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 In the realm of agriculture and food processing, the automated classification 

of rice grains holds significant importance. The diverse varieties of rice 

available demand a systematic approach to categorization. This study tackles 

this challenge by employing diverse machine learning models, including 

support vector machine (SVM), random forest (RF), logistic regression 

(LR), decision tree (DT), Gaussian naive Bayes (GNB), and k-nearest 

neighbors (K-NN). The dataset, sourced from Kaggle, features five distinct 

rice types: Arborio, Basmati, Ipsala, Jasmine, and Karacadag. After the 

images undergo preprocessing, a set of 13 distinct morphological features is 

extracted. These features ensure a comprehensive representation of rice 

grains for accurate classification. This study aims to create an intelligent 

system for efficient and precise rice grain classification, contributing to 

optimizing agricultural and food industry processes. Among the models, 

K-NN demonstrated the highest classification accuracy at 97.80%, 

surpassing random forest (97.51%), DT (97.48%), GNB (96.99%), SVM 

(96.85%), and LR (96.05%). Our proposed K-NN-based classification model 

achieves an accuracy of 97.8%, demonstrating competitive performance and 

outclassing several state-of-the-art methods such as artificial neural network 

(ANN) and modified visual geometry group16 (VGG16) while maintaining 

simplicity and computational efficiency. This underscores the effectiveness 

of K-NN and RF in enhancing the precision of rice variety classification. 
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1. INTRODUCTION 

Rice, a crucial dietary staple for a substantial segment of the global population, occupies a central 

position in ensuring worldwide food security and significantly influences economies while supporting 

livelihoods. With its unmatched nutritional importance, rice serves as a primary source of carbohydrates and 

essential nutrients, forming the dietary foundation for billions of people worldwide. The intricate relationship 

between the rising global production of rice and the increasing demand emphasizes the necessity for accurate 

classification methods. In the quest to optimize agricultural practices and ensure the production of high-

quality grains, this study delves into the classification of diverse rice varieties. With rice farming serving as a 

cornerstone of economies, particularly in Asia, this research aims to enhance agricultural efficiency and 

safeguard this vital global food resource. Arora et al. [1] introduce an automated rice grain classification 

system employing machine learning and image processing techniques. Using logistic regression and support 
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vector machine algorithms, they achieve 96% and 92% accuracy, respectively, in classifying various rice 

types. The system streamlines classification effectively but lacks advanced features for chalkiness detection 

and comprehensive grain quality evaluation, suggesting potential for further refinement. 

Nagod and Ranathunga [2] present a novel method for rice quality identification using image 

processing and machine learning. Their approach achieves 96.0% segmentation and 88.0% classification 

accuracy across six rice categories, showing improved seed segmentation and reduced processing time. 

While efficient with lightweight algorithms, the method requires enhancements in stone identification 

accuracy, indicating scope for future research improvements. Kiratiratanapruk et al. [3] propose machine 

vision for automated paddy rice seed classification, offering a cost-effective alternative to manual methods. 

Comparing statistical (logistic regression (LR), linear discriminant analysis (LDA), k-nearest neighbors 

(K-NN), support vector machine (SVM)) and deep learning models (visual geometry group16 (VGG16), 

VGG19, Xception, InceptionV3, InceptionResNetV2), SVM achieves subgroup accuracies of 90.61%, 

82.71%, and 83.9%, while InceptionResNetV2 attains 95.15%. Deep learning surpasses traditional methods 

by up to 11.24%, indicating potential for improved seed quality inspection in agriculture. Aukkapinyo et al. 

[4] propose an automated rice grain classification approach using a mask region-based convolutional neural 

network (R-CNN) based method and marker-based watershed algorithm. Their model achieves a mean 

average precision (mAP) of 1.0 for sticky and paddy rice grains when aligned manually, and an average mAP 

of approximately 0.75 for classifying five subtypes. Intriguingly, their trained classifier outperforms human 

experts with an average mAP of 0.80. Krishna et al. [5] have developed an automated system utilizing image 

processing techniques to categorize rice grains. Their system, utilizing MATLAB with neural networks (NN) 

and SVM, achieves precise and efficient assessment of rice quality, surpassing traditional manual methods. 

They also suggest improvements in stone identification accuracy through additional validation procedures. 

Ibrahim et al. [6] proposes an automated method for classifying rice grains using image processing methods. 

