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 Surface defects greatly affect the performance and service life of 

photovoltaic (PV) modules. Detecting these defects is important to improve 

the management, repair and maintenance of PV panels. With the 

development of artificial intelligence, computer vision brings higher 

accuracy and lower labor costs than traditional inspection methods. This 

paper introduces an improved PV you only look once v10 (YOLOv10) 

model for detecting surface defects of PV modules. The improvement 

includes adding an exponential moving average (EMA) attention mechanism 

to the neck, using a cycle generative adversarial network (GAN) to enhance 

the data, and replacing the YOLOv10 head with a YOLOv9 head to retain 

non-maximum suppression (NMS). Experiments show that the proposed 

model outperforms state-of-the-art methods such as YOLOv10s, n, x, b, l, 

and e, achieving superior detection accuracy. Despite the increased 

computational cost, the proposed method improved mAP@0.5 and 

mAP@0.5:0.95 by 5.1% and 6.5% over the original YOLOv10s. 
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1. INTRODUCTION 

Nowadays, environmental issues and climate change are gaining much attention from individuals, 

organizations and governments around the world. One of the most important aspects to protect the human 

environment is the need to reduce greenhouse gas emissions to deal with the problem of global warming. The 

key, the main driving force of the above task is the need to promote the development of renewable energy, 

represented by photovoltaic power generation [1]. Numerous statistical findings have confirmed the 

significance of photovoltaic (PV) systems and grid-connected PV plants worldwide. By the end of 2024, the 

cumulative installed capacity of solar power systems globally is expected to reach approximately 1.9 TW, up 

sharply from 1.177 TW at the end of 2022. This increase reflects the explosive growth of solar energy, 

especially in large markets such as China and the United States [2]. In addition, the installation of PV plants 

has driven the rapid increase in solar cell deployment globally. For example, in the United States, the 

cumulative installed capacity of solar power systems is expected to reach approximately 160 GW by the end 

of 2024 [2]. Meanwhile, in China, the cumulative installed capacity of solar PV systems is forecast to reach 

approximately 662 GW [2]. However, the power efficiency of photovoltaic cells is frequently constrained by 

defects that impact both their performance and lifespan. These defects can cause energy loss by forming new 

https://creativecommons.org/licenses/by-sa/4.0/
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recombination pathways, converting light into heat instead of electricity, or even draining the energy stored 

in the battery, reducing the efficiency of PV modules [3]. 

Moreover, emerging generations of solar cells, including copper-indium-gallium-disulfide (CIGS) 

cells and Perovskite cells (PSCs), are facing challenges in improving energy conversion efficiency, reducing 

manufacturing costs, and limiting environmental impacts due to the use of toxic materials [4], [5]. Recently, 

the research and manufacturing industry has paid special attention to PSCs technology due to its simple 

fabrication process and high conversion efficiency. According to reports from KRICT and MIT, PSCs have 

achieved an efficiency of 25.2% [5]. However, PSCs still suffer from major problems of low stability, which 

are affected by factors such as water infiltration, temperature, and humidity conditions, causing chemical and 

structural changes. This can lead to increased costs and shortened lifespan. Thus, advancing fault detection 

techniques for predictive maintenance and condition monitoring of PV modules is highly important [5], [6]. 

There are three methods for detecting defects in PV systems, including image processing-based methods  

[7]–[10], electrical detection methods [11]–[14], and machine learning-based methods [15]–[24] [25]–[34] 

[35]. Although image processing and electrical detection methods have achieved quite good results, they lack 

the ability to adapt to environmental changes, are highly dependent on image quality, and require human 

intervention to adjust the algorithm. Recently, machine learning has emerged as a potential and effective 

solution, playing an important role in the development of the PV industry. Deep learning techniques have the 

potential to greatly enhance detection efficiency, optimize the inspection process at PV power plants, and aid 

in the operation and maintenance processes. Recent studies on PV defect detection using machine learning 

techniques are listed in Table 1. Because photovoltaic systems' effectiveness and performance are influenced 

by various factors, many specific problems are challenging to resolve. However, machine learning techniques 

can solve these challenges very well, making them popular in defect detection methods. 

