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Semantic boundary detection

Semantic segmentation is crucial step in autonomous driving, medical
imaging, and scene understanding. Traditional approaches leveraging
manually extracted pixel properties and probabilistic models, have achieved
reasonable performance but suffer from limited generalization and the need
for expert-driven feature selection. The rise of deep learning architectures
has significantly improved segmentation accuracy by enabling automatic
feature extraction and capturing intricate object details. However, these
methods still face challenges, including the need for large datasets, extensive
hyperparameter tuning, and careful loss function selection. This paper
proposes a novel boundary-sensitive loss function, which combines region
loss and boundary loss, to enhance both region consistency and edge
delineation in segmentation tasks. Implemented within a modified SegNet
framework, the approach proposed in the paper is evaluated with the
semantic boundary dataset (SBD) dataset using standard segmentation
metrics. Experimental results indicate improved segmentation accuracy,
substantiating to proposed method.
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1. INTRODUCTION

Semantic segmentation is a crucial step of giving a label to image pixels from predefined categories
[1]. It has numerous applications [2]-[7]. Traditional methods relied on extracted features, combined with
probabilistic models conditional random fields (CRFs) [8] and Markov random fields (MRFs) [9]. However,
such approaches struggle with generalization, particularly when dealing with variations in lighting, object
appearance, and orientation across datasets [10]. Additionally, hand-crafted features are fixed, time-
consuming to select, and ineffective for novel or unseen data [11]. While probabilistic models help model
spatial dependencies, they face difficulties handling non-linear, high-dimensional relationships, making them
inefficient for large-scale, high-resolution images [12]. Due to their local focus, traditional methods often fail
to capture the broader image context, leading to suboptimal segmentation, especially for fine details or
complex object boundaries [13].

The emergence of deep architectures has shifted performance for obtaining semantic segmentation
to higher level by making possible to infer both low- and high-level features automatically [1]. Deep
architectures avoid humanly deciding and extracting the features, enhancing scalability across diverse
domains [14]. The advancement models [1], [3], [5], [6], [15], [16] has led to improved segmentation
precision and efficiency. However, training these models presents challenges such as the need for large
datasets, extensive hyperparameter tuning, and high computational resources. Researchers continue to
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explore ways to address these challenges, including methods that achieve accurate segmentation with limited
data [17] and strategies for optimizing training efficiency [18].

Development of semantic segmentation model is possible by training a multi-layer networks [19].
The model learns hierarchical features, with the primary objective of optimizing parameters—such as
weights and biases—to generalize well on unseen data [20]. Backpropagation computes gradients based on
the loss function, guiding parameter adjustments to minimize prediction errors [10], [21]. The effectiveness
of model training depends on multiple factors, including network architecture, data quality, and optimization
strategies [20]. Loss functions, in particular, are critical, as they directly influence parameter updates and
model performance [22].

Semantic segmentation requires not only accurate region classification but also precise delineation
of object boundaries. Clearly defined boundaries are essential for distinguishing adjacent regions and
improving object detection accuracy [23], [24]. Additionally, boundaries often exist between similar regions,
making them difficult to segment accurately. Addressing these challenges is essential for improving deep
learning models’ ability to capture both regional and boundary information effectively.

The research on semantic boundary segmentation in view refining object boundaries and
segmentation in complex scenarios led to introduce a boundary-aware deep learning model [25] that
improved segmentation accuracy, especially at object boundaries. A lightweight network [26] that leverages
boundary-aware learning to boost performance on datasets like Cityscapes and ADE20K. A semi-supervised
approach that adapts to structured output spaces, improving boundary delineation with limited labeled data
[27]. The researchers focused on a multi-scale fusion network [28] and semantic hierarchy-aware model [29],
which enhances boundary precision by utilizing hierarchical relationships between object classes.

This research aims to enhance semantic segmentation by introducing a boundary-sensitive loss
function, which integrates region loss and boundary loss. Traditional training methods predominantly
emphasize region loss, which, while effective for overall segmentation, may overlook precise boundary
alignment. Incorporating boundary loss into the training process enables models to refine their predictions,
ensuring more accurate segmentation of object edges. This boundary-aware approach enhances performance
in complex scenes where boundary details are critical for accurate segmentation [30]-[32]. This research
work proposes a novel boundary-sensitive loss function designed to improve both semantic region and
boundary segmentation. By jointly optimizing for region classification and boundary alignment, our approach
enhances segmentation accuracy and delineation precision. The model evaluation is performed using
publically available image dataset, demonstrating that our boundary-aware loss function significantly
improves segmentation performance compared to conventional loss functions [33], [34].

