fail to effectively address this challenge, as licensed frequency bands are often underutilized. To
overcome this limitation, cognitive radio (CR) systems have emerged as a promising solution by enabling
dynamic spectrum access (DSA), which allows secondary users (SUs) to opportunistically access idle
licensed spectrum without interfering with primary users (PUs) [1], [2]. As highlighted in a comprehensive
survey on next generation CR networks [3], CR systems utilize DSA techniques to analyze the radio
environments, identify spectrum gaps and permit SUs to occupy these idle frequency bands. This approach
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not only enhances spectrum utilization but also facilitates the creation of more flexible and adaptive network
frameworks. Effective spectrum sensing (SS) is crucial SUs to exploit underutilized spectrum in CR
networks. Energy detection (ED) is widely used due to its simplicity and adaptability to diverse
communication scenarios. However, ED-based techniques often face challenges in low signal-to-noise ratio
(SNR) conditions, where noise uncertainty (NU) can result in higher false alarm and missed detection rates
(4], [5]-

Advanced spectrum sensing techniques are being developed, focusing on signal characteristics that
distinguish licensed signals from background noise. By analyzing spatial and temporal signal properties,
these methods enhances detection accuracy [6]. Several enhancements to ED have been proposed, such as
dynamic thresholding, to improve performance under varying noise levels. For example, Ye et al. [7]
demonstrated that adaptive threshold adjustments based on real-time noise variance could significantly
improve SS reliability. By factoring in noise variance estimates, the researchers demonstrated that the
system can produce more precise detection outcomes, even in environments with significant noise and
uncertainty. Additionally, highlights that conventional ED methods, which use fixed thresholds, are prone
to increased false alarm probability (Pfa) and missed detection, particularly when noise levels fluctuate [8].
The presence of multiple antennas in multiple-input multiple-output (MIMO) systems improves signal
detection in low-SNR conditions. While orthogonal frequency division multiplexing (OFDM) optimizes
spectrum utilization by breaking the signal into orthogonal subcarriers. The integration of MIMO and
OFDM technologies in CR systems has proven to be a practical approach to improving both spectral
efficiency and overall system performance cognitive radios (CRs) allow dynamic access to underutilized
spectrum, while MIMO and OFDM offer advantages like spatial diversity and increased resilience to
multipath fading [9]-[15].

In Rawat’s study [16], the performance of CR users in multiple-input multiple-output-orthogonal
frequency division multiplexing (MIMO-OFDM) wireless networks is assessed, with a particular focus on
how these technologies improve SS and data transmission in CR systems. The research shows that the
combination of MIMO and OFDM greatly enhances the reliability of SS by utilizing spatial diversity and
frequency selectivity. ED faces notable challenges, particularly in environments with NU, which arises due to
factors such as temperature variations, interference and imperfect filtering. These fluctuations can exceed
predicted values, causing the performance of ED to degrade, especially under low-SNR conditions.
Additionally, the trade-offs among critical parameters like the number of samples, NU levels, and Pfa require
careful calibration to maintain consistent detection performance. Addressing these challenges is essential to
enhance ED’s applicability and ensure its robustness in diverse and dynamically changing wireless
environments [17]. While Deep-CRNet demonstrates impressive performance in accurately detecting PU
activity and identifying spectrum holes in CR networks, certain challenges remain. The systems reliance a
deep learning method such as multi-kernel convolutions and residual connections, introduces a significant
computational burden. Additionally, the detectors performance may depend heavily on the quality and
diversity of training data, potentially making it vulnerable to variations in transmission patterns or network
dynamics that were not considered during the training process [18], [19].