They apply feature extraction techniques and multi-class SVM classification to distinguish between three 

types of rice, achieving an impressive accuracy rate of 92.22% on a test set of 90 images. Ruslan et al. [7] 

employ image processing techniques combined with machine learning for the classification of weedy rice 

seeds. Their method achieves an impressive 85.3% sensitivity and 97.9% accuracy using logistic regression 

with RGB images. The optimized SVM model achieves a high accuracy rate of 97.3%. Singh and Chaudhury 

[8] present a cascade network classifier designed for the classification of rice grains. Utilizing a combination 

of morphological, color, texture, and wavelet features, the model achieves accuracy rates of 97.75% with 

morphological features and 96.75% with three selected features. 

Cinar and Koklu [9] focus on classifying five rice varieties using machine learning algorithms, 

achieving peak accuracies of 97.99% with random forest using morphological features and 99.25% using 

logistic regression for color features. Farahnakian et al. [10] investigate novel deep-learning models, 

evaluating residual network (ResNet), visual geometry group (VGG) network, EfficientNet, and MobileNet. 

The analysis showcases EfficientNet achieving the highest accuracy (99.67%), while MobileNet excels in 

speed. Nga et al. [11] classify 17 Vietnamese rice varieties using image processing techniques, achieving 

accuracies of 93.94% with a novel binary particle swarm optimization (BPSO)+SVM method and 89.1% 

with sparse representation-based classification (SRC). Kuo et al. [12] achieve an 89.1% accuracy in 

identifying 30 rice grain varieties using image analysis and SRC. Carneiro et al. [13] effectively characterize 

rice grain physicochemical composition using near-infrared spectroscopy (NIR) with machine learning 

models, achieving high accuracy (93.9%) with the random tree model (RandT). Ahmed et al. [14] categorize 

image-based rice grains using geometric, deep learning, supervised, unsupervised, and statistical approaches, 

highlighting the efficacy of deep learning techniques. Srimulyani and Musdholifah [15] enhance rice variety 

identification in Indonesia using NN, achieving improved accuracy through geometry features. Singh and 

Chaudhury [16] classify four varieties of bulk rice grain images using back-propagation neural network 

(BPNN), achieving an average classification accuracy exceeding 96% across all features and datasets. 

Aznan et al. [17] employed computer vision and machine learning methods to categorize commercial rice 

samples based on dimensionless morphometric and color parameters extracted from smartphone photos. 

Their artificial neural network (ANN) model, using Bayesian regularization (BR) technique, achieved the 

highest classification accuracy of 93.9% among 15 rice varieties. Hamzah and Mohamed [18] discussed the 

significance of employing technology to classify white rice grain quality, achieving a high accuracy of 96% 

using BPNN. To successfully breed rice and satisfy customer desires, it is essential to determine the 

characteristics of rice grain quality (RGQ), which include milling, storage, cooking, nutritional value, and 

market qualities. Regional preferences differ; for example, Middle Eastern customers prefer fragrant, well-

milled long-grain rice, whereas Europeans choose long-grain, nonaromatic rice. Global demand for high-

quality rice is growing. It can be very helpful to generate new rice varieties with improved RGQ if the 

genetic mechanisms underlying grain quality quantitative trait loci (QTLs) and their constraints are 

understood [19]. 
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Ahad et al. [20] compare CNN-based deep learning architectures for detecting and localizing nine 

epidemic rice diseases in Bangladesh, achieving an accuracy of 98% with an ensemble model.  

Tran-Thi-Kim et al. [21] classify 17 rice grain varieties using CNN models, achieving accuracies of 92.82% 

with ANN, 96.41% with modified VGG16, and 97.88% with modified ResNet50. Patel and Sharaff [22] 

categorize ten paddy rice varieties using image processing, achieving advantages in speed and cost-

effectiveness. Kurade et al. [23] introduce a cost-effective rice quality assessment system using machine 

learning algorithms, achieving a high accuracy of 77% with random forest classifier. Deepika et al. [24] 

evaluate grain quality traits in 21 rice hybrids using digital imaging, accurately classifying grain size and 

type, and identifying potential resources for aroma-type rice breeding programs.  