The paper is structured as: Section 2 provides an extensive literature. Section 3 outlines the
proposed method. Section 4 is dedicated for the results and discussion. Section 5 concludes with summary of
contributions and future research directions.

2. COMPREHENSIVE THEOROTICAL BASIS

Semantic segmentation assigns each pixel with a label leaned form the ground truth data, aiming for
accurate segmentation. Research in this area directed to enhance segmentation performance. Pixel-based
segmentation techniques include thresholding-based methods, region growing, region splitting and merging,
watershed transform, graph cuts, and mean-shift [35]-[37]. However, results from pixel-based and block-
based methods may not always be sufficient for complex computer vision applications. To address this,
semantic segmentation can be achieved through both supervised and semi-supervised methods. The
algorithms can be trained on extracted features and corresponding labels to perform effective semantic
segmentation [38], [39].

The transition from traditional methods to deep architecture-based semantic segmentation is driven
by the superior accuracy and efficiency that they can achieve in simplifying the contents in the image. Deep
networks have revolutionized semantic segmentation by enabling accurate pixel-level classification in images
[40]. Key architectures in this field include fully convolutional networks (FCNs), and variants like FCN-8,
U-Net and DeepLab [6]. SegNet [31], [32] another effective architecture, incorporates Bayesian inference for
handling uncertainty, demonstrating high accuracy on the CamVid dataset [7]. Other influential models in the
field include PSPNet, Mask R-CNN, HRNet, and EfficientNet, each contributing to advancements in
semantic segmentation through deep learning techniques [15].

In deep architectures, feature extraction involves processing input images through multiple layers to
extract high-level features. These features propagated through the network to generate the final segmentation
map. Standard feature propagation methods may lose critical details, particularly around object boundaries,
leading to inaccurate segmentation results. Some approaches involve estimating boundaries as a separate task
but introduction of boundary-aware features, enhancing the preservation of edges and improving overall
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segmentation quality [1], [15]. The authors demonstrate improved performance on several benchmark
datasets. Bischke et al. [41] proposes an approach, where the network simultaneously learns to perform
segmenting the building footprints and predicting the boundary edges. Incorporating boundary information
improves assist model to mark closely packed buildings and their boundaries, resulting in better overall
performance. The approach was tested on large-scale datasets, showing significant improvements over
traditional methods [41].

The convolutional layers are inevitable part of convolutional neural networks (CNNs) [42]. Though
the layers extract the information on every stage of the network, these can blur or lose fine details at the
edges between different regions or objects, which can lead to inaccuracies in segmenting objects with
complex boundaries [42]. Edge-aware convolutions are designed to address this limitation by specifically
incorporating information about edges or boundaries during the convolution process [43]. They preserve edge
details. Boundary refinement networks (BRNs) are advanced neural network architectures designed to
improve the object boundary delineation [44]. Such networks specifically focus on refining the edges and
boundaries of segmented objects to produce clearer and more precise segmentation results [44].

Pixel classification accuracy depends on capturing fine details at object edges [45]. This limitation
becomes particularly problematic in images with complex scenes, where objects have intricate boundaries, or
when different classes are closely packed together. Boundary-based loss functions specifically address this
issue by emphasizing the importance of correct boundary prediction [45]. These loss functions are designed
to penalize errors near object edges more heavily, thereby encouraging the network to focus on learning
precise boundary representations [3]. This approach leads to sharper and more accurate segmentation outputs,
which are crucial in applications like medical imaging, where precise boundary identification is essential for
tasks like tumor detection or organ segmentation [3]. The method is tested on urban scene datasets and shows
superior performance compared to traditional methods [46]. The authors demonstrate usefulness of the
technique by making its implementation in medical applications where precise boundary detection is vital

[3].

3.  PROPOSED METHOD

In Semantic segmentation, boundary pixel segmentation is a critical task. It determines the precise
separation between objects and background or neighboring objects. Boundary pixels are difficult to classify
accurately due to the similarity of pixel properties in adjacent regions, which makes difficult to learn
distinction between object edges and regions. To overcome this problem, boundary pixel segmentation is
addressed separately by [47], [48]. Deep architecture models have been developed to classify boundary pixels
[49]-[51]. This is challenging problem as the number of boundary pixels are very less compared to object
region pixels. In proposed method, boundary sensitive loss function is included. This loss function enhances
model's ability to distinguish adjacent objects, improving segmentation performance, especially in complex
scenarios.