The integration of intelligent reflecting surface significantly enhances SS accuracy by leveraging its
ability to manipulate reflections and strengthen weak signals from the PUs. This result in more reliable
detection outcomes even in challenging environments. Techniques such as block coordinate descent,
successive convex approximation and semidefinite relaxation are computationally intensive and may increase
system latency [20]. Full-duplex operation modes enable simultaneous transmission and reception, reducing
SS delays while improving throughput compared to traditional half-duplex methods. These modes
significantly enhances the networks responsiveness to changes in frequency availability [21]. Sivagurunathan
et al. [22] reviews various SS technique, their classification and their underlying methodologies. It explores
the strengths and weaknesses of these approaches, offering valuable insights into potential improvements.
The survey also identifies key challenges and opportunities in the field, providing a roadmap for enhancing
existing SS techniques [22]. Recent advancements have incorporated antenna diversity techniques such as
square-law selector and square-law combining (SLC), to enhance detection accuracy. These methods have
been analytically evaluated to understand their impact on detection performance. However, practical
challenges like radio frequency (RF) impairments and fading models complicate the hardware
implementation of these techniques [23]. This section reviews the existing research on ED and SS in MIMO-
OFDM-based CR networks, highlighting both their benefits and limitations.

Lorincz et al. [24] developed an algorithm to simulate the ED process in cognitive MIMO-OFDM
systems using the SLC technique. The SLC technique is employed to enhance the ED process by combining
signals from multiple antennas. This method improves the overall SNR, making it easier to detect the
presence of signals. However, the study did not comprehensively investigate the impact of variations in noise
uncertainty (NU) and the adjustments to the dynamic detection threshold (DT) on the performance of ED and
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it was confined to a particular MIMO-OFDM system model. The analysis does not explore the potential

benefits of advanced modulation schemes on detection performance.

Lorincz et al. [25] introduced an innovative algorithm to simulate ED process using SLC, evaluating
its performance across different operational scenarios. Their findings highlighted that enhancing the number
of receive antennas od the SU side significantly improves ED performance compared to increasing the
number of transmit antennas on the PU side. Nevertheless, their study was confined to ED, making it less
effective in scenarios with low SNR or severe channel fading. Furthermore, the impact of the advanced
modulation techniques on detection performance was not explored in their analysis.

Lorincz et al. [26] developed a mathematical model aimed at exploring the relationship between key
parameters and detection performance, with a focus on optimizing the detection threshold to enhance the
reliability of SS. The study examined how variations in the DT and NU influence the effectiveness of ED in
MIMO-OFDM CR systems. However, the analysis failed to consider the potential interference from other
users or external sources, which could notably impact the performance of ED.

Pan et al. [27] introduced a framework that harnesses deep learning techniques to improve the
accuracy and reliability of SS in dynamic wireless environment. It proposes a new method for SS in CR
Networks, employing deep learning and cycle spectrum analysis to identify OFDM signals. However, the
learning approach demands considerable computational resources and expertise in model training, this could
create difficulties for deployment in environments with limited resources.

Al-Amidie et al. [28] developed a generalized likelihood ratio test (GLRT) detector using a
Bayesian framework to tackle uncertainties in the noise covariance matrix and channel gain. Their work
presents a robust SS detector designed for MIMO CR systems, particularly when the Channel State
Information (CSI) is imperfect. The proposed solution effectively addresses SS uncertainties under the given
assumptions. However, the study focuses solely on the SS challenge, without accounting for additional
factors such as resource allocation or throughput optimization within CR networks. Additionally, the robust
detector may involve higher computational complexity.

Zaimbashi [29] proposed a SS method for multi-antenna CR systems using a one-step likelihood
test (LRT) based on the covariance matrix of the received signal. The proposed E-SSE detectors
outperformed traditional methods like SSE and MME in simulation environments. However, the work
assumes ideal conditions and does not account for real world issues such as hardware imperfections,
mobility or interference. Additionally, it does not address signal detection in OFDM systems or multi-user
scenarios. In contrast, the work introduces a multi-user detection-square-law combining (MUD-SLC)
framework tailored for MIMO-OFDM networks, capable of handling interference and dynamic spectrum
conditions effectively.