This study addresses the challenges of manual rice grain classification, which is often labor-

intensive and prone to subjective inconsistencies. By applying machine learning techniques, we aim to 

revolutionize the classification process, ensuring precision and consistency. Key contributions include: 

a. Automation of rice grain classification: transitioning from traditional human-dependent methods to a fully 

automated system using advanced machine learning algorithms, including support vector machine 

(SVM), Gaussian naive Bayes (GNB), logistic regression (LR), decision tree (DT), k-nearest neighbors 

(K-NN), and random forest (RF).  

b. Enhancing classification accuracy: leveraging data-driven algorithms to improve the accuracy and 

reliability of rice grain classification, meeting the demands of precision agriculture. 

c. Feature extraction for grain representation: identifying and extracting critical morphological features to 

comprehensively represent rice grains, enabling robust classification. 

d. Performance evaluation of algorithms: conducting comparative analysis of various machine learning 

models to identify the most effective approach for rice grain classification. 

e. Rigorous validation: ensuring reliability through extensive testing and analysis to validate the system's 

performance across diverse rice grain varieties. 

This study significantly contributes to precision agriculture by advancing the systematic 

categorization of rice varieties, paving the way for more consistent and efficient agricultural practices. The 

subsequent sections of this paper unfold seamlessly, with section 2 detailing materials and methods for rice 

grain classification utilizing diverse machine learning algorithms, section 3 offering a comprehensive 

analysis of results, and section 4 encapsulating our findings while proposing avenues for future research in 

the domain of rice grain classification. 

 

 

2. MATERIALS AND METHODS 

This section outlines the sequential process implemented to achieve the objectives of rice grain 

classification. The flowchart shown in Figure 1 illustrates the overall process of rice grain classification 

methodology. The subsections spanning from 2.1 to 2.6 will provide a brief overview of each step outlined in 

the flowchart. 

 

 

 
 

Figure 1. Infographic flowchart of overall process 

 

 

2.1.  Data collection 

The study begins with the collection of data from a publicly available repository on Kaggle [25]. 

The dataset is systematically organized into a main directory named 'Rice_Dataset,' which contains five 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Morphological features for multi-model rice grain classification (Suma D.) 

3215 

subfolders. Each subfolder represents a specific class label corresponding to different varieties of rice: 

Arborio, Basmati, Sala, Jasmine, and Karacadag. These subfolders collectively house a total of 75,000 

images, with each class folder containing precisely 15,000 images. This well-structured dataset serves as a 

robust foundation for the classification task, ensuring a balanced and comprehensive representation of the 

five rice varieties. Such meticulous organization aids in effective preprocessing, training, and evaluation of 

the classification models developed in the study. 

 

2.2.  Data preparation 

Upon acquiring the images from the Kaggle repository, a Pandas DataFrame, depicted in Table 1, is 

generated to systematically arrange the data. The DataFrame comprises two primary columns: one for storing 

the file paths directing to the gathered images and another for the corresponding class labels. This organized 

format facilitates efficient manipulation and analysis of the dataset. In this phase, images were transformed 

into grayscales and subjected to Otsu’s thresholding for binary segmentation. Connected component labeling 

identified distinct regions, facilitating essential property extraction. These preprocessing steps aim to 

normalize and streamline data for efficient feature extraction. The Figures 2(a), 2(b), and 2(c) depict the 

original, grayscale, and segmented rice grain images, respectively. 

 

 

Table 1. DataFrame samples comprising image paths and corresponding labels 
Sl. No. File path Label 

1 Rice_Dataset/Arborio/Arborio (9099).jpg Arborio 

2 Rice_Dataset/Arborio/Arborio (91).jpg Arborio 

… … … 
74999 Rice_Dataset/Karacadag/Karacadag (10897).jpg Karacadag 

75000 Rice_Dataset/Karacadag/Karacadag (10898).jpg Karacadag 

 

 

   
(a) (b) (c) 

 

Figure 2. Preprocessing steps (a) original image, (b) grayscale image, and (c) segmented image 

 

 

The rationale behind the pre-processing techniques employed lies in their ability to standardize and 

enhance the quality of the input data for subsequent analysis. Converting images to grayscale simplifies 

computational complexity while preserving essential visual information necessary for classification. Otsu's 

thresholding for binary segmentation enables the separation of rice grains from the background, facilitating 

more precise feature extraction. Additionally, connected component labeling aids in identifying and isolating 

distinct regions within the segmented images, thereby enhancing the accuracy of morphological property 

extraction. Overall, these pre-processing steps aim to streamline the data and optimize it for efficient feature 

extraction, ultimately improving the performance of the classification model. 

