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 Distinguishing between the various forms of pneumonia (bacterial, viral, 

fungal, and normal) using chest X-rays is a major problem in global health. 

Conventional approaches to pneumonia identification frequently depend on 

laborious and error-prone manual interpretation. Current machine learning 

(ML) models, like convolutional neural networks (CNNs), have 

demonstrated some success, but they frequently fail on jobs requiring multi-

class classification or generalization. The potential of vision transformer 

(ViT) models, fine-tuned to address these limitations, is explored. The 

approach enhances the accuracy of pneumonia classification into four 

distinct classes by leveraging the attention mechanism in vision transformers 

(ViTs). Fine-tuning with a tagged chest X-ray dataset improves the 

algorithm's ability to detect subtle variations in pneumonia types. The 

findings demonstrate the model's effectiveness in multi-class pneumonia 

diagnosis, achieving a significant performance improvement with 98% 

accuracy across the four classes. This work highlights the promise of vision 

transformers in medical imaging, enabling the development of improved and 

scalable pneumonia classification methods. 
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1. INTRODUCTION 

Pneumonia remains a significant global health challenge, infecting millions annually and causing a 

substantial number of deaths. Early and accurate diagnosis is critical for improving patient outcomes and 

reducing complications [1], [2]. Chest X-rays are widely used for diagnosing pneumonia, but interpreting 

these images is a complex task, especially when distinguishing between bacterial, viral, fungal, and 

mycoplasma pneumonia. Variability in how pneumonia manifests across patients further complicates 

diagnosis, making manual interpretation by radiologists both time-intensive and prone to errors [3]–[5]. 

Recent advancements in deep learning have led to promising developments in automating medical 

image analysis. Convolutional neural networks (CNNs) have been particularly successful in image-based 

disease diagnosis, including pneumonia classification [6]–[8]. However, CNNs often struggle with multi-

class classification tasks that require recognizing subtle variations between categories. Additionally, their 

performance can degrade when applied to unseen or diverse datasets, highlighting a need for more adaptable 

and robust solutions [9], [10]. 

Vision transformers (ViTs) offer a compelling alternative to CNNs by leveraging self-attention 

mechanisms to capture long-range dependencies within images. This capability makes them well-suited for 

complex classification problems. The goal of this research is to explore the effectiveness of fine-tuned ViTs 
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in the multi-class classification of pneumonia, aiming to overcome the limitations of existing methods and 

achieve high accuracy across different pneumonia types. This study aspires to contribute to the development 

of scalable, reliable, and efficient diagnostic tools for pneumonia detection. 

 

 

2. LITERATURE STUDY 

The use of artificial intelligence (AI) and deep learning has revolutionized medical imaging, 

particularly in pneumonia diagnosis. ViTs have improved efficiency and accuracy in chest X-ray analysis for 

pneumonia [1]. Transfer learning algorithms, such as those applied to detect COVID-19 pneumonia, have 

been key in enhancing diagnosis [2], [3]. Genetic algorithms refining models like DCGANs with CNN 

architectures (e.g., VGG-16) have further improved pneumonia categorization [4]. DenseNet-121 has been 

effective in pediatric pneumonia classification, even with imbalanced datasets [5], [6]. Systematic reviews 

have supported pneumonia diagnosis in regions with high comorbidities, like India [7], while models like the 

LACE index predict 30-day hospital readmissions for pneumonia [8], [9]. 

The coronavirus disease 2019 (COVID-19) pandemic has amplified the importance of deep learning 

in pneumonia detection. Emerging techniques, including explainable models and fuzzy-enhanced deep 

learning, have shown promise in early pneumonia prediction, especially in COVID-19 cases [10], [11]. 

Graph-based deep learning with diffusion pseudo-labeling has enhanced explainability in diagnoses [12], 

[13], and ViT-based models for COVID-19 screening provide strong diagnostic justifications [14]. 

Interpretable pneumonia algorithms that integrate multisource data have been developed [15]. Other 

diagnostic approaches, such as antigen and nucleic acid amplification tests, have also contributed to 

pneumonia research [16], [17]. CNNs with LIME have improved the interpretability of pneumonia diagnoses 

[18], and self-supervised learning has enhanced generalizability [19]. Pseudo-labeling has further refined 

COVID-19 diagnosis accuracy [20]. The World Health Organization has stressed the need to improve 

detection protocols during the pandemic [21]. Deep residual networks combined with transfer learning have 

optimized pediatric pneumonia diagnosis [22]. 

GANs are increasingly used in medical image analysis, including bone surface segmentation and 

breast ultrasound imaging [23], [24]. GAN-based augmentation has helped overcome data shortages in 

pneumonia diagnosis [25], [26] and has increased model generalizability in other areas, such as hip fracture 

detection and prostate cancer grading [27], [28]. Deep learning models like CheXNeXt have demonstrated 

effectiveness in diagnosing chest illnesses, including pneumonia, compared to radiologists [29]. The 

availability of open chest X-ray datasets has accelerated research by providing critical training data for 

models [30]. CNNs and GANs are particularly useful for pneumonia diagnosis, especially in data-limited 

scenarios [31], [32]. Fine-tuning pre-trained CNN models has enabled accurate localization and classification 

of lung illnesses in chest X-rays [33]. AI-based screening systems have played a crucial role in improving the 

accuracy and speed of pneumonia diagnosis during the COVID-19 pandemic [34]. The role of AI extends 

beyond pneumonia, influencing diagnostics in other diseases, such as early lung cancer detection [35], [36]. 