Overall, current cognitive SS approaches face challenges, robust detection methods often lead to
increased computational complexity. Additionally, many of these approaches are restricted to basic ED,
which can underperform in low-SNR conditions or with significant channel fading. The impact of
interference in SS is also frequently overlooked, which can result in reduced efficiency due to elevated false
alarm rates.

In this research, the MUD-SLC technique to create a robust and efficient SS solution for MIMO-
OFDM CR networks. The important findings of this research are listed as.

a. Separation of signals: MUD plays a critical role in separating signals from multiple users. This is
especially important in multi-user CR environments where primary and secondary users share the same
spectrum. By reducing the interference between users, MUD enhances detection performance.

b. Combining energy for robust detection: SLC boosts detection performance by combining the received
signal energy from multiple antennas or subcarriers, thus improving SNR and making the system more
resilient to noise and fading. This facilitates a more dependable detection process, even in adverse
conditions.

c. Improved spectrum utilization: by enhancing the detection performance in multi-user environments, the
system enables secondary users to more effectively access unused spectrum, improving overall spectrum
utilization in CR networks.

d. Increased network reliability: the integration of MUD and SLC ensures that spectrum holes are detected
with high accuracy, even in challenging environments such as low-SNR or fading channels. This leads to
more reliable network performance, with fever missed detection opportunities and false alarms.

The structure of the research paper is as follows: section 2 outlines the proposed methodology;
section 3 provides an analysis of the results along with the discussion and section 4 offers the conclusions
drawn from the research.
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2. PROPOSED METHOD

In this research, MUD-SLC technique is proposed for the SS in MIMO-OFDM CR network, where
SS is enhanced using MUD and SLC techniques. The objective of the system is to efficiently detect
the presence of PU in a shared spectrum environment while allowing SUs to access available spectrum
without causing harmful interference. The schematic representation of MUD-SLC technique is presented in
Figure 1.
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Figure 1. Functional components of the MIMO-OFDM communication system utilizing ED for SS,
Implemented through MUD-SLC technique

2.1. System model

The proposed framework operates within a MIMO-OFDM CR network, leveraging spatial and
frequency diversity to enhance SS. The system consists of N, transmit antennas at the PU and N, receive
antennas at the SU. MIMO technology enables spatial diversity, while OFDM mitigates frequency-selective
fading by dividing the signal N orthogonal subcarriers. The received signal at the i antenna is expressed as

yi=Hix+n (D

where H; represents channel matrix modelling path loss, fading and interference. x represents vector of
transmitted signals from PU antennas, modulated using QPSK or QAM. n; represemts noise with zero mean
and variance ¢®. To mitigate interference, the proposed system employes MUD to separate overlapping
signals from multiple users. SLC aggregates the energy across N, antennas to improve the effective SNR for
reliable detection.

2.2. Multi-user detection (MUD)

Multi-user detection (MUD) is a enhance technique in wireless communication systems, particularly
in scenarios where multiple users transmit data simultaneously over shared channels. The goal of MUD is to
decode the signals of multiple users by accounting for the interference between them, thus improving overall
system performance. MUD is especially critical in code- division multiple access (CDMA), OFDM and
MIMO systems, where users or antennas share the same frequency band. The zero-forcing (ZF) detector
eliminates interference by multiplying the received signal by the pseudo-inverse of the channel matrix H. The
ZF solution is given by:

X = (H"H)*H" )
where X is the estimated transmitted signal vector, and H is the aggregate channel matrix across all users.

While ZF effectively removes interference, it can amplify noise when the channel matrix H is ill
conditioned.
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2.3. Square-law combining

Square-law combining (SLC) is a diversity-combining technique often used in communication
systems to improve detection performance under fading channels. SLC is typically applied in ED for SS,
where the signals energy is combined across multiple branches (e.g. antennas or subcarriers). SLC computes
the energy of the received signal and sums the energy from all branches. This is particularly effective when
the signal is weak, as it can improve the probability of detection (PD) without needing to decoding the exact
transmitted data. Consider a communication system with N, receive antennas and let the received signal on
the i branch be denoted by 7;(t). The SLC output is the sum of the squared magnitudes of the received
signals, given by:

Ecombined = Zivil |yi|2 (3)

where, |yi]* represents the energy of the signal received on the i branch. The decision on whether a signal is
present or absent is made by comparing the combined energy E with a threshold A.