 

2.3.  Feature extraction 

The feature extraction phase involves transforming raw data into a format suitable for modeling. In 

this phase, essential 13 morphological features were derived from the segmented rice grain images. This 

includes characteristics such as major and minor axis lengths, perimeter, eccentricity, area, convex area, 

extent, solidity, orientation, equivalent diameter, compactness, aspect ratio, and roundness. The major and 

minor axis lengths represent the longest and shortest diameters of the rice grain, respectively. Perimeter refers 

to the length of the rice grain's boundary, while eccentricity describes the shape of the rice grain's ellipse. 

Area and convex area quantify the size of the rice grain and its convex hull, respectively. Extent measures the 

ratio of the area of the rice grain to the area of its bounding box, providing insights into the extent of 

coverage. Solidity indicates the compactness of the rice grain, calculated as the ratio of the area of the rice 

grain to its convex area. Orientation describes the angle of the major axis of the rice grain's bounding ellipse 

with the horizontal axis. Equivalent diameter represents the diameter of a circle with the same area as the rice 

grain. Compactness quantifies how closely the rice grain's shape approaches that of a circle. Aspect ratio is 

the ratio of the major axis length to the minor axis length, indicating elongation or compactness. Lastly, 

roundness measures how close the rice grain's shape is to a perfect circle, with a value of 1 indicating a 
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perfect circle. These morphological features were carefully selected for their relevance to rice grain 

characteristics and their potential to contribute to accurate classification. 

These features serve as quantitative descriptors, capturing crucial information about the shape and 

structure of individual rice grains. The extraction process facilitates the creation of a feature matrix, forming 

the basis for subsequent machine learning model training and analysis. Furthermore, these extracted features 

were written to a CSV file for comprehensive data storage and further exploration. Table 2 visually presents 

the File path, Label and the 13 extracted morphological features for three rice grain images, providing a 

visual representation of the quantitative characteristics derived from the image analysis process. 

 

 

Table 2. File path, label, and the 13 extracted morphological features of rice samples 
File path Label Area Perimeter Major axis Minor axis Extent 

Rice_Dataset/Arborio/Arborio(9099).jpg Arborio 7835 366.132 138.316 73.319 0.625 

Rice_Dataset/Arborio/Arborio(91).jpg Arborio 7625 361.989 136.584 72.428 0.635 
Rice_Dataset/Arborio/Arborio(910).jpg Arborio 6859 342.936 135.926 64.750 0.764 

… … … … … … … 

Eccentricity Convex area Solidity Orientation Equivalent 

diameter 

Compactness Aspect ratio Roundness 

0.847 8076 0.970 0.728 99.879 1.361 1.886 0.521 

0.847 7872 0.968 -0.622 98.531 1.367 1.885 0.520 

0.879 6986 0.981 -0.113 93.451 1.364 2.099 0.473 

… … … … … … … … 

 

 

2.4.  Feature selection 

In the feature selection stage, a meticulous process is undertaken to identify and retain the most 

informative subset of features among the extracted morphological descriptors. Recursive feature elimination 

(RFE) is employed to systematically eliminate less significant features, ensuring that the refined feature set 

maintains the highest relevance for subsequent machine learning model training. This strategic selection 

enhances model interpretability, mitigates overfitting, and optimizes the predictive capability of the chosen 

features. 

 

2.5.  Apply machine learning algorithms  

The machine learning algorithms used in this study are summarized in Table 3, providing a 

comprehensive overview of the classification methods employed. Support vector machines are employed for 

their effectiveness in handling complex decision boundaries and high-dimensional feature spaces. Given the 

intricate morphological characteristics of rice grains, SVM's ability to create optimal hyperplanes for 

classification is advantageous. The linear kernel is chosen for its simplicity and suitability for the dataset. 

Random Forests are chosen for their robustness and ability to handle many features. In the context of rice 

grain classification, where numerous morphological features contribute to the differentiation of classes, RF 

provides an ensemble of decision trees for improved accuracy. Setting the tree count in the forest at 100 

achieves a balance between computational efficiency and the effectiveness of the model. Logistic regression 

is selected for its simplicity and efficiency in binary and multiclass classification tasks. In rice grain 

classification, where interpretability is valuable, LR provides a straightforward probabilistic framework. The 

'saga' solver is employed for optimization. The iteration limit is established at 14,000 to ensure convergence. 