 

 

Table 1. Machine learning models for detecting faults in photovoltaic systems and their outcomes 
Ref. Detection target Machine learning-method Results 

[15] Defects in PV cell Support vector machine (SVM), 
convolutional neural network 

(CNN) 

Accuracy (CNN): 88.42%; accuracy (SVM): 82.44% 

[16] Tiny cracks and dark spots, RandomNet50 Accuracy (RandomNet50): 88.23%, 

[17] Defects in PV CNN The BER is 7.73% for the binary classification problem. 

[18] Cracks, finger failures SVM, random forest (RF) Accuracy (SVM): 99.7%; Accuracy (RF): 96.7% 

[19] Detect defective panels DeepLabV3+, FPN and U-Net Accuracy (U-Net): 0.94; Accuracy (FPN): 0.92; 
Accuracy (DeepLabV3+): 0.87 

[20] Defects in PV GAN, VGG16 Accuracy (GAN): 0.945; Accuracy (VGG16): 0.96 

[21] Photovoltaic cell defects Light CNN 93.02% mAP 
[22] Failures in PV modules SVM 94.4% mAP 

[23] Cracks, oxygen-related defects, 

defects within cells, and solder 
disconnections. 

ResNet models; YOLO F1 scores of 0.83 (ResNet18) and 0.78 (YOLO) 

[24] Damaged gate, concealed  

crack, surface scratch,  
and hot_spot. 

Linear and quadratic 

discriminant analysis  
(LDA and QDA) 

The QDA algorithm performs better than LDA in the 

SNR index, enabling it to efficiently detect various 
defects in PV cells 

[25] Cracked, and heavily busbar-
corroded 

SVM, RF, and ANN Accuracy (SVM): 98.77%; Accuracy (RF): 96.6%; 
Accuracy (ANN): 98.13%; 

[26] Cracked, and corroded SVM, RF, and CNN Accuracy (SVM): 99.43%; Accuracy (RF): 97.46%; 

Accuracy (CNN): 99.71%; 
[27] Without defects, finger 

interruption, micro-crack, 

fracture 

Proposed CNN 83% mAP 

[28] Cracks, interconnect failures of 

cells, interruptions in contact, 

and corrosion of contacts. 

Deeplabv3 95.4% mAP 

 

[29] Cracks (linear and stellate), 

broken grids, black cores, 

unaligned, thick lines 

ResNet152–Xception 96.17% mAP 

 

[30] PV fault detection YOLOv2 and YOLOv3 YOLOv2 achieves an F1 score of 89%, while YOLOv3 

reaches 91% 

[31] Faulty area or hot_spot of the 
PV module. 

YOLOv3 34% mAP 

[32] PV fault detection YOLOv4, YOLOv4-tiny YOLOv4 has a mAP of 98.8%, whereas YOLOv4-tiny 

has a mAP of 91.0%. 
[33] PV modules with cracks and 

fragments 

YOLOv5 92.3% mAP 

[34] Hot_spot fault detection YOLOv5 98.1% mAP 
[35] PV panel defect detection YOLOv5 97.8% mAP 

[36] PV fault detection YOLOv8 94% mAP 
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To enhance the quality and efficiency of detecting defects in photovoltaic systems and support the 

sustainable advancement of the photovoltaic sector and new energy applications, automating the intelligent 

defect detection process through advanced computer technology is an essential technical solution. As image 

analysis and deep learning technologies continue to advance, the integration of computer vision technology 

with surface defect detection is becoming increasingly prevalent. Currently, machine learning techniques for 

detecting defects in PV cells are primarily categorized into two types. The first type includes traditional 

machine learning methods, which depend on manually designed feature extractors to establish complex 

recognition relationships but often face limitations in terms of generalization and robustness. The second 

category includes algorithms such as YOLO, region-CNN (R-CNN), MobileNet, InceptionV3, VGG16, and 

ResNet50, which use deep learning techniques to learn from a large number of samples, providing better 

generalization and robustness [19]–[21], [27]–[33] [34]–[36]. Among the recently widely used deep learning 

models with high detection speed and accuracy, the YOLO model, first introduced in 2016 [37], stands out. 

