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 Diagnosing bearing faults of the induction motor is crucial for the 

maintenance of rotating electrical machines. Numerous methods have been 

developed and published for monitoring and classifying these faults using 

sensor data such as vibration, audio, and current signals. Ideally, the current 

phases are balanced; however, faults disrupt this symmetry, causing each 

phase to reveal unique diagnostic details. Consequently, studies that rely on 

a single phase of the current signal may not capture all fault-related 

characteristics. Research on motor bearing fault diagnosis using two current 

phases typically extracts features from each phase separately, applying 

machine learning to classify the faults. Currently, no approach has been 

proposed to extract features from both phases simultaneously. Furthermore, 

the proposed solutions have only been published with noise-free data. To 

address these challenges, this paper introduces an enhanced solution that 

improves the accuracy of motor bearing fault classification based on an 

improved convolutional neural network that processes current signals from 

two phases simultaneously. Experimental results demonstrate that the 

proposed method significantly outperforms traditional approaches, 

particularly in scenarios where the sample signals are noise-adding signals. 

Fault classification accuracy of the proposed improved convolutional neural 

network (MI-CNN) about 95.12% with noise-adding signals at the signal-to-

noise ratio of 20 dB. 
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1. INTRODUCTION 

Electrical machines in general and induction motors in particular are crucial in various industries. 

Due to continuous operation, these motors experience significant electrical and mechanical pressure, making 

them susceptible to failure. Failures can result from the motor itself, operating conditions or installation 

errors, leading to reduced motor lifespan and increased production losses if not detected early. Consequently, 

techniques have been developed to identify and assess failures, enhancing the reliability and availability of 

electric motors [1]. Motor failures commonly occur in components such as bearings, stators, rotors, among 

others [2]. Among these components, bearing failures are the most prevalent, accounting for over 40% of 

motor failures. According to research by Sing and Al Kazzaz [3], bearing failure is the primary cause of 

motor malfunctions. Bearings are essential for the durable and stable operation of motors, so when they are 

https://creativecommons.org/licenses/by-sa/4.0/
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damaged, whether through broken rollers or chipped inner or outer rings, it directly impacts motor 

performance, causing improper operation and loud noises. The various types of damage in induction motors 

are illustrated in Figure 1 [4]. 

 

 

 
 

Figure 1. Classification of common faults in induction motors [4] 

 

 

Figure 2 describes rolling-element bearing structure and faults, in which Figure 2(a) illustrates the 

structure of a typical bearing and the damage that can occur to its outer and inner rings is illustrated in  

Figure 2(b) and Figure 2(c) respectively [5]. A bearing consists of two rings, called the inner and outer rings, 

with a set of rolling balls positioned on rolling surfaces that rotate around these rings. Continuous stress on 

the bearings can lead to fatigue, typically manifesting as damage to the inner or outer ring. This damage 

results in small pieces breaking off the bearing, a phenomenon known as flaking or cracking [6], which in 

turn causes unstable bearing operation. Several factors can contribute to bearing failure, including the quality 

of the bearing itself, operating in environments prone to oxidation or chemical corrosion and insufficient 

periodic maintenance. Such conditions not only impair the smooth operation but also increase friction, 

reducing lifetime of the bearing. To prevent production interruptions caused by engine failures, extend 

operating time and optimize investment efficiency, fault detection and condition monitoring are essential. 

Fault detection helps prevent unexpected interruptions and mitigates the risk of serious damage to the entire 

powertrain, while condition monitoring reduces maintenance costs and enhances engine reliability. 

 

 

   
(a) (b) (c) 

 

Figure 2. Rolling-element bearing structure and faults (a) structure of a rolling-element bearing,  

(b) outer race fault, and (c) inner race fault [5] 

 

 

Up to now, various methods have been developed and applied for detecting and diagnosing motor 

bearing faults, including sound and vibration analysis [7], electromagnetic field monitoring [8] and motor 

current signal analysis (MCSA) [9]. Researchers have also investigated fault diagnosis techniques based on 

other motor physical quantities, including rotor position, rotor speed, torque, power capacity, and 
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temperature, in addition to these signal-based approaches [10]. Among these, vibration and sound signal 

analysis are widely used for detecting motor bearing faults. However, these methods require the use of 

expensive sensors and the proper placement and installation of these sensors can be challenging due to 

limited construction space. Additionally, the presence of noise from surrounding devices can interfere with 

the accuracy of sound measurements, leading to potential misdiagnoses when using sound sensors to detect 

bearing faults. Compared to vibration and sound monitoring, MCSA method has gained significant attention 

due to several key advantages. Firstly, MCSA does not require additional sensors, as it utilizes the existing 

current signal from the motor controller, which reduces both costs and system complexity. Additionally, this 

method allows for the remote monitoring of multiple motors from a single location by analyzing the current 

signal supplied to each motor [11]. Furthermore, MCSA is less affected by ambient noise since it relies on 

current signals for diagnosing bearing faults, making it a more reliable option in noisy environments. 