 

 

Table 3. Machine learning algorithms used for classification 
Algorithm Description 

Support vector machine Supervised learning model for classification tasks 

Random forest Ensemble learning method for classification tasks 

Logistic regression Regression analysis for binary classification tasks 
Decision tree Tree-like model for classification and regression tasks 

Gaussian naive Bayes Probabilistic classifier based on Bayes' theorem 

K-nearest neighbors Instance-based learning method for classification 

 

 

Decision trees are selected for their interpretability and suitability for both numerical and categorical 

data. In rice grain classification, where understanding the decision path is crucial, decision trees provide a 

clear structure based on morphological features. Reduced error pruning (REP) is applied to optimize the tree 

structure by removing unnecessary branches and prevent overfitting. Gaussian naive Bayes is chosen for its 

simplicity and effectiveness in handling continuous data. In the context of rice grain classification, where 
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morphological features can be considered as continuous variables, GNB's assumption of feature 

independence simplifies the modeling process. The utilization of K-NN is done due to its simplicity and 

capacity to capture local patterns within the data. In rice grain classification, where the similarity of 

morphological features is significant, K-NNs approach of assigning labels based on neighboring instances 

proves effective. The number of neighbors (k) is set to 5 for a balanced trade-off between bias and variance. 

The rationale behind the selection of specific machine learning algorithms stems from their proven 

effectiveness in classification tasks, particularly in contexts like rice grain classification. Support vector 

machine is chosen for its ability to handle high-dimensional data and non-linear decision boundaries 

effectively. Random forest is selected due to its robustness to overfitting and its capability to handle large 

datasets with high dimensionality. Logistic regression is included for its simplicity, interpretability, and 

suitability for binary classification tasks. Decision tree is chosen for its intuitive representation of decision 

rules and ease of understanding. Gaussian naive Bayes is included for its simplicity, scalability, and 

efficiency, particularly in cases of small training datasets. Lastly, k-nearest neighbors are selected for their 

simplicity and flexibility in handling multi-class classification problems, relying on local information rather 

than assuming a specific data distribution. Collectively, these algorithms offer a diverse range of 

methodologies that complement each other, ensuring comprehensive exploration of the rice grain 

classification problem. Furthermore, the optimization of hyperparameters involved techniques such as grid 

search, which systematically explores diverse parameter combinations to identify the optimal model. 

Additionally, cross-validation was utilized to enhance this process by evaluating the model's generalization 

ability across various data subsets. Through these methodologies, our models were fine-tuned to attain 

optimal performance on the dataset while mitigating the risk of overfitting. 

 

2.6.  Model evaluation and data visualization 

In this phase, a comprehensive set of metrics and techniques has been employed to assess and 

portray the performance of the classification models. The confusion matrix presents a detailed breakdown of 

predicted and actual class labels, shedding light on the model's classification performance. Figure 3 illustrates 

the confusion matrix for multiclass classification, aiding in the interpretation of classification results. From 

the confusion matrix, several metrics are calculated to holistically assess the performance of the rice grain 

classification model. Equations (1)-(4) provide formulas for averaged precision, averaged recall, F1-score, 

and averaged accuracy calculations. 

 

 

 
 

Figure 3. Confusion matrix for multiclass classification 
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∑

𝑡𝑝𝑖
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Average accuracy =  
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3. RESULTS AND DISCUSSION 

The performance evaluation of our rice grain classification models was carried out on a system 

equipped with a dual-core Intel® Core™ i3-2370M processor and 4GB of RAM. To assess the effectiveness 

of the models in distinguishing between different varieties of rice, we employed various metrics as outlined 

in section 3, including 3.1 confusion matrix, 3.2 performance metrics, 3.3 receiver operating characteristic 

(ROC) curve, and 3.4 performance comparison and justification of the proposed model. These metrics, along 

with the subsequent discussion, provide a comprehensive evaluation of the classification models.  

 

3.1.  Confusion matrix  

In Tables 4 to 9, the confusion matrices depict the performance of various models-SVM, RF, LR, 

DT, GNB, and K-NN respectively. Each row signifies the true class, and each column denotes the predicted 

class. Diagonal elements (top-left to bottom-right) signify accurate predictions, while off-diagonal elements 

indicate misclassifications. 

