
International Journal of Electrical and Computer Engineering (IJECE) 

Vol. 15, No. 6, December 2025, pp. 5401~5410 

ISSN: 2088-8708, DOI: 10.11591/ijece.v15i6.pp5401-5410      5401  

 

Journal homepage: http://ijece.iaescore.com 

Enhanced spectrum sensing in MIMO-OFDM cognitive radio 

networks using multi-user detection and square-law combining 

techniques 
 

 

Srikantha Kandhgal Mochigar1,2, Rohitha Ujjini Matad1, Premachand Doddamagadi Ramanaik2 
1Department of Electronics and Communication Engineering, Proudhadevaraya Institute of Technology Hosapete, affiliated to 

Visvesvaraya Technological University, Belagavi, India 
2Department of Electronics and Communication Engineering, Ballari Institute of Technology and Management Ballari, affiliated to 

Visvesvaraya Technological University, Belagavi, India 

 

 

Article Info  ABSTRACT 

Article history: 

Received Sep 23, 2024 

Revised Jul 9, 2025 

Accepted Sep 14, 2025 

 

 Spectrum sensing (SS) is essential for cognitive radio (CR) networks to 

enable secondary users to opportunistically access unused spectrum without 

interfering with primary users. This article proposes a novel multi-user 

detection (MUD) and square-law combining (SLC) framework for SS in 

multiple-input multiple-output (MIMO) and orthogonal frequency division 

multiplexing (OFDM) CR networks. Traditional SS methods, especially 

energy detection (ED), often underperform in low signal-to-noise ratio 

(SNR) conditions, resulting in high false alarm rates due to noise uncertainty 

and multi-user interference. The multi-user detection-square-law combining 

(MUD-SLC) framework addresses these limitations by using MUD to 

separate user signals and SLC to combine energy from multiple antennas, 

significantly improving probability of detection (PD) while maintaining a 

low false alarm probability (Pfa). Simulation results show that the proposed 

approach achieves a PD of 0.81 at Pfa=0.15 and SNR=15 dB, outperforming 

conventional and advanced SS methods. Moreover, MUD-SLC demonstrates 

a considerable boost in detection performance, even in the presence of 

severe interference and noise uncertainty, leading to more reliable spectrum 

utilization in systems. The framework also maintains a lower Pfa, especially 

in dynamic wireless environments. This research work contributes to 

improving the efficiency and reliability of SS in CR networks. 
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1. INTRODUCTION 

The rapid expansion of wireless communication has resulted in an increasingly congested radio 

spectrum, creating challenges for efficient spectrum utilization. Conventional static spectrum allocation 

techniques fail to effectively address this challenge, as licensed frequency bands are often underutilized. To 

overcome this limitation, cognitive radio (CR) systems have emerged as a promising solution by enabling 

dynamic spectrum access (DSA), which allows secondary users (SUs) to opportunistically access idle 

licensed spectrum without interfering with primary users (PUs) [1], [2]. As highlighted in a comprehensive 

survey on next generation CR networks [3], CR systems utilize DSA techniques to analyze the radio 

environments, identify spectrum gaps and permit SUs to occupy these idle frequency bands. This approach 

https://creativecommons.org/licenses/by-sa/4.0/
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not only enhances spectrum utilization but also facilitates the creation of more flexible and adaptive network 

frameworks. Effective spectrum sensing (SS) is crucial SUs to exploit underutilized spectrum in CR 

networks. Energy detection (ED) is widely used due to its simplicity and adaptability to diverse 

communication scenarios. However, ED-based techniques often face challenges in low signal-to-noise ratio 

(SNR) conditions, where noise uncertainty (NU) can result in higher false alarm and missed detection rates 

[4], [5].  

Advanced spectrum sensing techniques are being developed, focusing on signal characteristics that 

distinguish licensed signals from background noise. By analyzing spatial and temporal signal properties, 

these methods enhances detection accuracy [6]. Several enhancements to ED have been proposed, such as 

dynamic thresholding, to improve performance under varying noise levels. For example, Ye et al. [7] 

demonstrated that adaptive threshold adjustments based on real-time noise variance could significantly 

improve SS reliability. By factoring in noise variance estimates, the researchers demonstrated that the 

system can produce more precise detection outcomes, even in environments with significant noise and 

uncertainty. Additionally, highlights that conventional ED methods, which use fixed thresholds, are prone 

to increased false alarm probability (Pfa) and missed detection, particularly when noise levels fluctuate [8]. 