Typically, bearing fault diagnosis using current data with traditional methods involves two main 

steps: fault feature extraction and fault classification. fast Fourier transform (FFT) [12], discrete wavelet 

transform (DWT) [12], empirical mode decomposition (EMD) [13], local mean decomposition (LMD) [14] 

and variational mode decomposition (VMD) [15] are commonly used feature extraction techniques. For fault 

classification, popular machine learning algorithms include support vector machine (SVM) [16], back-

propagation neural network [17], Bayesian classifier [18], k-nearest neighbor (k-NN) [19], random forest 

(RF) [20] and classification and regression tree (CART) [21]. The accuracy of bearing fault diagnosis using 

the above approaches depends on the manual selection of extracted signal features and training of the 

machine learning classifier. To overcome this, deep learning-based motor bearing fault diagnosis methods, 

typically convolutional neural network (CNN) models, are widely applied [22]–[24]. These are published 

works on motor bearing fault diagnosis based on a single phase of motor current signal.  

In theory, when a two-phase electric motor experiences a fault, the current in the two phases 

becomes asymmetrical, meaning they each carry distinct information about the system fault. Therefore, the 

accuracy of the above solutions is not high due to missing symptoms of bearing failure. Both phases of the 

current signal must be used for bearing fault diagnosis in order to improve diagnostic accuracy and decrease 

missed detections. To date, there are only a few studies exploring the use of two-phase motor current signals 

for diagnosing bearing faults. Published works on diagnosing motor bearing faults based on two phases of 

current signals only extract features of each phase individually [5], [25]. This is not suitable for diagnosing 

motor bearing faults using multiple phases of current signals simultaneously. Thus, this paper proposes a new 

solution, termed multi-input CNN (MI-CNN), to overcome the current disadvantages of the previous 

methods for detecting bearing failures in a multi-phase motor. In this method, feature maps from both phases 

of the current signal are extracted concurrently through two branches of the proposed MI-CNN model. These 

extracted features are then integrated during the fusion stage and subsequently classified by a softmax 

classifier. Simulations conducted in various noisy environments demonstrate that the proposed method 

achieves superior diagnostic accuracy compared to existing solutions, including those based on deep learning 

and machine learning with multi-sensor signals. The subsequent sections of this article provide a thorough 

explanation of the recommended bearing fault diagnosis method, the experimental dataset, validation, and 

discussion. 

 

 

2. PROPOSED METHOD 

2.1.  Basic CNN model structure for diagnosing electric motor bearing damage 

The basic CNN model structure for diagnosing electric motor bearing faults is depicted in Figure 3. 

It comprises several key components: an input layer (a grayscale image block of dimensions L1×L2), five 

convolutional blocks, three pairs of nonlinear and fully connected layers, a softmax layer, and an output 

layer. The first four convolutional blocks each consist of four layers: a convolutional layer, a normalization 

layer, a nonlinear activation layer, and a pooling layer. The fifth convolutional block includes a convolutional 

layer and a normalization layer. Padding is applied at the convolutional layers with a stride of 1×1 after each 

multiplication, ensuring that no information is lost and that the image dimensions remain unchanged. 

The first fully connected layer in the basic CNN model contains 200 neurons, followed by the 

second fully connected layer with 100 neurons and the final fully connected layer with 3 neurons. These three 

neurons correspond to the bearing condition labels: 0, 1, and 2, representing a no-fault bearing, an inner race 

break bearing, and an outer race failure bearing, respectively. This basic CNN model, as depicted in Figure 3, 

offers advantages such as low model complexity, rapid training time, and efficient image classification. 