To overcome the low detection accuracy of the v1 model, YOLOv2 introduced anchor boxes and batch 

normalization [37]. Building on YOLOv2, YOLOv3 [37] featured a new Darknet architecture with 53 layers, 

advancing beyond feature pyramid networks to improve multi-scale fusion prediction and accuracy for 

detecting small and complex objects. YOLOv4 [37] offered a simpler target detection model, reducing the 

training threshold for the algorithm. YOLOv5 developed five variants (N/S/M/L/X) based on varying channel 

ratios and model sizes [37]. In late 2022, YOLOv6 and YOLOv7 were released almost simultaneously, with 

YOLOv6 integrating the RepVGG structure to optimize GPU performance and simplify technical 

implementation [37]. In January 2023, Ultralytics introduced YOLOv8, which made a major breakthrough in 

computer vision [37]. YOLOv8 differs from traditional anchor box-based methods by adopting an anchor 

box-free method by directly predicting the center of the object. YOLOv9, released in February 2024 [37], 

introduced two major improvements: the programmable gradient information (PGI) framework and the 

generalized efficient layer pooling network (GELAN). YOLOv10 [37], released in June 2024, demonstrated 

superior performance over its predecessors. Several case studies [30–36] on PV fault detection using variants 

of YOLO have demonstrated the richness of models and methods applied to this task. Notably, high accuracy 

is maintained across a variety of datasets and targets, with metrics such as mAP, AP, and F1. Variants like 

YOLOv3, YOLOv4, and YOLOv5 often achieve detection accuracy exceeding 98% in certain cases. 

The robustness and flexibility of YOLO models in detecting faults in PV systems are highlighted by 

these results. Therefore, YOLOv10 was improved and used as the main network in this study, which enables 

fast processing while ensuring high accuracy. The paper also introduces the EMA attention module, which 

allows the model to extract features efficiently without reducing the detection speed. YOLOv10 is used to 

detect various types of defects on the surface of photovoltaic panels, including broken, hot_spot, 

black_border, scratc, and no electricity. Additionally, this paper includes a comparison of YOLOv10 with its 

earlier versions. The paper's main contributions can be summarized as follows: 

a. Improve the neck part of YOLOv10 by integrating the EMA attention mechanism, to enhance the ability 

to capture the target features. 

b. Replace the head part of YOLOv10 with the head part of YOLOv9, because we found that removing non-

maximum suppression (NMS) in YOLOv10 does not give good results when dealing with many types of 

targets with different features, such as on the surface of PV panels, five types of defects. 

c. Propose using the cycle-GAN network for data augmentation, although the training time increases, the 

accuracy of the model has been significantly improved. Data augmentation brings advantages in detecting 

defects on the surface of PV panels. 

The organization of the rest of the paper is as follows: section 2 presents the proposed method, section 3 

includes the results and discussion, and section 4 concludes with the findings and future development 

directions. 

 

 

2. METHOD 

2.1.  Original YOLOv10 

Developed by researchers at Tsinghua University and based on Ultralytics Python, YOLOv10 

introduces a new approach to real-time object detection, aiming to address the limitations of architecture and 

post-processing found in previous versions of YOLO. The architecture of YOLOv10 is depicted in 

Figures 1 and 2. The architecture of YOLOv10 inherits the advantages of previous YOLO models while 

adding important improvements. The structure of the model includes the following main components: 

Backbone, serving as the feature extractor, YOLOv10 uses an improved version of cross stage partial 

network (CSPNet) to enhance gradient flow and reduce redundant calculations; The Neck network, designed 

to aggregate features from multiple levels and transmit them to the head, effectively merges multi-scale 

features using path aggregation network (PAN) layers. The head part of the YOLOv10 network consists of a 

one-to-many head and a one-to-one head. The one-to-many head generates multiple expectations for each 
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object during training to provide rich supervision signals and improve learning accuracy. The one-to-one 

head only generates the best expectations for each object, eliminating the need for NMS. 