 

 

Table 4. Confusion matrix for SVM 
 Predicted Labels 

T
ru

e 
L

ab
el

s 

 Arborio Basmati Ipsala Jasmine Karacadag 

Arborio 3618 0 1 10 134 

Basmati 0 3539 0 190 0 
Ipsala 10 0 3862 10 0 

Jasmine 8 131 6 3548 1 
Karacadag 90 0 0 0 3592 

 

 

Table 5. Confusion matrix for RF 
 Predicted Labels 

T
ru

e 
L

ab
el

s 

 Arborio Basmati Ipsala Jasmine Karacadag 

Arborio 3601 0 7 8 147 

Basmati 0 3564 0 75 0 

Ipsala 7 0 3862 13 0 

Jasmine 7 97 7 3582 1 

Karacadag 98 0 0 0 3584 

 

 

Table 6. Confusion matrix for LR 
 Predicted Labels 

T
ru

e 
L

ab
el

s 

 Arborio Basmati Ipsala Jasmine Karacadag 

Arborio 3528 0 4 25 206 

Basmati 0 3531 0 198 0 
Ipsala 43 0 3834 5 0 

Jasmine 19 135 11 3525 4 

Karacadag 92 0 0 0 3590 

 

 

Table 7. Confusion matrix for DT 
 Predicted Labels 

T
ru

e 
L

ab
el

s 

 Arborio Basmati Ipsala Jasmine Karacadag 

Arborio 3580 0 3 11 169 
Basmati 1 3661 0 67 0 

Ipsala 9 0 3858 14 1 

Jasmine 4 105 11 3573 1 
Karacadag 75 0 0 0 3607 

 

 

Table 8. Confusion matrix for GNB 
 Predicted Labels 

T
ru

e 
L

ab
el

s 

 Arborio Basmati Ipsala Jasmine Karacadag 

Arborio 3603 0 0 18 142 

Basmati 0 3560 0 169 0 

Ipsala `17 0 3480 25 0 
Jasmine 0 79 1 3613 1 

Karacadag 112 0 0 0 3570 
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3.2.  Performance metrics  

Figures 4 to 7 compare the precision, recall, F1-score, and accuracy of six machine learning models 

in classifying five different types of rice grains. In terms of precision in Figure 4, K-NN achieves the highest 

average precision (97.60%), followed by RF (97.40%), DT (97.40%), GNB (97.00%), SVM (96.60%), and 

LR (96.00%). For recall in Figure 5, K-NN again leads with the highest average recall (97.80%), with RF and 

DT (both 97.40%), GNB (97.00%), SVM (96.80%), and LR (96.20%) following. Similarly, for the F1-score 

in Figure 6, K-NN maintains the highest average F1-score (97.80%), followed by RF and DT (both 97.60%), 

SVM and GNB (both 97.00%), and LR (96.00%). Finally, in terms of accuracy in Figure 7, K-NN emerges as 

the highest-performing classifier with 97.80% accuracy, followed by RF (97.51%), DT (97.48%), GNB 

(96.99%), and both SVM and LR (96.85%). 

 

 

Table 9. Confusion matrix for K-NN 
 Predicted Labels 

T
ru

e 
L

ab
el

s 

 Arborio Basmati Ipsala Jasmine Karacadag 

Arborio 3610 0 1 8 144 

Basmati 2 3564 0 73 0 

Ipsala `11 0 3856 15 0 
Jasmine 6 176 6 3605 1 

Karacadag 78 0 0 0 3604 

 

 

 
 

Figure 4. Comparison of precision of various machine learning models for rice grain classification 

 

 

 
 

Figure 5. Comparison of recall of various machine learning models for rice grain classification 
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Figure 6. Comparison of F1-score of various machine learning models for rice grain classification 

 

 

 
 

Figure 7. Comparison of accuracy of various machine learning models for rice grain classification 

 

 