However, it is limited by its ability to diagnose motor bearing faults using only one phase of the current 

signal, leading to lower accuracy and requiring a huge amount of iterations for the model to converge, 

particularly in noisy environments. To diagnose motor bearing faults using both phases of the motor current 

simultaneously, enhancements to the basic CNN model are necessary.  
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2.2.  Structure of the proposed MI-CNN model for electric motor bearing fault diagnosis 

The proposed MI-CNN model, illustrated in Figure 4, is composed of four stages: data collection, 

feature extraction, feature fusion, and classification. The data collection and feature extraction stage consist 

of two branches: the left and right branches, which are used to collect and extract features using signals from 

Phase 1 and Phase 2 of the motor current, respectively. Each branch follows an identical structure. Signals 

from Phase 1 and Phase 2 are first converted into grayscale images of dimensions L1×L2. These images 

serve as the input to the CNN model, which comprises five convolutional normalization rectified linear unit 

max-pooling (CNRM) blocks and a fully connected layer (FC1). The first four CNRM blocks share the same 

structure as the convolutional blocks of the basic CNN model described in section 2.1. The fifth CNRM 

block includes a convolutional layer, a normalization layer, and a nonlinear activation layer. The output from 

the first fully connected layer (FC1) is then fed into the feature fusion block, where features extracted from 

the two phases of the current signal are combined, allowing the MI-CNN model to simultaneously extract 

features from two phases. The number of neurons of this layer is concatenated by neurons of the FC1 layer of 

the two branches. The feature classification stage consists of two pairs of rectified linear unit (ReLU) and 

fully connected layers, followed by a softmax layer and an output layer. This stage classifies the input image 

into one of three categories, labeled 0, 1, or 2, corresponding to different bearing fault conditions, based on 

the probabilities calculated by the softmax layer, similar to the basic CNN model. The next section of the 

paper will present the dataset for experimental verification of the proposed model effectiveness, the scenario, 

and experimental method. 

 

 

 

 

 
 

Figure 3. Basic CNN model structure for 

diagnosing electric motor bearing damage 

 

Figure 4. Diagram of the proposed MI-CNN model  

structure for diagnosing electric motor bearing faults 
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3. EXPERIMENTAL DATA AND METHOD 

3.1.  Experimental data 

We use the bearing dataset provided by Paderborn University [26] to simulate the proposed  

MI-CNN model, which is a laboratory-measured dataset and has been used by many research groups to test 

the proposed bearing fault diagnosis solution ([5], [22], [23], [25]). The published dataset includes 

measurements of various motor parameters corresponding to 32 bearing codes of type 6203, with 

specifications as described in Table 1. These bearings are categorized into naturally damaged, artificially 

damaged, and undamaged groups, consisting of 6 undamaged bearings (K001-K006), 12 bearings with outer 

ring faults (KA01, KA03-KA09, KA15, KA16, KA22, KA30), 11 bearings with inner ring faults (KI01, 

KI03-KI05, KI07, KI08, KI14, KI16-KI18, KI21), and 3 bearings with both inner and outer ring faults 

(KB23, KB24, KB27).   

 

 

Table 1. Bearing parameters of type 6203 
Parameters Value 

Bearing type Deep groove ball 
Bearing designation 6203 

Diameter of inner race 24.00 mm 

Diameter of outer race 33.10 mm 
Pitch circle diameter 29.05 mm 

Rolling element diameter 6.75 mm 
Number of rolling elements 8 

Nominal pressure angle 00 

 

 

Figure 5 displays the schematic diagram of the test stand that measures the parameters of the signals 

that describe the motor's physical quantities. It is made up of the following parts: an electric motor (1), a 

torque measuring shaft (2), a bearing test module (3), a flywheel (4), and a load motor (5). Bearings with 

different failure modes are mounted in the bearing test module to generate simulation data. The motor (1) is a 

425 W permanent magnet synchronous motor (PMSM) with a rated torque of T=1.35 Nm, a rated rotor shaft 

speed of n=3000 rpm, a rated current of I=2.3 A and the number of pole pairs of p=4. It is operated by a 

frequency converter (KEB Combivert 07F5E 1D-2B0A) with a cut-off frequency of 16 kHz. This motor has 

4 operating states corresponding to different values of rotor shaft rotation speed (S), load torque (M), radial 

force acting on bearings (F). Table 2 indicates four working conditions of the motor. The load motor (5) is 

Siemens-Motor 1FT7062-1AF70-1DG1. In this paper, we use two phases of the current signals of 15 bearing 

codes are depicted in Table 3, corresponding to the working state B of the motor in Table 2 to do experiment. 