 

 

 
 

Figure 1. Network structure of YOLOv10 diagram 
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Figure 2. Diagram of YOLOv10s network detail structure 

 

 

2.2.  Improved YOLOv10 

YOLOv10 is the latest version in the YOLO series, marking an important step forward in real-time 

target detection problems. The YOLOv10 model is highly appreciated for its balance between accuracy and 

inference time, which is suitable for real-time object detection requirements. However, when applying 

YOLOv10 to specific problems with special data, adjustments need to be made to make it more suitable. 

Therefore, this paper improves YOLOv10 to simultaneously detect 5 types of defects on PV and presents the 

proposed network structure in Figure 3. 
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Figure 3. Improved YOLOv10 (PV-YOLOv10) network structure diagram 

 

 

2.2.1. An improvement of the neck 

The neck part of the YOLOv10 network has been extended with a multi-scale attention (EMA) 

module, as illustrated in Figure 3 [38], [39]. To improve the expressiveness of the PV-YOLOv10 network 

and construct dependencies, while minimizing the loss of important information between convolutional 

extractions, the EMA module has been integrated into the neck part of the network. The structure of the EMA 

is shown in Figure 4. EMA, a parallel attention mechanism commonly applied in computer vision 

applications, enhances model performance and speeds up processing. In contrast to conventional CNNs, 

EMA employs a parallel architecture for efficient input data processing. Due to the parallel convolution 

feature, the model training process becomes faster when working with large data, while improving accuracy 

by simultaneously processing features at different scales. The key to the effectiveness of EMA lies in the 

synergistic combination of 3×3 mask and 1×1 branch. Strategically deploying this combination allows for 

synthesizing multi-scale spatial information, delivering a mechanism for fast and efficient feedback. By 

flexibly navigating the complex environment of feature extraction, designing ensures strong adaptability to 

various spatial scales in the data. Comprising two main parallel branches, the EMA architecture includes one 

branch for performing global clustering in one dimension to encode global information, while the other 

branch is for extracting features using 3×3 convolution. Modulating and normalizing the outputs from both 

branches with a sigmoid function, integrating these outputs through a multi-dimensional interaction module 

captures pixel relationships. Enhancing or weakening the original features by the sigmoid-modulated feature 

maps leads to a more refined and optimized representation. Consequently, encoding inter-channel 

information by EMA adjusts the significance of different channels, while maintaining the precise spatial 

structure details within these channels [39]. 

 

2.2.2. An improvement of the head 

YOLOv10 introduces a new method called consistent dual labeling for NMS-free training. The 

NMS-free method allows for a truly end-to-end model implementation, simplifies the inference pipeline, and 

potentially improves the overall performance of the system. However, since the goal of this paper is to detect 

defects with similar target characteristics, such as black_border, scratch, and broken, which are quite similar, 

applying the one-to-many and one-to-one detection heads as in YOLOv10 will likely mis-detect such defects. 
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For problems that only detect one type of target, the head of YOLOv10 has better performance than previous 

versions, but for the problem of classifying 5 types of defects as in this paper, the head of YOLOv10 is 

replaced by the head of YOLOv9 [40] and still uses NMS. Upon identifying and categorizing the faulty 

areas, NMS is employed to filter the detection boxes, addressing the issue of overlapping target boxes. 

Determining the IoU value between the detection boxes with the greatest confidence and other detection 

boxes, as well as examining boxes with IoU values surpassing the designated threshold, is conducted. This 

procedure continues until only one corresponding detection box remains for each object. 

 

 

 
 

Figure 4. EMA module [38] 

 

 

2.2.3. Data augmentation using cycle-GAN network 

To overcome the problem of limited sample size for deep learning models, a cycle-GAN-based 

sample enhancement strategy was proposed, in which the error regions are randomly generated to generate 

pseudo-samples, which helps diversify the existing sample set. In this study, cycle-GAN is applied to 

generate pseudo-samples from the error regions based on the original data, in order to expand the training 

dataset, due to the small size of the original dataset and the imbalance between the error classes. The 

outstanding advantage of cycle-GAN is the ability to train the image transformation model without parallel 

data pairs [41]. Cycle-GAN, an unsupervised deep learning approach, facilitates bidirectional transformation 

between the source domain X and the target domain Y, as depicted in Figure 5. It uses two generative 

networks G1 and G2: G1 transforms from X to Y, and G2 transforms back from Y to X. Both are connected 

to discriminative networks D1 and D2 after undergoing adversarial training. The networks G and D engage in 

a competitive process, with D acting as a binary classifier attempting to differentiate between real and fake 

images, while G aims to deceive D by enhancing the quality of the generated images. Providing an image 

from the source domain as input to the generative network G, it produces a synthetic image as output. 