3.3.  Receiver operating characteristic (ROC) curve 

In multi-class classification, the ROC curve signifies the overall discriminatory power of the model 

across all classes. The area under the ROC curve (AUC) provides a measure of the model’s ability to 

distinguish between different classes, with higher AUC indicating better performance. Overall, the ROC 

curve for multi-class classification provides valuable insights into the model’s classification accuracy across 

multiple classes and the effectiveness of the chosen discrimination threshold. To enhance the interpretability 

of the results, ROC curves have been utilized. Additionally, the AUC is calculated, providing a summarized 

metric for the model’s discrimination ability. The robust elucidation of the models’ effectiveness in the 

intricate task of rice grain classification is achieved through the concerted application and integration of a 

diverse array of model evaluation techniques and sophisticated data visualization methods. We performed a one-

way analysis of variance (ANOVA) statistical test to assess if there were any statistically significant variations 

in accuracy across the means of the six different models utilized in the analysis. The obtained high p-value 

indicates that our models reveal no notable disparities in accuracy among the machine learning models. 

Figures 8(a) to 8(f) illustrates the ROC curves for six classification models-SVM, RF, LR, DT, 

GNB, and K-NN respectively. These curves visually represent each model’s ability to distinguish between 

true positive and false positive rates across different classification thresholds. The ROC analysis facilitates a 

comprehensive assessment of each model’s efficacy in binary classification tasks, aiding in the selection of 

optimal models based on their discriminatory power and overall accuracy. The corresponding AUC values, 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Morphological features for multi-model rice grain classification (Suma D.) 

3221 

summarized in Table 10, provide a concise measure of discriminative performance, with higher AUC values 

indicating superior discriminatory abilities. Different models perform differently for each rice grain class. For 

example, In Table 10, in the Arborio class, the GNB model achieves the highest AUC value of 0.9976, 

indicating strong performance in distinguishing Arborio rice grains. Similarly, in the Jasmine class, the RF 

model achieves the highest AUC value of 0.9981. While RF generally performs well across all classes, 

certain models may excel in specific classes. For example, the LR model achieves a particularly high AUC 

value of 0.9997 for the Ipsala class, indicating its effectiveness in distinguishing Ipsala rice grains. 

 

 

  
(a) (b) 

  

  
(c) (d) 

  

  
(e) (f) 

 

Figure 8. ROC for different classification models (a) SVM, (b) RF, (c) LR, (d) DT, (e) GNB, and (f) K-NN 
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Table 10. AUC for each class 
Models 

 

Class 

Arborio Basmati Ipsala Jasmine Karacadag 

SVM 

RF 

LR 
DT 

GNB 

K-NN 

0.9863 0.9964 0.9998 0.9851 0.9979 

0.9970 0.9980 0.9990 0.9981 0.9978 

0.9957 0.9967 0.9997 0.9951 0.9976 
0.9954 0.9976 0.9994 0.9967 0.9969 

0.9976 0.9983 0.9999 0.9974 0.9983 

0.9943 0.9957 0.9985 0.9962 0.9966 

 

 

3.4.  Performance comparison and justification of the proposed model  

Table 11 highlights the performance of various methods for rice grain classification and related 

tasks, demonstrating the strengths and trade-offs of each approach. Our proposed K-NN classifier achieved 

an impressive accuracy of 97.80%, closely matching advanced models like the modified ResNet50 (97.88%) 

and CNN-based ensemble models (98%). Despite being a simpler and computationally less intensive 

algorithm compared to deep learning or ensemble approaches, our K-NN model offers a competitive edge by 

delivering high accuracy with reduced complexity. This simplicity makes it more accessible and efficient for 

practical implementation, particularly in scenarios where computational resources are limited. In contrast to 

methods focusing on specific traits or emphasizing cost-effectiveness, our model strikes an excellent balance 

between simplicity and performance, proving its effectiveness in rice grain classification tasks. 

 

 

Table 11. Comparison of proposed K-NN classifier with benchmark methods for rice grain classification 
Author(s) Method Task Accuracy Key remarks 

Our method K-NN classifier Classify rice grains 97.8% High accuracy achieved 

using K-NN 
Ahad et al. [20] CNN-based deep 

learning ensemble 

model 

Detect and localize nine 

epidemic rice diseases 

98% Ensemble model used for 

rice disease detection 

Tran-Thi-Kim 

et al. [21] 

CNN, ANN, Modified 

VGG16, Modified 

ResNet50 

Classify 17 rice grain 

varieties 

ANN: 92.82%, 

VGG16: 96.41%, 

ResNet50: 97.88% 

Modified ResNet50 

achieved highest accuracy 

Patel et al. [22] Image processing Categorize ten paddy 

rice varieties 

87% Speed and cost advantages 

highlighted 

Kurade et al. 
[23] 

Random forest classifier Rice quality assessment 
system 

77% Focus on cost-effective 
rice quality assessment 

Deepika et al. 