Given a sampling frequency of 64 kHz and a measurement duration of 4 seconds, each current signal 

measurement comprises 256.000 data points (64.000 samples/second×4 seconds). For each bearing code, 20 

measurements are conducted, resulting in a total of 5.120.000 data points per bearing code (256.000×20). 

Since each bearing label in Table 3 contains 5 bearing codes, the total number of data points per bearing label 

amounts to 25.600.000 (5.120.000×5). 

 

 

 
 

Figure 5. Test stand for measuring engine parameters [24] 

 

 

Table 2. Engine working conditions 
Operating state S (RPM) M (Nm) F (N) 

A 1500 0.1 1000 

B 900 0.7 1000 

C 1500 0.7 400 

D 1500 0.7 1000 
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Table 3. The bearing codes used for experiment 
Bearing condition Class Label Bearing code 

Non-faulty (N) 0 K0 K001, K002, K003, K004, K005 
Outer race damage (O) 1 KA KA04, KA15, KA16, KA22, KA30 

Inner race damage (I) 2 KI KI04, KI14, KI16, KI18, KI21 

 

 

3.2.  Experimental method 

The data points of both phases of the motor current signal when operating with labels K0, KA, and KI 

in Table 3 are divided into grayscale images, each with a size of L1 L2 pixels. Therefore, the number of images 

corresponding to the labels K0, KA and KI in Table 3 is 25.600.000/(L1 L2) images. The allocation of input 

images to the MI-CNN model is performed randomly as follows: 80% of the images are assigned for training 

and the remaining 20% are reserved for testing and evaluation. The parameters of the MI-CNN model for the 

experiment are listed in Table 4. The mini-batch size is chosen to be 128. If the value of the mini-batch size is 

too small, the number of iterations will increase, leading to the state of the model gradually moving from 

underfitting to optimal and then overfitting. On the contrary, if the mini-batch size is too large, buffer memory is 

needed to store the training data. Furthermore, to verify the effectiveness and reliability of the recommended 

model, Gaussian noise was added to the signals used for testing. In this paper, the proposed method is tested  

by changing the coefficients L1, L2 (L1 L2=40 40, 60 60, 80 80, and 100 100); K (1, 5, 10, 20, and 30),  

F (3 3, 5 5, 7 7, 9 9, and 11 11); and varying the value of = 0.001, 0.01, and 0.1 on many signals with different 

signal-to-noise ratios, including signal-to-noise ratio (SNR)=-10, -5, 0, 5, 10, 15, and 20 dB to select the 

optimal parameter set of the model based on the criteria of fault classification accuracy and classification time 

of an image used for model testing. After selecting the optimal parameter set, we compare the electric motor 

bearing fault classification accuracy of the proposed solution using the proposed MI-CNN model with the basic 

CNN model and compare the results of the proposed solution with other works using 2-phase data such as [5] 

and [25] using the same dataset, executed on the same hardware platform (Intel (R) Core i7 2.9 GHz CPU;  

8 GB RAM) using MATLAB software to highlight the effectiveness of the proposed method. 

 

 

Table 4. Parameters of the proposed MI-CNN 
Parameter Value 

Input image size L1×L2 

Minibatch Size 128 

InitialLearnRate 𝛼 

LearnRateDropFactor 0.1 

ValidationPatience 5 
L2Regularization 1e-10 

Epoch 10 

The number of kernels/the kernel size per convolutional layers K/F 
Optimizer Adam 

 

 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

4.1.  Evaluation of the fault identification accuracy of the proposed MI-CNN model when changing the 

initial training rate  

In this experiment, we selected the proposed MI-CNN model with a random set of values: L1 L2 

(40×40), K (5), F (7×7) and varied the learning rate 𝛼 (0.001, 0.01, and 0.1). The input data consisted of 

two-phase motor current signals with added Gaussian noise at different SNR values. Figure 6 shows the 

classification accuracy of motor bearing faults using the proposed MI-CNN model with two-phase motor 

current signals at an SNR of 20 dB, tested at three different initial learning rates with 𝛼 = 0.1 in Figure 6(a), 

𝛼 = 0.01 in Figure 6(b), and 𝛼 = 0.001 in Figure 6(c). The experiment was repeated using different SNR 

values and the results of the bearing breakdown diagnosis accuracy and the time to classify a single image for 

varying initial learning rates are presented in Table 5 and Table 6, respectively. 