Receiving both the synthetic image and a random image from the target domain, the discriminative network 

D processes them without requiring pairing. Cycle-GAN was trained for 500 epochs with a fixed learning 

rate of 0.0002. After this process, the synthetic images are generated by cycle-GAN. In this paper, we created 

500 images and their corresponding annotations to enhance the training dataset for the PV-YOLOv10 model. 
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2.2.4. PV defect detection using PV-YOLOv10 model 

The process of detecting surface defects on photovoltaic panels based on the PV-YOLOv10 model, 

including the steps of data set construction, data augmentation, model training and defect detection, is 

illustrated in Figure 5. First, the data will be collected, pre-processed, labelled, and then divided into training 

and testing data sets. The cycle-GAN network is used to augment the training data set. Next, the training 

parameters are set and the deep learning network is initialized. During this process, the weights of the model 

are updated through each iteration to ensure the convergence of the loss function, and finally the  

PV-YOLOv10 model is generated to detect defects on the surface of the panels. The defect detection process 

is completely automatic, and when a new data set is added, the model configuration parameters can be 

updated accordingly and re-trained, meeting the actual requirements. 

 

 

 
 

Figure 5. The PV defect detection process based on PV-YOLOv10 

 

 

3. EXPERIMENTAL PREPARATION AND RESULTS  

3.1.  Dataset introduction 

We used the public PV multi-defect dataset [35] to validate the effectiveness of our model. This 

dataset includes five common defect types: broken, hot_spot, black_border, scratch, and no_electricity. 

Figure 6 illustrates examples of each of these defect types. Images from the PV multi-defect dataset were 

processed, with a total of 1,108 PV panel surface defect images, divided into 72.8% for the training set and 

27.2% for the testing set. Specifically, there are 807 images in the training set and 301 images in the testing 

set. We used Python to convert the labels from XML to TXT format and serve for model training. There are a 

total of 4235 defective targets on the 1,108 PV panel surface images. The literature [35] indicates that 

accounting for the highest proportion of the five defect types, hot_spots constitute 49.09%. Small scratches, 

representing 36.62%, are followed by black-border targets and broken cells, which account for 6.02% and 

3.99%, respectively. 

 

 

 
 

Figure 6. Some samples of 5 types of PV surface defects 
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3.2.  Implementation details 

The hardware used for the experiments included a GPU (RTX4070 Ti Super 16 GB), CPU  

(i5-12600KF), 32 GB RAM, along with PyTorch version 1.13.1 as the deep learning platform and Python 

version 3.10.13. The dataset was trained over 300 epochs using the Adam optimization algorithm with an 

initial learning rate of 0.01. The important parameters in the training process are detailed in Table 2. 

 

 

Table 2. Experimental environment setup 
STT Parameters Setup 

1 Epochs 300 
2 Warmup-epochs 3 

3 Warmup-momentum 0.8 

4 Batch Size 16 
5 Imgsize 640×640 

6 lrf 0.01 

7 lr0 0.01 

8 Optimizer Adam 

9 Momentum 0.937 

 

 

3.3.  Evaluation indicators 

To evaluate the performance of the proposed model PV-YOLOv10 compared with the newly 

introduced YOLO versions (YOLOv10s, x, n, m, l), this paper uses statistical indices to compare the models. 

Throughout the experiment, the evaluations were performed by persistently tuning the parameters. The 

training and testing sets of the dataset were divided into smaller parts to optimize the model training process 

so that each index could be tested in detail. As shown in Figure 7, the recall (1), prediction rate (2), and mAP 

graph (4) were verified. The findings indicated that the mAP curve progressively steadied following a 

specific number of training iterations, while both the recall rate and precision reached the intended outcomes. 