[24] 

Digital imaging Evaluate grain quality 

traits in 21 rice hybrids 

91% Focus on aroma-type rice 

breeding potential 

 

 

K-NN emerged as the best-performing algorithm among the six algorithms used in our study. The 

specific advantages of the K-NN approach, such as its simplicity, effectiveness in handling non-linear data, 

and potential for easy implementation and interpretation, make it a compelling choice for rice grain 

classification tasks, particularly in scenarios where complex decision boundaries and interpretability are 

paramount. This may include investigating alternative feature selection techniques, exploring ensemble 

methods, or incorporating domain-specific knowledge to improve the overall performance and robustness of 

the K-NN approach in future research endeavors. 

Acknowledging potential biases or limitations associated with the chosen machine learning 

algorithms is crucial for ensuring a robust analysis. These algorithms may exhibit biases due to their inherent 

assumptions, parameter settings, or sensitivity to outliers and noise in the dataset. To mitigate these 

challenges, strategies such as sensitivity analysis, robustness testing, and ensemble methods can be 

employed. Sensitivity analysis and robust testing enable evaluation under various scenarios and parameter 

settings, identifying and addressing vulnerabilities. Ensemble methods, including combining multiple 

classifiers or using model averaging techniques, can help mitigate individual algorithm biases and enhance 

classification performance. Additionally, techniques like cross-validation and regularization aid in reducing 

overfitting and improving generalization ability. By proactively addressing these biases and implementing 

appropriate mitigation strategies, we can ensure a more reliable analysis of the rice grain classification 

problem. 

Our study's findings hold practical implications for precision agriculture, aiding farmers in 

accurately classifying rice varieties for optimized crop management and resource allocation. The developed 

intelligent system offers real-time classification support, potentially integrating into existing agricultural 

technology. Beyond agriculture, these methodologies extend to medical imaging and industrial quality 
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control, showcasing the versatility and broader impact of our research. The adoption of machine learning 

solutions in smart farming can have positive environmental and economic impacts. These technologies 

promote sustainable practices by optimizing resource usage and reducing waste through precise application 

of inputs. Economically, farmers benefit from increased productivity and reduced operational costs, leading 

to improved profitability. This integration into smart farming practices not only boosts efficiency but also 

opens avenues for new revenue streams and business opportunities. 

 

 

4. CONCLUSION AND FUTURE WORK 

This study has explored the classification of rice grains utilizing a diverse set of machine 

learning algorithms, including support vector machine (SVM), random forest (RF), logistic regression (LR), 

decision tree (DT), Gaussian naive Bayes (GNB), and K-nearest neighbors (K-NN). Following a thorough 

evaluation K-NN emerged as the top-performing model, demonstrating exceptional precision, recall, F1-

score, and accuracy. Leveraging morphological features extracted from segmented rice grain images and 

effective preprocessing techniques such as grayscale conversion and Otsu's thresholding during 

segmentation, K-NN achieved an impressive accuracy of 97.80%. The experimental results validate that our 

K-NN model not only offers a simpler alternative but also outperforms several state-of-the-art approaches, 

such as ANN and Modified VGG16, in terms of accuracy and efficiency for rice grain classification. This 

outcome highlights the robustness and potential of K-NN as a reliable tool for rice grain classification, laying 

a strong foundation for future advancements in quality assessment within the agricultural and food processing 

industries.  

Addressing limitations, our study could benefit from a more diverse dataset to better represent real-

world rice varieties. To mitigate biases, future research could explore automated hyperparameter tuning 

methods for more objective parameter selection. In future research, there is potential to explore the 

integration of advanced deep learning methods, such as convolutional neural networks (CNNs), to improve 

model accuracy. Expanding the dataset to encompass a broader range of rice varieties would enhance the 

depth of the evaluation process. Further refinement could be achieved by incorporating additional 

morphological and textural features and exploring ensemble methods. Additionally, investigating the real-

time implementation of these models for practical applications in rice quality assessment would be a valuable 

avenue for future exploration. 
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