Table 5 demonstrates that with the proposed MI-CNN, the more the training rate is reduced, the 

more the fault classification accuracy increases, and the highest accuracy is achieved at the rate of 0.001 

among the three rate values used for experiments at all experimental signals with different SNR values. This 

aligns with theoretical expectations, where a learning rate that is too high may cause the model to converge 

too quickly to a suboptimal solution, while a learning rate that is too low can cause the training process to 

stall. However, according to Table 6, decreasing the training rate will result in the longer time needed to 

classify a single input image during testing and model evaluation. To balance between fault classification 

accuracy and execution time, we choose 𝛼 = 0.001 for the proposed MI-CNN model. 
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Table 5. Fault classification accuracy with different initial learning rates 
The initial learning rates The fault classification accuracy (%) with the noise-adding signal at the different SNR 

20 dB 15 dB 10 dB 5 dB 0 dB -5 dB -10 dB 

0.1 33.60 33.55 33.50 33.50 33.50 33.45 33.30 
0.01 80.60 76.83 67.73 54.60 44.68 38.30 33.50 

0.001 91.50 84.40 71.30 59.44 50.20 46.80 46.70 

 

 

Table 6. Classification time per image with different initial learning rates 
The initial  

learning rates 

Number of images  

to be classified 

The total weight 

(with L1×L2=40×40, K=5, F=7×7) 
Time to classify  

1 image (ms) 

0.1 9600 59243 3.11±0.3 

0.01 9600 59243 3.15±0.3 

0.001 9600 59243 3.19±0.3 

 

 

   

(a) (b) (c) 

 

Figure 6. The fault classification accuracy of the proposed MI-CNN model with different initial training 

rates, experiment with the 20 dB SNR signal (a) 𝛼 = 0.1, (b) 𝛼 = 0.01, and (c) 𝛼 = 0.001 

 
 

4.2.  Evaluation of the fault identification accuracy of the proposed MI-CNN model when varying 

numbers of kernels 

In this experiment, we selected the proposed MI-CNN model with a random set of values: L1×L2 

(60×60), F (5×5), 𝛼 (0.001) and varied the K values of 1, 5, 10, 20, and 30. The input data consisted of  

two-phase motor current signals with added Gaussian noise at different SNR values. Figure 7 illustrates the 

classification accuracy of motor bearing faults for five different kernel quantities per convolutional layer 

using the proposed MI-CNN model using two-phase motor current signals at an SNR of 15 dB with K=1, 5, 

10, 20, 30 in Figures 7(a) to 7(e) respectively. The experiment was repeated using other SNR values and the 

results of classification accuracy and the time taken to classify a single image with varying kernel quantities 

are presented in Tables 7 and 8, respectively. 

According to Table 7, the proposed MI-CNN model with 1 kernel per convolutional layer has the 

lowest classification accuracy. The accuracy is significantly improved if we use larger kernel number per 

convolutional layer such as 5, 10, 20 and the accuracy is maximized with a kernel number of 30 in all 

experimental signals. This aligns with theory, which suggests that increasing the number of kernels allows 

the CNN model to learn deeper signal features. Therefore, the fault classification accuracy is significantly 

increased. However, as shown in Table 8, increasing the number of kernels in each convolutional layer also 

leads to a larger number of weights (44683 for the model with 1 kernel versus 523203 for the model with  

30 kernels), resulting in a longer classification time per image (2.58 ± 0.2 ms versus 6.79 ± 0.6 ms). Tables 7 

and 8 show that using 5 kernels per layer yielded only a slightly lower classification accuracy compared to 

using 30 kernels (87.5% versus 89.9% with an SNR of 15 dB). However, the classification time per image for 

the model with 5 kernels per convolutional layer was significantly reduced compared to the model with 30 

kernels, due to the much lower total number of weights (64203 versus 523203). To balance between fault 

classification accuracy and execution time, we select K=5 among the five kernel values used for 

experimentation for the proposed MI-CNN model. 
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(a) (b) (c) 
   

  

(d) (e) 

 

Figure 7. Fault classification accuracy of the MI-CNN model with varying numbers of kernels, experiment 

with the 15 dB SNR signal (a) K=1, (b) K=5, (c) K=10, (d) K=20, and (e) K=30 

 

 

Table 7. Fault classification accuracy with varying numbers of kernels 
Number of kernels Fault classification accuracy (%) with the noise-adding signal at the different SNR 