The presence of multiple antennas in multiple-input multiple-output (MIMO) systems improves signal 

detection in low-SNR conditions. While orthogonal frequency division multiplexing (OFDM) optimizes 

spectrum utilization by breaking the signal into orthogonal subcarriers. The integration of MIMO and 

OFDM technologies in CR systems has proven to be a practical approach to improving both spectral 

efficiency and overall system performance cognitive radios (CRs) allow dynamic access to underutilized 

spectrum, while MIMO and OFDM offer advantages like spatial diversity and increased resilience to 

multipath fading [9]–[15]. 

In Rawat’s study [16], the performance of CR users in multiple-input multiple-output-orthogonal 

frequency division multiplexing (MIMO-OFDM) wireless networks is assessed, with a particular focus on 

how these technologies improve SS and data transmission in CR systems. The research shows that the 

combination of MIMO and OFDM greatly enhances the reliability of SS by utilizing spatial diversity and 

frequency selectivity. ED faces notable challenges, particularly in environments with NU, which arises due to 

factors such as temperature variations, interference and imperfect filtering. These fluctuations can exceed 

predicted values, causing the performance of ED to degrade, especially under low-SNR conditions. 

Additionally, the trade-offs among critical parameters like the number of samples, NU levels, and Pfa require 

careful calibration to maintain consistent detection performance. Addressing these challenges is essential to 

enhance ED’s applicability and ensure its robustness in diverse and dynamically changing wireless 

environments [17]. While Deep-CRNet demonstrates impressive performance in accurately detecting PU 

activity and identifying spectrum holes in CR networks, certain challenges remain. The systems reliance a 

deep learning method such as multi-kernel convolutions and residual connections, introduces a significant 

computational burden. Additionally, the detectors performance may depend heavily on the quality and 

diversity of training data, potentially making it vulnerable to variations in transmission patterns or network 

dynamics that were not considered during the training process [18], [19].  

The integration of intelligent reflecting surface significantly enhances SS accuracy by leveraging its 

ability to manipulate reflections and strengthen weak signals from the PUs. This result in more reliable 

detection outcomes even in challenging environments. Techniques such as block coordinate descent, 

successive convex approximation and semidefinite relaxation are computationally intensive and may increase 

system latency [20]. Full-duplex operation modes enable simultaneous transmission and reception, reducing 

SS delays while improving throughput compared to traditional half-duplex methods. These modes 

significantly enhances the networks responsiveness to changes in frequency availability [21]. Sivagurunathan 

et al. [22] reviews various SS technique, their classification and their underlying methodologies. It explores 

the strengths and weaknesses of these approaches, offering valuable insights into potential improvements. 

The survey also identifies key challenges and opportunities in the field, providing a roadmap for enhancing 

existing SS techniques [22]. Recent advancements have incorporated antenna diversity techniques such as 

square-law selector and square-law combining (SLC), to enhance detection accuracy. These methods have 

been analytically evaluated to understand their impact on detection performance. However, practical 

challenges like radio frequency (RF) impairments and fading models complicate the hardware 

implementation of these techniques [23]. This section reviews the existing research on ED and SS in MIMO-

OFDM-based CR networks, highlighting both their benefits and limitations. 

Lorincz et al. [24] developed an algorithm to simulate the ED process in cognitive MIMO-OFDM 

systems using the SLC technique. The SLC technique is employed to enhance the ED process by combining 

signals from multiple antennas. This method improves the overall SNR, making it easier to detect the 

presence of signals. However, the study did not comprehensively investigate the impact of variations in noise 

uncertainty (NU) and the adjustments to the dynamic detection threshold (DT) on the performance of ED and 
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it was confined to a particular MIMO-OFDM system model. The analysis does not explore the potential 

benefits of advanced modulation schemes on detection performance. 

