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 Printed circuit boards (PCBs) are essential in modern electronics, where 

even minor defects can lead to failures. Traditional inspection methods 

struggle with complex PCB designs, necessitating automated deep learning 

techniques. Object detection models like Faster R-CNN and YOLO rely on 

bounding boxes for defect localization but face overlap issues, limiting 

precise defect isolation. This paper presents a segmentation-based PCB 

defect detection model using Detectron2’s Mask R-CNN. By leveraging 

instance segmentation, the model enables pixel-level defect localization and 

classification, addressing challenges such as shape variations, complex 

structures, and occlusions. Trained on a dataset of 690 COCO-annotated 

images, the model underwent rigorous experimentation and parameter 

tuning. Evaluation metrics, including loss functions and mean average 

precision (mAP), assessed performance. Results showed a steady decline in 

loss values and high precision for defects like mouse bites and missing 

holes. However, performance was lower for complex defects like spurs and 

spurious copper. This study highlights the effectiveness of instance 

segmentation in PCB defect detection, contributing to improved quality 

control and manufacturing automation. 
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1. INTRODUCTION 

The electronics industry relies on printed circuit boards (PCBs) for applications ranging from 

consumer devices to defense systems. During manufacturing [1], factors such as dust, over-etching, and 

spurious metals can cause dimensional changes in PCB insulators and conductors, leading to defects that 

affect performance and reliability. Traditionally, human operators inspected PCBs, but with the increasing 

complexity of modern designs and ultra-large-scale integration, manual methods have become inefficient and 

subjective, struggling to meet demands for accuracy and efficiency. To address these challenges, automated 

defect detection methods utilizing deep learning have gained prominence. Advanced object detection models, 

including region-based convolutional neural networks (R-CNN) [2], Fast R-CNN [3], Faster R-CNN [4], and 

you only look once (YOLO) [5], have been extensively utilized for PCB defect detection. These methods rely 

on bounding boxes for defect localization, ensuring computational efficiency but with limitations in 

precision. During localization, bounding boxes may overlap, making it challenging to accurately isolate 

defects and capture their intricate morphologies, as illustrated in Figure 1.  

https://creativecommons.org/licenses/by-sa/4.0/
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Figure 1. PCB defect detection using bounding boxes 

 

 

Instance segmentation [6] has emerged as a promising solution to overcome these limitations. 

Through pixel-level feature extraction, instance segmentation enables precise defect localization and detailed 

morphological characterization. It effectively manages overlapping bounding boxes, reduces false positives, 

and ultimately provides a more accurate representation of defect patterns, aiding engineers in root cause 

analysis and process optimization. 

Numerous studies have explored both traditional and deep learning approaches for PCB defect 

detection. One such study, conducted by Lu et al. [7], proposed a framework in which HOG and LBP 

features were obtained from PCB images for further processing. These extracted features were used to train 

separate support vector machine (SVM) models, which were later integrated using Bayes fusion theory for 

defect classification. Their approach showed higher accuracy compared to individual features, though its 

practical applicability is limited. Likewise, Wei et al. [8] developed a CNN model trained on a dataset of 

1,818 PCB images, outperforming traditional models like VGG16 and ResNet50 but failing to capture finer 

defect details. Adibhatla et al. [9] worked with a large dataset of 47,428 images to reduce misclassifications, 

achieving over 85% accuracy; however, their focus was not specifically on defect detection. Other 

researchers, such as Hu and Wang [10], modified Faster R-CNN for enhanced feature extraction, achieving a 

mean Average Precision (mAP) of 94.2%. Despite these advancements, they still encountered issues with 

overlapping bounding boxes during localization, an ongoing challenge in PCB defect detection. Another 

notable approach, developed by Chaithanya and Devi [11], uses a template-based inspection system for 

granular defect detection via segmentation instead of bounding boxes. While this method allows for precise 

localization and analysis, it requires extensive preprocessing and lacks robustness against environmental 

influences. In contrast, Calabrese et al. [12] employed Mask R-CNN for defect detection, eliminating the 

need for complex preprocessing steps. They achieved satisfactory results on a smaller dataset of missing 

holes and shorts. However, their study emphasized the necessity for enhancements, particularly in identifying 

diverse defect categories and improving detection robustness. 