The mAP index represents the average precision per class, while AP (3) is the area under the Pr  

(precision-recall) curve, and precision is used to evaluate the performance of the target detection model. The 

recall rate, or all-test rate, represents the proportion of correctly predicted classes out of the total number of 

true classes, in contrast to the false detection rate. 

 

𝑅𝑒 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (1) 

 

𝑃𝑟 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2) 

 

where TP, FN, and FP represent the number of true positives, false negatives, and false positives, 

respectively. 

 

𝐴𝑃 = ∫ 𝑃𝑟𝑚(𝑅𝑒𝑚)𝑑𝑅𝑒𝑚
1

0
 (3) 

 

where 𝑅𝑒𝑚 and 𝑃𝑟𝑚  denote the recall and precision for target class m and N denotes the number of targets. 

The average precision mean is calculated as (4): 

 

𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑖

𝑁
𝑖=1  (4) 

 

where N signifies the number of categories and AP stands for the average precision of each category. In the 

scope of our detection task, N = 5. 

 

3.4.  Main results 

To ensure an accurate representation of the proposed algorithm’s detection performance on the 

dataset detailed in section 3.1, including the background region as a category in the confusion matrix, along 

with the five defects, was necessary for evaluating the model’s effectiveness. In the confusion matrix, 

representing the true classes of the objects are the rows, while indicating the predicted classes are the 

columns. Since encompassing all pixels in the image that do not correspond to any defect is the background 

layer, it is not a class the PV-YOLOv10 model is trained to identify. Thus, when the model is applied to an 

image, no defect should be classified as belonging to the background layer. Consequently, Figure 8 will show 

a value of 0 in the background-background column of the PV-YOLOv10 models’ confusion matrix, 
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representing an invalid prediction of the PV-YOLOv10 model. To better understand the values and 

validation results of the proposed model for detecting five types of PV surface defects, please refer to 

Table 3. In Table 3, the no_electricity surface defect has the highest mAP value of 0.945, while hot_spot, 

black_border, broken, and scratch have mAP values of 0.944; 0.932; 0.738; and 0.643, respectively. This 

primarily results from the fact that the no_electricity defect is large in size and the feature is difficult to 

confuse, while hot_spot has the largest number of training samples, accounting for nearly half of the total 

samples. In contrast, scratch and broken are small in size and are easily confused with each other, resulting in 

relatively low precision, recall, and mAP values on scratch and broken. 

 

 

 
 

Figure 7. PV-YOLOv10 detection index chart 

 

 

 
 

Figure 8. The confusion matrix of PV-YOLOv10 model 
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Table 3. PV-YOLOv10 detection results 
Category Precision Recall mAP 

broken 0.687 0.706 0.738 
hot_spot 0.974 0.808 0.944 

black_border 0.809 0.905 0.932 

scratch 0.707 0.629 0.643 
no_electricity 0.927 0.9 0.945 

 

 

3.4.1. Ablation experiment  

Conducting ablation experiments for a thorough comparison, we aim to verify the effects of 

different modules on model performance. Starting with the YOLOv10s model as the base, we gradually add 

additional modules to illustrate the importance of each module and its influence on performance. Showing 

the results of these experiments, Table 4 demonstrates that achieving the best experimental outcomes requires 

using all modules, indicating that every module is vital to our strategy. 

Improving all model metrics, the addition of the EMA module results in a 0.1% increase in mAP@0.5 

and a 0.4% rise in mAP@0.5:0.95, effectively showcasing its enhancement of the model's feature extraction 

capabilities. Modifying the head of YOLOv9 resulted in enhancements of 2.5% and 3.1% in mAP@0.5 and 

mAP@0.5:0.95, respectively, confirming that this module directs the network to capture more crucial feature 

information. Integrating both the head modification and the EMA addition led to increases of 4.4% and 3.6% 

in mAP@0.5 and mAP@0.5:0.95. Ultimately, employing data augmentation with the Cycle-GAN network 

elevated mAP@0.5 and mAP@0.5:0.95 by 5.1% and 6.5%. The data shown in Table 4 clearly illustrates the 

essential role and effectiveness of each module, highlighting the advantage of our method. 