Lorincz et al. [25] introduced an innovative algorithm to simulate ED process using SLC, evaluating 

its performance across different operational scenarios. Their findings highlighted that enhancing the number 

of receive antennas od the SU side significantly improves ED performance compared to increasing the 

number of transmit antennas on the PU side. Nevertheless, their study was confined to ED, making it less 

effective in scenarios with low SNR or severe channel fading. Furthermore, the impact of the advanced 

modulation techniques on detection performance was not explored in their analysis. 

Lorincz et al. [26] developed a mathematical model aimed at exploring the relationship between key 

parameters and detection performance, with a focus on optimizing the detection threshold to enhance the 

reliability of SS. The study examined how variations in the DT and NU influence the effectiveness of ED in 

MIMO-OFDM CR systems. However, the analysis failed to consider the potential interference from other 

users or external sources, which could notably impact the performance of ED. 

Pan et al. [27] introduced a framework that harnesses deep learning techniques to improve the 

accuracy and reliability of SS in dynamic wireless environment. It proposes a new method for SS in CR 

Networks, employing deep learning and cycle spectrum analysis to identify OFDM signals. However, the 

learning approach demands considerable computational resources and expertise in model training, this could 

create difficulties for deployment in environments with limited resources. 

Al-Amidie et al. [28] developed a generalized likelihood ratio test (GLRT) detector using a 

Bayesian framework to tackle uncertainties in the noise covariance matrix and channel gain. Their work 

presents a robust SS detector designed for MIMO CR systems, particularly when the Channel State 

Information (CSI) is imperfect. The proposed solution effectively addresses SS uncertainties under the given 

assumptions. However, the study focuses solely on the SS challenge, without accounting for additional 

factors such as resource allocation or throughput optimization within CR networks. Additionally, the robust 

detector may involve higher computational complexity. 

Zaimbashi [29] proposed a SS method for multi-antenna CR systems using a one-step likelihood 

test (LRT) based on the covariance matrix of the received signal. The proposed E-SSE detectors 

outperformed traditional methods like SSE and MME in simulation environments. However, the work 

assumes ideal conditions and does not account for real world issues such as hardware imperfections, 

mobility or interference. Additionally, it does not address signal detection in OFDM systems or multi-user 

scenarios. In contrast, the work introduces a multi-user detection-square-law combining (MUD-SLC) 

framework tailored for MIMO-OFDM networks, capable of handling interference and dynamic spectrum 

conditions effectively. 

Overall, current cognitive SS approaches face challenges, robust detection methods often lead to 

increased computational complexity. Additionally, many of these approaches are restricted to basic ED, 

which can underperform in low-SNR conditions or with significant channel fading. The impact of 

interference in SS is also frequently overlooked, which can result in reduced efficiency due to elevated false 

alarm rates.  

In this research, the MUD-SLC technique to create a robust and efficient SS solution for MIMO-

OFDM CR networks. The important findings of this research are listed as. 

a. Separation of signals: MUD plays a critical role in separating signals from multiple users. This is 

especially important in multi-user CR environments where primary and secondary users share the same 

spectrum. By reducing the interference between users, MUD enhances detection performance. 

b. Combining energy for robust detection: SLC boosts detection performance by combining the received 

signal energy from multiple antennas or subcarriers, thus improving SNR and making the system more 

resilient to noise and fading. This facilitates a more dependable detection process, even in adverse 

conditions. 

c. Improved spectrum utilization: by enhancing the detection performance in multi-user environments, the 

system enables secondary users to more effectively access unused spectrum, improving overall spectrum 

utilization in CR networks.  

d. Increased network reliability: the integration of MUD and SLC ensures that spectrum holes are detected 

with high accuracy, even in challenging environments such as low-SNR or fading channels. This leads to 

more reliable network performance, with fever missed detection opportunities and false alarms. 

The structure of the research paper is as follows: section 2 outlines the proposed methodology; 

section 3 provides an analysis of the results along with the discussion and section 4 offers the conclusions 

drawn from the research. 
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2. PROPOSED METHOD  

In this research, MUD-SLC technique is proposed for the SS in MIMO-OFDM CR network, where 

SS is enhanced using MUD and SLC techniques. The objective of the system is to efficiently detect  

the presence of PU in a shared spectrum environment while allowing SUs to access available spectrum 

without causing harmful interference. The schematic representation of MUD-SLC technique is presented in 

Figure 1. 