20 dB 15 dB 10 dB 5 dB 0 dB -5 dB -10 dB 

1 70.30 65.20 59.69 51.24 46.68 44.27 43.66 

5 91.79 87.50 75.41 71.30 50.91 48.24 46.40 

10 92.32 89.59 81.00 77.24 53.35 48.88 47.50 
20 92.85 89.80 83.35 80.16 54.68 49.52 48.40 

30 93.59 89.90 85.86 82.54 58.62 50.33 49.60 

 

 

Table 8. Classification time per image with varying numbers of kernels 
Number of kernels/convolutional layers Number of images  

to be classified 
Total weight  

(L1×L2=60×60, F=5×5) 

Time to classify  
one image (ms) 

1 4267 44683 2.58±0.2 

5 4267 64203 3.35±0.3 

10 4267 97603 3.68±0.3 
20 4267 322403 5.82±0.5 

30 4267 523203 6.79±0.6 

 

 

4.3.  Evaluation of the fault identification accuracy of the MI-CNN model when varying kernel sizes 

In this experiment, we selected the proposed MI-CNN model with the following parameters: L1×L2 

(80×80), K (10), 𝛼 (0.001) and varied the kernel sizes F of 3 3, 5×5, 7×7, 9×9, and 11×11. The input data 

image consisted of two-phase motor current signals with added Gaussian noise at different SNR values. 

Figure 8 illustrates the classification accuracy of motor bearing faults using the enhanced CNN model with 

five different kernel sizes per convolutional layer, using two-phase motor current signals at an SNR of 10 dB 

with F=3×3, 5×5, 7×7,9×9, and 11×11 in Figures 8(a) to 8(e) respectively. The experiment was repeated 

with other SNR values, and the results for classification accuracy and the time to classify a single image with 

different kernel sizes are presented in Tables 9 and 10, respectively.  
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Tables 9 and 10 demonstrate that, with the proposed model, increasing the kernel size not only 

reduces the malfunction identification accuracy but also increases the total weight of the model, leading to an 

increase in the time required to classify an image in all experimental signals. According to Tables 9 and 10, 

we chose the kernel size in each convolutional layer as 3×3 for the suggested MI-CNN model to reach the 

highest accuracy and ensure the fastest image classification time compared to the remaining kernel sizes. 

This aligns with theory, which suggests that choosing a small kernel size will extract highly local features, 

detect small features, extract diverse features, be useful for the following layers, and share weights well. 

 

 

Table 9. Fault classification accuracy with varying kernel sizes 
Kernel size/ convolutional layers Fault classification accuracy (%) with noise-adding signal at different SNR values 

20 dB 15 dB 10 dB 5 dB 0 dB -5 dB -10 dB 

3×3 95.72 91.12 87.60 73.34 62.35 57.92 52.16 

5×5 94.72 88.89 86.70 72.28 60.23 56.28 51.21 

7×7 93.51 85.30 80.80 70.10 59.20 55.78 50.87 

9×9 91.14 84.48 79.10 68.82 58.90 54.32 50.33 

11×11 89.35 82.23 75.90 66.47 57.57 53.66 48.90 

 

 

Table 10. Classification time per image with varying kernel sizes 
Kernel size/convolutional layers Number of images  

to be classified 

Total weight 

(with L1×L2=80×80, K=10) 

Time to classify  

one image (ms) 

3  3 2400 148483 3.64 ± 0.3 

5  5 2400 161603 3.75 ± 0.3 

7  7 2400 181283 3.92 ± 0.3 

9  9 2400 207523 3.96 ± 0.5 

11  11 2400 240323 3.99 ± 0.6 

 

 

   

(a) (b) (c) 

   

  

(d) (e) 

 

Figure 8. Fault classification accuracy of the proposed MI-CNN model with varying kernel sizes, evaluation 

with the 10 dB SNR signal (a) F=3×3, (b) 5×5, (c) F=7×7, (d) 9×9, and (e) F=11×11 
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4.4.  Evaluation of the fault identification accuracy of the MI-CNN model when varying input data sizes 
In this experiment, we selected the CNN model with F=11×11, K=1, 𝛼=0.001 and varying the 

L1×L2 values of 40×40, 60×60, 80×80, and 100×100 with input data consisting of two-phase motor current 

signals with added Gaussian noise at different SNR values. Figure 9 shows the classification accuracy of 

motor bearing faults for five different input data sizes using the proposed MI-CNN model using two-phase 

motor current signals at an SNR of 0 dB with L1×L2=40×40, 60×60, 80×80, and 100×100 in  

Figures 9(a) to 9(d) respectively. The experiment was repeated with other SNR values and the results for 

classification accuracy and the time to classify a single image with different input data sizes are presented in 

Tables 11 and 12, respectively. 