3.1. Training of deep network with loss function

For semantic segmentation when deep network is used, they are trained using training dataset. Deep
network extract features and learns patterns during the training. Based on this learning class of each pixel is
predicted. The error between predicted class label and actual class label is expected as minimal as possible.
To compute error between predicted labels and actual label loss functions are used. The cross-entropy loss is
calculated using (1).

1
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where, N and C are samples and classes in dataset respectively; y; . is actual label; p; is the probability given.
The SoftMax provides predicted probabilities for each class. The function J (Ypred, Y) where J is the loss
function computes the loss associated with predicted and actual labels. The gardient descent algorithm
optimizes the network parameters to get minimum loss. Our method proposes novel loss function which
includes boundary loss along with region loss. Details of proposed methods are given.

3.2. Block diagram of proposed method

The flow of the input and updating of network parameters by calculating the loss at different stages
is shown in Figure 1. The proposed method uses SegNet network as a backbone. Pretrained SegNet
architecture is used to implement proposed method. This architecture is trained using semantic boundary
dataset (SBD) which contains region ground truth (R-GT) and boundary ground truth (B-GT) as given
Figure 2. The dataset of 1,026 images has 15 classes. In Figure 1, Image I is provided to network, R-GT is
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region ground truth of I, B-GT is boundary ground truth of the of I, RO is the region segmentation (RO) of
the I, B-Map is boundary map of the region segmentation.

R-GT

=
» =
-

Pre-trained
SegNet

RO

i

Canny-Edge Detector

L2

B-Map

B-GT

e

Figure 1. The block diagram

Image R-GT B-GT

Figure 2. Sample images of R-GT and B-GT from the SBD dataset

3.3. Network training

The pretrained network is trained using SBD dataset [10] which contain labelled ground truth for
region (R-GT) as well as boundary (B-GT). Loss between predicted region pixel labels and R-GT labels (L1)
is calculated using (2). For predicted image map and R-GT having height (H) and width (W) and object
classes C:

L1=———3 5W, % R — GT¢Olog (ROW) @)
here, (i, ) is pixel coordinates and c are object classes.

Edge map of predicted labelled image is obtained using Canny edge detector [52], [53] as shown in
Figure 3. The loss between the predicted semantic boundary map [54], [55] (referred to as B-Map) and the
ground truth boundary map (B-GT) is calculated using (3). This loss, denoted as L2, measures how
accurately the model predicts object boundaries. The prediction and ground truth maps both have a height
(H), width (W), and represent C object classes. The loss L2 is shown in (3):

Int J Elec & Comp Eng, Vol. 15, No. 6, December 2025: 5327-5335



Int J Elec & Comp Eng ISSN: 2088-8708 O 5331

L2 =——— %1 YW, %1 B — GT log(B — Map®/) 3)

This equation ensures that the model is penalized more when it fails to accurately predict boundaries
of objects in the image. To guide the model in learning both region segmentation and boundary prediction, a
total loss (L) is used. This is combination of L1 (region loss) and L2 (boundary loss) as shown in (4):

L=L1+L2 ()

3.4. Training setup and hyperparameter configuration

The SBD [55] is used for training and evaluating the SegNet deep architecture [7]. This dataset,
derived from the PASCAL VOC dataset [56], includes detailed boundary annotations for 21 classes,
including “background” class. For training the SegNet [7] 1,026 images, for validation 290 images, and for
testing 136 images are utilized from the dataset. The proposed method for semantic segmentation was trained
on an HP Z4 Tower Workstation with an Intel Xeon W-2245 processor, 32 GB DDR4 RAM, an NVIDIA
RTX A5000 GPU, and a 1 TB HDD, using MATLAB R2014a. For hyperparameter tuning, the SegNet [7]
model is configured with starting learning rate of 0.01, piecewise learning rate schedule with a drop period of
10 epochs and a drop factor of 0.1, batch size of 1 (stochastic gradient descent), a total of 50 epochs,
momentum of 0.9, and validation frequency of 10 epochs.