 

 

 
 

Figure 1. Functional components of the MIMO-OFDM communication system utilizing ED for SS, 

Implemented through MUD-SLC technique 

 

 

2.1.  System model  

The proposed framework operates within a MIMO-OFDM CR network, leveraging spatial and 

frequency diversity to enhance SS. The system consists of 𝑁𝑡 transmit antennas at the PU and 𝑁𝑟 receive 

antennas at the SU. MIMO technology enables spatial diversity, while OFDM mitigates frequency-selective 

fading by dividing the signal N orthogonal subcarriers. The received signal at the ith antenna is expressed as 

 

𝑦𝑖 = 𝐻𝑖𝑥 + 𝑛𝑖 (1) 

 

where 𝐻𝑖  represents channel matrix modelling path loss, fading and interference. 𝑥 represents vector of 

transmitted signals from PU antennas, modulated using QPSK or QAM. 𝑛𝑖 represemts noise with zero mean 

and variance σ2. To mitigate interference, the proposed system employes MUD to separate overlapping 

signals from multiple users. SLC aggregates the energy across Nr antennas to improve the effective SNR for 

reliable detection.  

 

2.2.  Multi-user detection (MUD) 

Multi-user detection (MUD) is a enhance technique in wireless communication systems, particularly 

in scenarios where multiple users transmit data simultaneously over shared channels. The goal of MUD is to 

decode the signals of multiple users by accounting for the interference between them, thus improving overall 

system performance. MUD is especially critical in code- division multiple access (CDMA), OFDM and 

MIMO systems, where users or antennas share the same frequency band. The zero-forcing (ZF) detector 

eliminates interference by multiplying the received signal by the pseudo-inverse of the channel matrix 𝐻. The 

ZF solution is given by: 

 

𝑋̂ = (𝐻𝐻𝐻)−1𝐻𝐻 (2) 

 

where X̂ is the estimated transmitted signal vector, and 𝐻 is the aggregate channel matrix across all users. 

While ZF effectively removes interference, it can amplify noise when the channel matrix 𝐻 is ill 

conditioned. 
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2.3.  Square-law combining  

Square-law combining (SLC) is a diversity-combining technique often used in communication 

systems to improve detection performance under fading channels. SLC is typically applied in ED for SS, 

where the signals energy is combined across multiple branches (e.g. antennas or subcarriers). SLC computes 

the energy of the received signal and sums the energy from all branches. This is particularly effective when 

the signal is weak, as it can improve the probability of detection (PD) without needing to decoding the exact 

transmitted data. Consider a communication system with Nr receive antennas and let the received signal on 

the ith branch be denoted by 𝑟𝑖(𝑡). The SLC output is the sum of the squared magnitudes of the received 

signals, given by: 

 

𝐸𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = ∑ |𝑦𝑖|2𝑁𝑟
𝑖=1  (3) 

 

where, |yi|2 represents the energy of the signal received on the ith branch. The decision on whether a signal is 

present or absent is made by comparing the combined energy E with a threshold λ. 

 

𝐷𝑖𝑐𝑖𝑠𝑖𝑜𝑛: 𝐸 {
>  𝜆 𝑆𝑖𝑔𝑛𝑎𝑙 𝑝𝑟𝑒𝑠𝑒𝑛𝑡
≤  𝜆 𝑆𝑖𝑔𝑛𝑎𝑙 𝑎𝑏𝑠𝑒𝑛𝑡

   (4) 

 

For SLC, the effective SNR after combining is given by: 

 

𝑆𝑁𝑅𝐶𝑂𝑀𝐵𝐼𝑁𝐸𝐷 =
1

𝑁𝑟
 ∑ 𝑆𝑁𝑅𝑖

𝑁𝑟
𝑖=1   (5) 

 

This shows that combining the energy across Nr branches improve the overall SNR, thereby enhancing the 

detection performance, particularly in fading environments. In CR networks, SLC is often used for SS. It 

helps detect the presence of PU by measuring the energy of the received signal across multiple antennas or 

subcarriers. This makes SLC a valuable technique in dynamic spectrum access scenarios where reliable 

detection is crucial. 