Despite advancements in the field, supervised classifiers like support vector machines (SVMs) [13] 

are effective for simpler tasks but struggle with complex, nonlinear data. Deep learning models like CNNs 

and R-CNNs often fail to capture intricate defect morphologies, including fine details and varying defect 

sizes. Although Mask R-CNN has been employed in PCB defect detection, its application has primarily been 

restricted to specific defect types. Additionally, template-based methods still face practical challenges, such 

as the need for precise image alignment. This research aims to mitigate these limitations by utilizing Mask R-

CNN [14] within the Detectron2 framework [15] for precise defect localization and detailed characterization. 

By addressing challenges like overlapping bounding boxes, it seeks to enhance the detection of intricate 

defect morphologies. 

The subsequent sections outline the approach adopted in this study, covering the dataset, model 

design, and training strategy. We then present the experimental findings and analyze their significance in 

improving PCB defect detection. This work advances defect detection techniques in PCB manufacturing and 

opens avenues for future research in automated inspection systems. 

 

 

2. METHOD 

Figure 2 illustrates the workflow for PCB defect segmentation, outlining the sequential steps 

required for accurate detection and segmentation of defects. These steps employ the Mask R-CNN model 

integrated within the Detectron2 framework, which is renowned for its precision in instance segmentation 

tasks. This workflow highlights the systematic approach used in this study to address intricate PCB defect 

localization. 
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Figure 2. Process flow for instance segmentation of defects 

 

 

2.1.  Dataset preparation and splitting 

This study utilizes a dataset of 690 PCB images, systematically categorized into six distinct defect 

types: missing hole, mouse bite, open circuit, short, spur, and spurious copper, as described in [16]. To 

enhance model training and reduce classification ambiguity, each image contains a single defect type 

positioned variably across the PCB, enabling accurate detection and classification. 

Instance segmentation requires pixel-level annotations, a process significantly more labor-intensive 

than traditional bounding box methods. Each defect was manually annotated using Label Studio [17], 

generating binary masks that delineate defective regions. As outlined in a related study [18], these 

annotations were converted into the COCO JSON format [19], ensuring compatibility with frameworks like 

Detectron2 and preserving essential metadata such as segmentation masks, bounding boxes, and class labels. 

This meticulous preparation facilitates seamless integration into instance segmentation pipelines. 

To prepare the dataset for model training and evaluation, it was divided into 80% for training and 

20% for validation, with both subsets annotated in the COCO JSON format. This division enabled the model 

to learn from diverse defect variations while retaining a validation subset for hyperparameter tuning and 

performance assessment. Following the training process, the model’s ability to generalize was assessed on an 

unseen test dataset, ensuring its robustness in detecting and segmenting a wide range of defect types.  

 

2.2.  Detectron2 

Detectron2, built on PyTorch, is a versatile deep learning framework widely used for object 

detection and segmentation tasks. It offers pre-trained models such as Faster R-CNN and Mask R-CNN, 

known for their robustness in handling complex detection scenarios. Mask R-CNN, in particular, excels in 

pixel-level localization, making it essential for applications like PCB defect detection, where intricate and 

overlapping defects require precise segmentation. The modular architecture of Detectron2 allows researchers 

to customize its functionality for specific use cases. This flexibility facilitates the adaptation of backbone 

networks, training pipelines, and datasets, making it ideal for industrial applications. Its built-in tools for 

dataset management, visualization, evaluation, and checkpoint handling further enhance workflow efficiency, 

ensuring seamless integration into various domains.  

In this research, Detectron2 is employed for PCB defect detection using Mask R-CNN, which 

efficiently handles overlapping defects while capturing fine structural details. The framework supports 

dataset registration in COCO JSON format, enabling compatibility with other deep learning tools. These 

features collectively make Detectron2 a powerful choice for tackling the complexities of PCB defect 

analysis.  

 

2.2.1. Mask R-CNN 

Mask R-CNN is a widely adopted instance segmentation model capable of detecting objects using 

bounding boxes while also predicting pixel-level segmentation masks. Since it operates in a supervised 

learning paradigm, it requires labeled segmentation masks for training. Built upon Faster R-CNN, Mask  

R-CNN introduces an additional “mask head” branch, enabling it to generate detailed segmentation masks for 

each detected object. The architecture is highly adaptable, with components such as the backbone network, 

region proposal network (RPN), classifier, and mask head configurable for performance optimization. 