3.5. Evaluation metrics

This work evaluates the contribution of proposed loss function for both semantic region
segmentation and boundary detection tasks. To ensure a comprehensive assessment, several widely
recognized metrics are employed, including global accuracy [56], mean accuracy [56], and (mean IoU) [57].
Additionally, weighted intersection over union (weighted IoU) [58] is incorporated to assign higher
importance to underrepresented classes, ensuring fair evaluation across different object categories. The mean
boundary F-Score (mean BFScore) [59] is particularly crucial for assessing boundary accuracy, as it
quantifies how well the predicted segmentation aligns with object boundaries, capturing fine details often
overlooked by standard region-based metrics. These metrics collectively provide a holistic evaluation.

4. RESULTS AND DISCUSSION

The performance of integrated loss function with region loss and the proposed boundary-sensitive
loss function is shown in Table 1. The table highlights accuracy, IoU, and MeanBFScore, for both methods.
Table 2 provides an overall summary of how the segmentation model performs when using only the region
loss compared to the proposed boundary-sensitive loss. From the results it is evident that with a single deep
network along with a boundary-sensitive loss, improves semantic segmentation overall. By focusing on
object boundaries, it makes the segmentation more accurate. This approach also performs better than several
other methods that rely on multiple networks, making it both effective and efficient.

Table 1. Comparison of semantic segmentation using only region loss and proposed boundary-sensitive loss

Accuracy IoU MeanBFscore
Sr. No Object class Only Proposed boundary- Only Proposed boundary- Only Proposed boundary-
region loss sensitive Loss region loss sensitive loss region loss sensitive loss
1. Background 0.977 0.996 0.608 0.621 0.472 0.479
2. Aeroplane 0.189 0.667 0.159 0.548 0.210 0.471
3. Bicycle 0.239 0.279 0.223 0.267 0.034 0.039
4. Bird 0.163 0.428 0.045 0.164 0.352 0.519
5. Bus 0.147 0.184 0.131 0.136 0.155 0.146
6. Car 0.516 0.160 0.401 0.139 0.176 0.116
7. Cat 0.006 0.246 0.005 0.228 0.047 0.132
8. Chair 0.314 0.143 0.193 0.084 0.277 0.276
9. Cow 0.036 0.002 0.008 0.001 0.184 NaN
10. Dog 0.052 0.040 0.049 0.040 0.001 0.046
11. Horse 0.011 0.026 0.010 0.025 0.076 0.100
12. Motorbike 0.029 0.112 0.022 0.097 0.087 0.096
13. Person 0.259 0.149 0.222 0.145 0.264 0.132
14. Sofa 0.105 0.064 0.101 0.062 0.080 0.043
15. TV monitor 0.082 0.057 0.079 0.055 0.044 0.007
16. Average values 0.208 0.237 0.150 0.174 0.164 0.186
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Table 2. Comparison of semantic segmentation with region loss and proposed boundary-sensitive loss

Sr. No Metric Only region loss  Proposed boundary-sensitive loss
1. Global accuracy 0.5979 0.6090
2. Mean accuracy 0.1524 0.1745
3. Mean IoU 0.1107 0.1286
4. Weighted IoU 0.3817 0.3908
5. Mean BF score 0.2907 0.3362

5. CONCLUSION

The experiment demonstrates the significant impact of incorporating boundary loss (L2) alongside
region loss (L1) in semantic segmentation. When the model is trained solely with region loss, it performs
well in segmenting large and frequent objects but struggles with small objects, leading to poor boundary
delineation and lower IoU and boundary accuracy. In contrast, when both region and boundary losses are
included, the model achieves better segmentation performance, particularly in preserving object boundaries.
The improvements are most evident for objects with well-defined edges, as reflected in higher IoU and
boundary F-scores. However, the segmentation of smaller objects remains challenging, likely due to class
imbalance and the complexity of detecting fine details.

The results align with recent research findings, reinforcing the idea that boundary-aware models
enhance segmentation accuracy. This study demonstrates that balancing region and boundary losses
contributes to more detailed and precise segmentation, making it particularly useful in advanced applications,
where boundary precision is critical. The proposed approach introduces a novel loss function that improves
segmentation accuracy. Future research should focus on addressing the limitations observed in small object
segmentation by exploring adaptive weighting strategies to mitigate class imbalance. Expanding the model to
handle multi-class segmentation in more complex scenes is another avenue for improvement.
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