 

2.4.  OFDM transmission 

In the OFDM-based CR system, the wideband channel is segmented into several orthogonal 

subcarriers, enabling the system to mitigate frequency-selective fading. The transmitted signal x consists of 

modulated symbols on each subcarrier. The signal on the kth subcarrier at time t is given by: 

 

𝑥𝑘(𝑡) = ∑ 𝑋𝑛𝑒𝑗2𝜋𝑛𝑘 𝑁⁄𝑁−1
𝑛=0   𝑘 = 0,1, … … . , 𝑁 − 1 (6) 

 

where, X represents the modulated data symbol on the nth subcarrier, N is the number of OFDM subcarriers, 

the exponential term represents the subcarrier modulation. At the receiver, after MUD and SLC are applied, 

the system combines the received signal energies across multiple antennas and subcarriers for SS. Spectrum 

sensing process as: 

a. Signal transmission: multiple SUs transmits their data using OFDM over shared bands.  

b. Signal reception: the received signals, subject to multi-user interference and noise, are processed using 

MUD techniques such as ZF or MMSE. 

c. Energy combining: SLC is applied to combine the energy of the received signals across multiple antennas 

and/or subcarriers. 

d. Decision making: the combined energy is compared against the detection threshold to decide whether the 

spectrum is occupied by a PU or available for SU. 

 

2.5. Computational complexity 

The computational complexity of the MUD-SLC framework primarily arises from MUD algorithm 

and SLC energy aggregation. The ZF detector used in MUD involves matrix inversion with a complexity of 

𝑂(𝑁𝑟
3), while SLC adds linear complexity proportional to the number of antennas (𝑂(𝑁𝑟)). While these 

operations are more efficient than data-intensive machine learning models, optimizing MUD-SLC for real-

time applications is a focus for future research. 

 

 

3. RESULTS AND DISCUSSION 

This section presents the experimental findings and their interpretation, emphasizing the efficiency 

of the proposed MUD-SLC framework for SS in MIMO-OFDM CR networks. By integrating results with 

discussion, to provide a comprehensive understanding of how the proposed framework addresses SS 
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challenges, particularly in low-SNR and interference-heavy scenarios. The implementation process was 

executed with the help of MATLAB software on a system with an intel i7 processor, windows 11 operating 

system and 8Gb of random-access memory (RAM). The simulation parameters for the proposed approach are 

outlined in Table 1. 

 
 

Table 1. Simulation parameters of the proposed method 
Parameters Values 

PU signal type OFDM 

NU factor ρ 1.02 
DT factor ρ΄ 1.01 

OFDM modulation type QPSK, 16 QAM, 64 QAM 

Detection sample numbers 128, 512, 256 
PD and Pfa range [0 to 1] 

PU Tx branches number 1 to 2 

SU Rx branches number 1 to 2 

SNR at SU point (dB) -30 to -10 

 

 

3.1.  Performance analysis 

In this section, the efficiency of the proposed approach is evaluated using various parameters, as 

listed in Table 1. Figure 2 illustrates the receiver operating characteristic (ROC) curve, depicting the PD 

versus SNR for a 2×2 MIMO system under NU and DT conditions, with the PU transmitting at 1 W and  

100 mW. Figure 3 shows the ROC curve of PD versus Pfa for a MIMO system under NU and DT factors, 

with the PU transmitting at 1 W. Figure 2 displays the ROC curve for a 2×2 MIMO system, showing  

the relationship between PD and SNR for NU and DT factors, with parameters set as Pfa=0.15, N=128, 

PTX=1W and 100 mW. 