 

4.5.  Fault classification accuracy comparison of proposed MI-CNN model and basic CNN model 

In this experiment, we used the proposed MI-CNN model with two-phase motor current signals and 

the basic CNN model with signals from phase 1 or phase 2. The parameters for the CNN model are detailed 

in Table 13. With an input image size of 80×80, each bearing code in Table 3 has 25.600.000/6400=4000 

images, with 3200 images used for training and 800 images used for testing. Experiments were conducted 

with both models using data with and without Gaussian noise, at SNR levels of 20, 15, 10, 5, 0, -5, and -10 dB 

and compared the accuracy and classification time of the two models.  

 

 

 
 

 

 

 

Figure 9. Fault classification accuracy of the proposed MI-CNN model with different input image sizes, 

experiment with the 0 dB SNR signal (a) L1×L2=40×40, (b) (b) L1×L2=60×60, (c) L1×L2=80×80, and  

(d) L1×L2=100×100 

 

 

Table 11. Fault classification accuracy with varying input image sizes 
Input image size Fault classification accuracy (%) with noise-adding signal at different SNR values 

20 dB 15 dB 10 dB 5 dB 0 dB -5 dB -10 dB 

40  40 81.22 72.38 66.22 60.94 54.30 48.40 44.80 

60  60 72.05 66.82 59.19 52.48 48.60 46.37 42.85 

80  80 81.96 80.20 74.40 64.67 55.90 49.79 47.82 

100  100 79.80 76.44 62.08 56.34 51.50 47.18 44.68 

 

 

Table 12. Classification time per image with varying input image sizes 
Input image size Number of images to be classified Total weight 

(with F=11  11, K=1) 
Time to classify one image 

(ms) 

40  40 9600 43643 1.23 ± 0.1 

60  60 4267 45643 2.50 ± 0.2 

80  80 2400 52043 3.40 ± 0.3 

100  100 1536 56443 6.39 ± 0.6 

 

 

Table 13. Parameters of proposed MI-CNN model 
Parameter Value Parameter Value 

Input image size 80 80 L2Regularization 1e-10 

Minibatch size 128 Epoch 10 

InitialLearnRate 0.001 Number of kernels/Kernel size in convolutional layers 5/3 3 

LearnRateDropFactor 0.1 Optimizer Adam 
ValidationPatience 5 Number of convolutional layers 5 
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The classification accuracy of the bearing faults for both models is summarized in Table 14. The 

accuracy curves for the models are presented in Figure 10. Table 14 demonstrates that the bearing fault 

diagnosis method using two phases of motor current signals simultaneously achieves significantly higher 

accuracy than the method using only one phase of current signal with the same model parameters for all 

experimental signals with different SNRs. The failure identification accuracy outstanding of the proposed 

MI-CNN model over the basic model is further demonstrated in signals with low SNR ratios. For example, 

with a signal having an SNR of 0 dB, the defect diagnosis accuracy of the MI-CNN model is 65.48% 

compared to 51.30% and 52.45% of the basic CNN model when using phase 1 and phase 2, respectively. 

 

 

 

 

Figure 10. Comparison of fault classification accuracy between CNN models 

 

 

Table 14. Comparison of fault classification accuracy and bearing fault classification time between 

the basic CNN model and the proposed MI-CNN model 
Method Fault classification accuracy (%) with noise-adding signal at different SNR values Total 

weight 

Time to classify 

one image (ms) Noise-free 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB -10 dB 

Basic CNN+Phase 1 91.02 78.20 71.20 67.30 58.20 51.30 43.70 40.35 46623 1.05 ± 0.1 

Basic CNN+Phase 2 92.10 80.90 71.70 69.55 59.00 52.45 45.80 43.30 46623 1.05 ± 0.1 
MI-CNN (this paper) 97.78 95.12 90.31 85.60 72.67 65.48 55.80 52.28 92843 3.43 ± 0.3 

 

 