Pneumonia diagnosis systems based on CNNs have successfully processed large X-ray datasets [37], [38]. 

Advances in computational algorithms continue to drive the evolution of AI-driven medical image diagnosis 

[39], [40], and comparisons between CT scans and PCR tests have highlighted the importance of prompt 

COVID-19 pneumonia diagnosis [41]. 

 

 

3. METHOD 

The method section begins with an overview of the datasets used for pneumonia detection, as detailed 

in Table 1. These publicly available datasets include a variety of chest X-ray images labelled to identify 

pneumonia, with details about their size, source, and specific use cases provided in the table. The preprocessing 

techniques, outlined in Table 2, describe steps taken to prepare the medical images for deep learning models, 

such as resizing to a consistent image size, normalizing pixel values, and augmenting the dataset to improve 

model generalization. Finally, Table 3 presents the deep learning architectures employed to classify pneumonia 

from chest X-rays, including advanced models like ViT, VGG-16, and ResNet-50, each chosen for their proven 

performance in image classification tasks. These models are trained using the processed datasets and are 

evaluated based on their accuracy and ability to detect pneumonia from the X-ray images. 
 
 

Table 1. List of datasets 
Dataset Number of Images/Patients Categories 

NIH dataset [38] 108,948 chest radiographs from 32,717 patients 8 
CHE dataset [39]  224,316 chest X-rays from 65,240 patients 14 

KAG dataset [40] 5,863 chest X-ray images (pediatric patients only) 2 
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Table 2. List of pre-process methods 
Method Methods/Details 

Resize [2], [3], [13], [14], [16], 
[17], [19], [21], [24]  

- Nearest-neighbor interpolation: Uses the closest pixel to the new pixel location (fast but 
may appear blocky).  

- Bilinear interpolation: Averages the four closest pixels for a smoother result.  
- Bicubic interpolation: Uses cubic polynomials for smoother images but is computationally 

expensive.  
- Aspect ratio: Preserves aspect ratio during resizing to avoid distortion.  
- Padding: Adds borders to maintain aspect ratio during resizing. 

Normalization [1], [2], [4], [6], 

[18], [22] 

- Min-max normalization: Scales pixel values to a specified range, usually [0, 1] using the 

formula:  
normalized_value=(pixel_value - min_value)/(max_value - min_value).  

- Z-score normalization: Adjusts pixel values to have a mean of 0 and standard deviation of 1 

using:  
normalized_value=(pixel_value - mean)/(standard_deviation).  

- Standardization: A subset of normalization, it rescales pixel values to have a mean of 0 and 

variance of 1 using:  
standardized_value=(pixel_value - mean)/(standard_deviation). 

 

 

Table 3. List of model 
Method Description 

Vision transformer 

(ViT) [1] 

A transformer-based architecture for image classification that uses self-attention mechanisms instead of CNNs. 

Divides images into fixed-size patches, processes them as tokens, and captures global dependencies. 

VGG-16 [4] A deep CNN architecture with 16 weight layers: 13 convolutional and 3 fully connected layers. It uses small 3x3 
filters to extract fine details, with max-pooling layers for spatial downsampling. 

DenseNet-121 

[6] 

A CNN where each layer is connected to all previous layers. Reduces feature redundancy and enhances feature 

reuse. Includes four dense blocks and transition layers for downsampling. 
ResNet-50 [22] A 50-layer architecture using residual connections (skip connections) to combat vanishing gradients. The 

network learns residual mappings instead of direct transformations. 

InceptionNetV3 
[38] 

An advanced version of the Inception architecture with multiple filter sizes in a single layer. Uses inception 
modules to capture features at different scales and factorized convolutions to reduce computational complexity. 

Fine-Tuning 

[1], [4], [6], [22], 
[38] 

Involves applying a pre-trained model to a new task by continuing training on a different dataset, typically with a 

smaller learning rate. Helps adapt the model to new tasks without retraining from scratch. 

 

 

4. PROPOSED SYSTEM 

Figure 1 demonstrates a proposed three-stage procedure for training, testing, and assessing a model. 

This model is likely to be used for a medical imaging image classification problem with the following 

classes: normal, viral, bacteria, and fungal. The following is an exhaustive description of the steps and their 

constituent parts: 

 

 

 
 

Figure 1. Proposed system flow diagram 

 

 

Stage 1 data initialization and pre-processing: This stage involves combining images from various 

sources into a single dataset, sorted into categories like normal, viral, bacterial, and fungal. The data 

undergoes pre-processing, including resizing images to fit the ViT model and normalizing pixel values to a 

standard range. Finally, the dataset is split into training (80%) and testing (20%) sets for model training and 

evaluation. 
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Stage 2 model tuning and training: In this stage, the ViT model is fine-tuned using a pre-trained 

model and medical image data. The model processes images by dividing them into 32×32 patches. The 

learning rate is set to 1e-3, and the Adam optimizer adjusts weights during training. The categorical cross-

entropy loss function is used, and early stopping prevents overfitting by halting training if performance 

plateaus before 50 epochs. 