 
 

Table 4. Ablation experiment results 
Model Precision Recall mAP@0.5 mAP@0.5:0.95 

YOLOv10s 0.815 0.688 0.789 0.506 

YOLOv10s+EMA 0.768 0.717 0.799 0.51 

YOLOv10s+Head of YOLOv9 0.801 0.764 0.814 0.537 
YOLOv10s+Head of YOLOv9+EMA 0.794 0.787 0.833 0.542 

Head of YOLOv9+EMA+GAN (PV-YOLOv10) 0.821 0.79 0.84 0.571 

 

 

3.4.2. Comparison with state-of-the-art methods YOLOv10 

To showcase the superiority of the enhanced PV-YOLOv10 model, this study carried out a series of 

evaluation experiments, comparing its performance against the newly introduced YOLOv10 models. 

Offering a concise comparison of various YOLOv10s model versions, Table 5 highlights the architectural 

diversity among the YOLOv10s variants. These variants, emphasizing different architectural approaches, 

demonstrate distinct trade-offs between mAP0.5; mAP0.5-0.95; Precision, recall and GFLOP. The proposed 

PVDF-YOLOv10 model demonstrates the highest performance in detecting five types of surface defects on 

PV with mAP0.5; mAP0.5-0.95; Precision, recall compared to the latest YOLOv10 versions. However, there is a 

computational trade-off as the GFLOP value of the proposed model is the largest and the most 

computationally advantageous is the YOLOv10n model with the smallest GFLOP. 

 
 

Table 5. Results of proposed models PV-YOLOv10 and YOLOv10 versions 
Model mAP@0.5 mAP@0.5-0.95 Precision Recall GFLOP 

YOLOv10s 0.789 0.506 0.815 0.688 24.5 
YOLOv10m 0.777 0.51 0.756 0.719 63.4 

YOLOv10n 0.775 0.513 0.748 0.701 8.2 

YOLOv10b 0.803 0.518 0.796 0.74 98 
YOLOv10l 0.818 0.533 0.878 0.729 126.4 

YOLOv10x 0.821 0.542 0.833 0.763 169.8 

PV-YOLOv10 0.84 0.571 0.821 0.79 176.8 

 

 

3.4.3. Qualitative comparison 

To further clarify the effectiveness of the proposed method, we selected some representative images 

to compare with other state-of-the-art methods. Figure 8 illustrates this specifically. As shown in Figure 9, 

our model outperforms the YOLOv10n model. Figure 9(a) clearly shows that there are some missed defect 

detections, marked in red at three different locations with different defect types. Meanwhile, in Figure 9(b), 

the missed locations in Figure 9(a) were accurately detected by the proposed model. This improvement can 
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be explained by our model's ability to extract rich semantic features while eliminating the impact of noise. 

This fully confirms the effectiveness of our method. 

 

 

 
(a) 

 

 
(b) 

 

Figure 9. Example of (a) YOLOv10n model and (b) PV-YOLOV10 model 

 

 

4. CONCLUSION AND OUTLOOK 

In this paper, we propose a model named PV-YOLOv10 to detect 5 types of PV panel surface 

defects. In order to ensure better accuracy on multi-scale defects, the EMA module was introduced to 

improve the detection phenomenon of small defects, and the head of YOLov10 was replaced by head of 

YOLOv9 to maintain NMS. In addition, we also used the cycle-GAN method to augment the training data to 

enhance the training samples, improving the detection performance of the proposed model. Simultaneously, 

we evaluated our method against the latest state-of-the-art approaches, specifically the YOLOv10 versions, to 

assess its effectiveness. Enhancing the detection of PV panel surface defects, the proposed model achieved a 

5.1% improvement in mAP performance. With the incorporation of additional modules leading to an increase 

in the number of model parameters and a larger model size, the computational expense rises accordingly. 

Future research directions could include improving the Backbone part to make the model lighter, or 

improving the head part of the network to further improve the accuracy of detecting surface defects on PV. 
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