The results indicate that as the SNR improves, the PD increases significantly, highlighting the 

enhanced SS performance of the MUD-SLC framework. For instance, Figure 2 illustrates the ROC curve for 

a 2×2 MIMO system under NU and DT conditions, showing that an SNR of -15 dB and a Pfa of 0.15, the 

proposed method achieves a PD of 0.81. The result outperforms conventional SLC-based methods in low-

SNR scenarios, which achieve PD values of 0.77 and 0.70. The integration of MUD enables effective 

separation of user signals, mitigating co-channel interference, while SLC aggregates energy from multiple 

antennas, further boosting the overall SNR. However, NU and DT adjustment present challenges, particularly 

at lower SNR levels. These factors highlight the importance of designing robust algorithms to address real-

world impairments in wireless environments. 

Figure 3 presents the ROC curve for the same 2×2 MIMO system, illustrating the PD versus Pfa at 

SNR levels of -15 dB and -10 dB, with N=128 and PTX =1 W. The results reveal a trade-off between the PD 

and the Pfa. As the SNR increases from -15 to -10 dB, the ROC curve moves toward the top-left corner of the 

plot, signifying an improvement in PD while maintaining the same Pfa. This trend is anticipated, as higher 

SNR conditions facilitate more reliable detection of PU signals. 
 

 

  
 

Figure 2. ROC curve of PD versus SNR for 2×2 

MIMO under NU and DT factor at PTX = 1 W and 

100 mW 

 

Figure 3. ROC curve of PD versus Pfa for 2×2 

MIMO under NU and DT factor at PTX = 1 W 
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The findings provide valuable insights into the effectiveness of ED for SS in MIMO-OFDm CR 

Networks. By evaluating factor such as noise uncertainty, dynamic threshold adjustment, and the interplay 

between detection and false alarm probabilities, these findings can inform the development and refinement of 

SS algorithms for practical implementation. 

 

3.2.  Comparative analysis 

Table 2 outlines the simulation parameters for various scenarios, with scenarios 1 and 2 representing 

SLC [24] and SLC [25] respectively. Table 3 provides a comparative analysis of the proposed MUD-SLC 

framework against existing SLC-based methods in [24] and [25] by evaluating PD at various SNR levels. 

The results demonstrate the superior performance of the proposed method. For instance, at an SNR of -10 dB, 

the MUD-SLC framework achieves a PD of 0.90, compared to 0.88 [24] and 0.85 [25]. Similarly, at  

SNR=-15 dB, the proposed method achieves a PD of 0.81, surpassing 0.77 [24] and 0.70 [25]. 

Table 4 further illustrates the performance comparison for PD versus Pfa at SNR=-15dB. Notably, 

the MUD-SLC method achieves a PD of 0.90 at Pfa=0.4, exceeding the results of [24] (0.89) and [25] (0.85). 

These findings highlight the robustness of the MUD-SLC framework in handling low-SNR conditions and 

achieving a favorable trade-off between PD and Pfa. Table 5 summarizes the PD of the proposed MUD-SLC 

framework compared with advanced methods, including improved ED and deep learning-based spectrum 

sensing (DL-SS), at Pfa=0.15 and SNR=-15 dB. 

 

 

Table 2. Simulation parameters with the different scenarios 

Parameters 
Scenario 

1 2 

NU factor ρ 1.02 1.02 

DT factor ρ΄ 1.01 1.01 

SNR in dB -30 to -10 -15 
Target Pfa 0.15 0 to1 

PU Tx branches number 1 to 2 1 to 2 

SU Rx branches number 1 to 2 1 to 2 
Number of samples  128 128 

 

 

Table 3.Comparison of PD versus SNR for the proposed MUD-SLC framework and existing methods  

([24], [25]) at Pfa=0.15 
Scenario Parameters SLC [24] SLC [25] Proposed MUD - SLC  

1 

SNR= -10dB 0.88 0.85 0.9 

SNR= -15dB 0.77 0.7 0.81 

SNR= -25dB 0.65 0.6 0.68 

SNR= -30dB 0.55 0.5 0.57 

 

 

Table 4. Comparison of PD versus Pfa for the proposed MUD-SLC framework and existing methods  

([24], [25]) at SNR=-15 dB 
Scenario Parameters SLC [24] SLC [25] Proposed MUD - SLC  