4.6.  Fault classification accuracy comparison of proposed MI-CNN model with other methods using 

two-phase motor current signals 

In this experiment, various methods utilizing two-phase motor current signals as simulation data 

were evaluated, including DWT and XGBoost machine method [5], deep learning and information fusion 

method [25] and the proposed MI-CNN solution. The dataset on bearing fault samples was used to compare 

the effectiveness of the methods listed in Table 3, with both noise-free signals and Gaussian noise at SNR 

levels of 20, 15, 10, 5, 0, -5, and -10 dB. Figure 11 shows the accuracy curves for bearing malfunction 

diagnosis corresponding to various techniques in noisy environments. Table 15 presents the accuracy of the 

various solutions with noise-free signals and signals with added Gaussian noise. 

With the proposed MI-CNN model, during the process of extracting features, there is always additional 

information about failure between the two phases, helping the extracted features to be more diverse and 

informative. This leads to a significant improvement in the proposed MI-CNN model's fault classification 

accuracy. Indeed, Table 15 demonstrates that, with noise-adding signal, the motor bearing fault classification 

accuracy of the proposed MI-CNN model is higher than the published methods [5], [25] using two phases of 

motor current signals with the same experimental dataset and the same hardware platform, especially with 

signals with large SNR. For example, with a signal having an SNR of 10 dB, the failure diagnosis accuracy of 

the proposed MI-CNN model is 85.60% compared to 72.03% [25], 75.50% [25] and 72.38% [5].  

Table 15 also presents that, with noise-free signals, the accuracy of the proposed method is higher 

than that of the IF+CNN [25] method (97.78% versus 96.13%) but slightly lower than that of the DWT and 

the XGBoost machine method [5] (97.78% versus 99.32%). Because the DWT and XGBoost machine 

method [5] uses the signal pre-processing techniques (applying the notch filter to remove 60 Hz signal). 

Additionally, the method in [5], extracts features for all four operational states of the motor listed in Table 2. 
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Therefore, the fault signatures are supplemented by various working conditions of the engine, making the 

fault diagnosis more accurate.  

Figure 11 shows that, the accuracy of the proposed method is higher than other methods [5], [25]. 

Nevertheless, due to the lack of pre-processing techniques, the accuracy of the proposed method is only more 

outstanding than these methods for signals with high SNRs (20, 15, and 10 dB). Conversely, for signals with 

low SNRs (-10, -5, and 0 dB), the accuracy of the proposed MI-CNN model is not much better than that of 

remaining methods. 

 

 

 

 

Figure 11. Comparison of fault classification accuracy between methods using two-phase current signals  

 

 

Table 15. Comparison of fault classification accuracy among methods using two-phase motor current signals 
Method Fault classification accuracy (%) with noise-adding signal at different SNR values  

Noise-free 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB -10 dB 

IF+CNN+k-NN [25] 96.13 82.9 77.22 72.03 64 52.02 48.62 46.48 

IF+CNN+SVM [25] 96.13 83.5 77.4 75.5 66.02 56.1 52.7 48.3 

DWT+XGBoost [5] 99.32 75.73 74.81 72.38 70.22 63.01 54.79 50.38 
MI-CNN (this paper) 97.78 95.12 90.31 85.6 72.67 65.48 55.8 52.28 

 

 

5. CONCLUSION 

This paper proposes a new method to improve the accuracy of diagnosing electric motor bearing 

faults based on an improved CNN model called MI-CNN, which simultaneously uses both phases of the 

motor current signal. The published methods for diagnosing motor bearing faults using two phases of the 

motor current signal extract features of each signal phase individually. Therefore, the fault symptoms 

expressed in the asymmetry between phases when the motor fails are not extracted in the published methods. 

In contrast, our proposed method solves the problem of simultaneously extracting features in both phases of 

the motor current based on the proposed MI-CNN model. This makes the extracted features more diverse and 

more informative about the fault signatures, suitable for practical applications of diagnosing multi-phase 

electric motor bearing faults. Many experiments are conducted to select the optimal parameters of the 

proposed model. Then, we compare the bearing fault diagnosis accuracy of the recommended method with 

published methods. Using experimental signals with varying SNRs, the results demonstrate that the 

suggested approach outperforms published methods in terms of accuracy. Future research will consider 

testing the proposed MI-CNN model with different operational states of motors and with other types of 

motors. Additionally, the proposed method should be implemented with various signal pre-processing 

techniques for further accuracy enhancement.  
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