Stage 3 model testing and evaluation: The trained model is evaluated using the 20% test set, where 

its ability to generalize to unseen data is assessed. The model classifies images as normal, viral, bacterial, or 

fungal. Performance is evaluated using metrics such as accuracy (ACC), precision (P), recall (R), and F1-

score to determine classification accuracy and model effectiveness. 

 

 

5. RESULTS AND DISCUSSION 

The findings of this study highlight the performance of the proposed ViT model, fine-tuned for 

pneumonia classification. A concise comparison with current transfer learning models, supported by detailed 

tables and figures, demonstrates the model's effectiveness across four pneumonia categories. The results are 

discussed in the context of the study's objectives, existing hypotheses, and related research while addressing 

potential interpretations and limitations. Figure 2 summarizes the dataset distribution across the four classes: 

148 images for viral pneumonia, 242 for bacterial, 23 for fungal, and 232 for normal cases. This imbalance 

highlights the challenges in achieving robust performance across all categories, particularly for the minority 

class (fungal). 

Figure 3 provides an overview of the fine-tuned ViT architecture. The model comprises over 85 

million parameters, with only the final linear layer (3,076 trainable parameters) optimized during training. 

This design leverages the pre-trained weights of the frozen layers while fine-tuning the output layer to adapt 

to the pneumonia classification task. 

 

 

 
 

Figure 2. Dataset reading 

 

 

 
 

Figure 3. Fine-tune ViT architecture 
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Figure 4 depicts the accuracy and loss curves over 50 training iterations. Both training and testing 

accuracies converge at approximately 0.98, with steadily decreasing loss values and closely aligned curves 

for training and testing. These results indicate strong model performance without overfitting. 

 

 

 
 

Figure 4. Fine-tune ViT accuracy/loss plots 

 

 

Figure 5 presents the confusion matrix and classification report, showcasing the model's 

performance across the four pneumonia classes. High diagonal values in the confusion matrix indicate 

accurate predictions for all categories. The classification report further confirms these results, with an overall 

accuracy of 0.98 and high precision, recall, and F1-scores for all classes. Notably, fungal pneumonia 

predictions achieve flawless scores, underscoring the model's ability to handle imbalanced datasets 

effectively. 

Table 4 compares the proposed model's performance with other deep-learning approaches for 

pneumonia detection. While most prior studies address only two- or three-class problems, the fine-tuned ViT 

achieves 98% accuracy across four classes, matching or exceeding the performance of existing methods. This 

demonstrates the ViT's capability to generalize and classify pneumonia more comprehensively. 

 

 

 
 

Figure 5. Confusion matrix and classification report 

 

 

Table 4. Assessment of deep learning strategies 
Model ACC (%) P (%) R (%) F1 (%) 

Singh et al. [1] [2-class] 0.97 0.96 0.97 0.97 

Ali et al. [2] [3-class] 0.95 0.94 0.95 0.95 
Gu and Lee [3] [2-class] 0.98 0.97 0.98 0.98 

Putri and Al Maki [4] [3-class] 0.96 0.95 0.96 0.96 

Asnake et al. [5] [2-class] 0.94 0.93 0.94 0.94 

Proposed fine-tune ViT [4-class] 0.98 0.98 0.98 0.98 
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6. CONCLUSION 

This research demonstrated that the fine-tuned ViT model achieved an impressive 98% accuracy, 

alongside 98% precision, recall, and F1-scores, across the four pneumonia classes—normal, fungal, bacterial, 

and viral. The ViT model’s ability to effectively differentiate between various forms of pneumonia highlights 

its improved capacity to capture complex patterns in chest X-ray images, made possible by its self-attention 

mechanism. These findings suggest that the fine-tuned ViT model is a promising tool for clinical application, 

potentially accelerating diagnosis and significantly improving accuracy, ultimately leading to better patient 

outcomes. In summary, the findings of this research have significant implications for both the research field 

and the healthcare community, providing a robust framework for the development of advanced, scalable, and 

reliable diagnostic tools in medical imaging. 

Future research should focus on further enhancing the generalizability of the ViT model by utilizing 

larger and more diverse datasets that incorporate variations in demographics, imaging conditions, and disease 

stages. To improve performance, hybrid models combining the strengths of ViTs and CNNs could be 

explored, with a particular focus on better capturing both local and global information. Additionally, 

incorporating explainability techniques into the model’s decision-making process could increase physicians' 

trust and facilitate wider adoption in healthcare. Finally, expanding the use of fine-tuned ViT models to other 

medical imaging modalities, such as CT and MRI, could open up new avenues for diagnosing a broader 

range of pulmonary and other diseases. 
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