2 

Pfa=0 0.42 0.35 0.46 

Pfa=0.2 0.79 0.73 0.82 

Pfa=0.3 0.84 0.8 0.85 

Pfa=0.4 0.89 0.85 0.9 

Pfa=0.8 0.98 0.96 0.99 

 

 

Table 5. Comparison of proposed MUD-SLC with advanced spectrum sensing methods 
Scenario Method PD at Pfa=0.15 Computational complexity 

3 

Conventional ED 0.7 Low 

Improved ED 0.75 Moderate 

DL-SS 0.8 High 

Proposed MUD-SLC 0.81 Moderate 

 

 

3.3.  Real-world applicability 

While simulation results confirm the robustness of the proposed MUD-SLC framework, real world 

validation remains a crucial step to assess its practical effectiveness. In real deployments, additional factors 

such as hardware imperfections, non-linearities, user mobility and rapidly changing spectrum environments 

can significantly influence system performance. Future work will focus on implementing the framework in a 
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physical testbed to evaluate its reliability under such non-ideal conditions. This includes testing with real 

cognitive radio hardware platforms, measuring detection accuracy in the presence of dynamic interference 

and observing performance in varying mobility scenarios such as UAV-assisted or vehicular networks. These 

experiments will help bridge the gap between theoretical simulations and practical deployment, ensuring the 

frameworks adaptability to 5G and beyond wireless systems. 

 

3.4.  Discussion 

The proposed MUD-SLC SS framework effectively addresses key challenges faced by traditional 

ED methods, particularly under low-SNR conditions and in multi-user environments. By integrating MUD, 

the framework separates signals from multiple users, significantly reducing co-channel interference. 

Additionally, the SLC technique aggregates energy across spatial paths, resulting in a higher PD even in the 

presence of fading and noise uncertainty. 

Comparative analysis with prior studies further underscores the advantages of the proposed method. 

Unlike [24] and [25], which rely solely on SLC for ED, the MUD-SLC framework combines MUD for 

interference mitigation and SLC for energy aggregation, achieving superior performance. For instance, at an 

SNR of -15 dB, the proposed method achieves a PD of 0.81, compared to 0.77 for [24] and [25], respectively. 

Similarly, at a Pfa of 0.4 the proposed system attains a PD of 0.90, exceeding the performance of the 

reference systems. The proposed MUD-SLC framework demonstrates superior detection performance, 

achieving a PD of 0.81 at Pfa=0.15, compared to 0.75 for improved ED and 0.80 for DL-SS. Unlike DL-SS, 

which demands high computational resources, the MUD-SLC method balances performance and efficiency, 

making it more suitable for resource-constrained environments. 

While the framework demonstrates significant improvements in PD, it introduces additional 

computational complexity due to the MUD process. Future research could explore adaptive thresholding 

techniques or machine learning approaches to optimize the framework for real-time applications. This 

refinement could further enhance the applicability of the MUD-SLC framework in CR networks, particularly 

in dynamic and resource constrained environments. While the dataset is based on simulation, the framework 

is designed to operate in dynamic real-world environments. Future research will confirm its validity 

performance using experimental testbeds to account for hardware imperfections, mobility and interference 

from external sources. 

 

 

4. CONCLUSION  

This research presents a robust SS framework for MIMO-OFDM CR networks, combining MUD and 

SLC techniques. The proposed system delivers superior detection performance, especially in low-SNR and 

interference-prone environments. Key findings indicate that the MUD-SLC framework achieves a PD of 0.81 

at an SNR of -15 dB, significantly outperforming existing SLC-based methods. At a Pfa of 0.15 and an SNR 

of -15 dB, the framework surpasses conventional and advanced approaches. By reducing interference through 

MUD and enhancing signal aggregation using SLC, the system improves spectrum utilization and network 

reliability in dynamic and challenging conditions. Although the approach provides substantial benefits, the 

computational complexity could present difficulties for real-time deployment. However, the balance between 

computational efficiency and performance makes it practical for various applications. Future research could 

focus on developing adaptive algorithms and conducting testbed validations to further optimize complexity 

and enhance real-world performance. These advancements will support the integration of CR systems in 

next-generation wireless networks, including 5G and beyond. 
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