.. . (> ASignal present
Dicision: E { < ASignal absent )
For SLC, the effective SNR after combining is given by:
1 <Ny
SNRcompineD = I 22 SNR; (5)

This shows that combining the energy across N, branches improve the overall SNR, thereby enhancing the
detection performance, particularly in fading environments. In CR networks, SLC is often used for SS. It
helps detect the presence of PU by measuring the energy of the received signal across multiple antennas or
subcarriers. This makes SLC a valuable technique in dynamic spectrum access scenarios where reliable
detection is crucial.

2.4. OFDM transmission

In the OFDM-based CR system, the wideband channel is segmented into several orthogonal
subcarriers, enabling the system to mitigate frequency-selective fading. The transmitted signal x consists of
modulated symbols on each subcarrier. The signal on the k™" subcarrier at time ¢ is given by:

x,(t) = YNZL X, ef2™k/N | =01, .....,N—1 (6)

where, X represents the modulated data symbol on the #™ subcarrier, N is the number of OFDM subcarriers,

the exponential term represents the subcarrier modulation. At the receiver, after MUD and SLC are applied,

the system combines the received signal energies across multiple antennas and subcarriers for SS. Spectrum

sensing process as:

a. Signal transmission: multiple SUs transmits their data using OFDM over shared bands.

b. Signal reception: the received signals, subject to multi-user interference and noise, are processed using
MUD techniques such as ZF or MMSE.

c. Energy combining: SLC is applied to combine the energy of the received signals across multiple antennas
and/or subcarriers.

d. Decision making: the combined energy is compared against the detection threshold to decide whether the
spectrum is occupied by a PU or available for SU.

2.5. Computational complexity

The computational complexity of the MUD-SLC framework primarily arises from MUD algorithm
and SLC energy aggregation. The ZF detector used in MUD involves matrix inversion with a complexity of
O(N?), while SLC adds linear complexity proportional to the number of antennas (O(N,)). While these
operations are more efficient than data-intensive machine learning models, optimizing MUD-SLC for real-
time applications is a focus for future research.

3.  RESULTS AND DISCUSSION

This section presents the experimental findings and their interpretation, emphasizing the efficiency
of the proposed MUD-SLC framework for SS in MIMO-OFDM CR networks. By integrating results with
discussion, to provide a comprehensive understanding of how the proposed framework addresses SS
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challenges, particularly in low-SNR and interference-heavy scenarios. The implementation process was
executed with the help of MATLAB software on a system with an intel 17 processor, windows 11 operating
system and 8Gb of random-access memory (RAM). The simulation parameters for the proposed approach are
outlined in Table 1.

Table 1. Simulation parameters of the proposed method

Parameters Values
PU signal type OFDM
NU factor p 1.02
DT factor p” 1.01
OFDM modulation type QPSK, 16 QAM, 64 QAM
Detection sample numbers 128,512,256
PD and Pfa range [0to 1]
PU Tx branches number 1to2
SU Rx branches number 1to2
SNR at SU point (dB) -30to -10

3.1. Performance analysis

In this section, the efficiency of the proposed approach is evaluated using various parameters, as
listed in Table 1. Figure 2 illustrates the receiver operating characteristic (ROC) curve, depicting the PD
versus SNR for a 2x2 MIMO system under NU and DT conditions, with the PU transmitting at 1 W and
100 mW. Figure 3 shows the ROC curve of PD versus Pfa for a MIMO system under NU and DT factors,
with the PU transmitting at 1 W. Figure 2 displays the ROC curve for a 2x2 MIMO system, showing
the relationship between PD and SNR for NU and DT factors, with parameters set as Pfa=0.15, N=128,
Prx=1W and 100 mW.

The results indicate that as the SNR improves, the PD increases significantly, highlighting the
enhanced SS performance of the MUD-SLC framework. For instance, Figure 2 illustrates the ROC curve for
a 2x2 MIMO system under NU and DT conditions, showing that an SNR of -15 dB and a Pfa of 0.15, the
proposed method achieves a PD of 0.81. The result outperforms conventional SLC-based methods in low-
SNR scenarios, which achieve PD values of 0.77 and 0.70. The integration of MUD enables effective
separation of user signals, mitigating co-channel interference, while SLC aggregates energy from multiple
antennas, further boosting the overall SNR. However, NU and DT adjustment present challenges, particularly
at lower SNR levels. These factors highlight the importance of designing robust algorithms to address real-
world impairments in wireless environments.

Figure 3 presents the ROC curve for the same 2x2 MIMO system, illustrating the PD versus Pfa at
SNR levels of -15 dB and -10 dB, with N=128 and Prx =1 W. The results reveal a trade-off between the PD
and the Pfa. As the SNR increases from -15 to -10 dB, the ROC curve moves toward the top-left corner of the
plot, signifying an improvement in PD while maintaining the same Pfa. This trend is anticipated, as higher
SNR conditions facilitate more reliable detection of PU signals.
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The findings provide valuable insights into the effectiveness of ED for SS in MIMO-OFDm CR
Networks. By evaluating factor such as noise uncertainty, dynamic threshold adjustment, and the interplay
between detection and false alarm probabilities, these findings can inform the development and refinement of
SS algorithms for practical implementation.

3.2. Comparative analysis

Table 2 outlines the simulation parameters for various scenarios, with scenarios 1 and 2 representing
SLC [24] and SLC [25] respectively. Table 3 provides a comparative analysis of the proposed MUD-SLC
framework against existing SLC-based methods in [24] and [25] by evaluating PD at various SNR levels.
The results demonstrate the superior performance of the proposed method. For instance, at an SNR of -10 dB,
the MUD-SLC framework achieves a PD of 0.90, compared to 0.88 [24] and 0.85 [25]. Similarly, at
SNR=-15 dB, the proposed method achieves a PD of 0.81, surpassing 0.77 [24] and 0.70 [25].

Table 4 further illustrates the performance comparison for PD versus Pfa at SNR=-15dB. Notably,
the MUD-SLC method achieves a PD of 0.90 at Pfa=0.4, exceeding the results of [24] (0.89) and [25] (0.85).
These findings highlight the robustness of the MUD-SLC framework in handling low-SNR conditions and
achieving a favorable trade-off between PD and Pfa. Table 5 summarizes the PD of the proposed MUD-SLC
framework compared with advanced methods, including improved ED and deep learning-based spectrum
sensing (DL-SS), at Pfa=0.15 and SNR=-15 dB.

Table 2. Simulation parameters with the different scenarios

Parameters lScenarlo 3

NU factor p 1.02 1.02

DT factor p” 1.01 1.01

SNR in dB -30to -10 -15
Target Pfa 0.15 0tol
PU Tx branches number 1to2 1to2
SU Rx branches number l1to2 l1to2
Number of samples 128 128

Table 3.Comparison of PD versus SNR for the proposed MUD-SLC framework and existing methods
([24], [25]) at Pfa=0.15
Scenario  Parameters SLC[24] SLC[25] Proposed MUD - SLC

SNR=-10dB 0.88 0.85 0.9
| SNR=-15dB 0.77 0.7 0.81
SNR=-25dB 0.65 0.6 0.68
SNR=-30dB 0.55 0.5 0.57

Table 4. Comparison of PD versus Pfa for the proposed MUD-SLC framework and existing methods
([24], [25]) at SNR=-15 dB
Scenario  Parameters SLC[24] SLC[25] Proposed MUD - SLC

Pfa=0 0.42 0.35 0.46
Pfa=0.2 0.79 0.73 0.82
2 Pfa=0.3 0.84 0.8 0.85
Pfa=0.4 0.89 0.85 0.9
Pfa=0.8 0.98 0.96 0.99

Table 5. Comparison of proposed MUD-SLC with advanced spectrum sensing methods

Scenario Method PD at Pfa=0.15  Computational complexity
Conventional ED 0.7 Low
3 Improved ED 0.75 Moderate
DL-SS 0.8 High
Proposed MUD-SLC 0.81 Moderate

3.3. Real-world applicability

While simulation results confirm the robustness of the proposed MUD-SLC framework, real world
validation remains a crucial step to assess its practical effectiveness. In real deployments, additional factors
such as hardware imperfections, non-linearities, user mobility and rapidly changing spectrum environments
can significantly influence system performance. Future work will focus on implementing the framework in a

Enhanced spectrum sensing in MIMO-OFDM cognitive radio networks ... (Srikantha Kandhgal Mochigar)



5408 O ISSN: 2088-8708

physical testbed to evaluate its reliability under such non-ideal conditions. This includes testing with real
cognitive radio hardware platforms, measuring detection accuracy in the presence of dynamic interference
and observing performance in varying mobility scenarios such as UAV-assisted or vehicular networks. These
experiments will help bridge the gap between theoretical simulations and practical deployment, ensuring the
frameworks adaptability to 5G and beyond wireless systems.

3.4. Discussion

The proposed MUD-SLC SS framework effectively addresses key challenges faced by traditional
ED methods, particularly under low-SNR conditions and in multi-user environments. By integrating MUD,
the framework separates signals from multiple users, significantly reducing co-channel interference.
Additionally, the SLC technique aggregates energy across spatial paths, resulting in a higher PD even in the
presence of fading and noise uncertainty.

Comparative analysis with prior studies further underscores the advantages of the proposed method.
Unlike [24] and [25], which rely solely on SLC for ED, the MUD-SLC framework combines MUD for
interference mitigation and SLC for energy aggregation, achieving superior performance. For instance, at an
SNR of -15 dB, the proposed method achieves a PD of 0.81, compared to 0.77 for [24] and [25], respectively.
Similarly, at a Pfa of 0.4 the proposed system attains a PD of 0.90, exceeding the performance of the
reference systems. The proposed MUD-SLC framework demonstrates superior detection performance,
achieving a PD of 0.81 at Pfa=0.15, compared to 0.75 for improved ED and 0.80 for DL-SS. Unlike DL-SS,
which demands high computational resources, the MUD-SLC method balances performance and efficiency,
making it more suitable for resource-constrained environments.

While the framework demonstrates significant improvements in PD, it introduces additional
computational complexity due to the MUD process. Future research could explore adaptive thresholding
techniques or machine learning approaches to optimize the framework for real-time applications. This
refinement could further enhance the applicability of the MUD-SLC framework in CR networks, particularly
in dynamic and resource constrained environments. While the dataset is based on simulation, the framework
is designed to operate in dynamic real-world environments. Future research will confirm its validity
performance using experimental testbeds to account for hardware imperfections, mobility and interference
from external sources.

4. CONCLUSION

This research presents a robust SS framework for MIMO-OFDM CR networks, combining MUD and
SLC techniques. The proposed system delivers superior detection performance, especially in low-SNR and
interference-prone environments. Key findings indicate that the MUD-SLC framework achieves a PD of 0.81
at an SNR of -15 dB, significantly outperforming existing SLC-based methods. At a Pfa of 0.15 and an SNR
of -15 dB, the framework surpasses conventional and advanced approaches. By reducing interference through
MUD and enhancing signal aggregation using SLC, the system improves spectrum utilization and network
reliability in dynamic and challenging conditions. Although the approach provides substantial benefits, the
computational complexity could present difficulties for real-time deployment. However, the balance between
computational efficiency and performance makes it practical for various applications. Future research could
focus on developing adaptive algorithms and conducting testbed validations to further optimize complexity
and enhance real-world performance. These advancements will support the integration of CR systems in
next-generation wireless networks, including 5G and beyond.
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