Additionally, hyperparameter tuning allows the model to be tailored for different datasets or specific 

application needs. The structure of Mask R-CNN, depicted in Figure 3, consists of four key components 

essential for precise instance segmentation. 
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Figure 3. Architectural breakdown of mask R-CNN 

 

 

a. Backbone Network: Mask R-CNN commonly utilizes ResNet-50 [20] as its backbone due to its strong 

feature extraction capability and effectiveness in instance segmentation. With 50 layers, it captures 

intricate image details crucial for precise object detection and segmentation at the pixel level. Residual 

connections mitigate training challenges, improving learning efficiency. Pretrained on ImageNet, ResNet-

50’s weights provide a solid foundation for fine-tuning [21], boosting model performance and 

convergence. 

b. Neck: The feature pyramid network (FPN) [22] serves as the “neck” of Mask R-CNN, refining high-level 

features extracted by the ResNet-50 backbone into a hierarchical multi-scale representation. By 

integrating both low-resolution and high-resolution features, FPN enhances object detection and 

segmentation across varying object sizes. It assists the (RPN) in generating high-quality proposals while 

also enabling precise instance segmentation via the ROI Align layer. This multi-scale feature learning 

significantly improves Mask R-CNN’s performance in complex vision tasks. 

c. RPN+RoI Align: The region proposal network (RPN) identifies potential object regions by evaluating 

anchor boxes of different scales and aspect ratios, refining their coordinates based on objectness scores. It 

classifies anchors as foreground or background, generating refined proposals. The region of interest (RoI) 

align layer [23] then processes these proposals using bilinear interpolation to preserve spatial alignment, 

effectively addressing the misalignment issues caused by quantization in traditional RoI pooling. This 

ensures precise object localization and pixel-wise segmentation, particularly for small objects, thereby 

enhancing Mask R-CNN’s performance in fine-grained detection tasks. 

d. Bounding Box Head: The bounding box head in Mask R-CNN processes the feature maps extracted by 

the RoI Align layer to perform two tasks: classification of object categories and regression of bounding 

box coordinates. These are jointly optimized using a multi-task loss function, improving detection 

precision by refining region proposals and enhancing spatial localization. 

e. Mask Head: Mask R-CNN extends Faster R-CNN by incorporating a dedicated “mask head” branch for 

precise instance segmentation [24]. This branch processes ROI Align features, applying convolutional 

and upsampling layers to produce dense spatial representations. It outputs a binary mask for each detected 

object using a fully convolutional network (FCN) [25]. During training, the model optimizes 

segmentation accuracy by minimizing the difference between predicted and ground-truth masks through a 

loss function such as binary cross-entropy [26]. This enables accurate pixel-wise segmentation, 

particularly useful for capturing irregular object boundaries. 

 

2.3.  Experimental setup 

The Detectron2-based PCB defect segmentation model was executed in a well-configured 

computational environment. 

a. Environment configuration – The model was implemented using Detectron2 0.6, built on PyTorch 2.2, with 

Python 3.10.12 and CUDA 12.2 for GPU acceleration. Additional dependencies included pycocotools 2.0.2. 
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b. Computational resources – Training was conducted on Google Colab, utilizing its cloud-based infrastructure 

with CPU and T4 GPU access. The hardware setup consisted of NVIDIA-SMI 535.104.05, 4 GB RAM,  

500 GB storage, and an Intel Core i5-6200U CPU. 

c. Training approach – The study employed Mask R-CNN for PCB defect segmentation, with hyperparameter 

tuning to optimize performance. The next section details training configurations, hyperparameter tuning, and 

evaluation metrics.  

 

 

3. RESULTS AND DISCUSSION 

3.1.  Training configuration and loss function 
Training and validation were conducted using a dataset comprising 552 images for training and 138 

for validation, allowing the model’s performance to be assessed on unseen data. The model was trained using 

four different configurations, as presented in Table 1. Across all experiments, the NUMBER_OF_CLASSES 

was set to 6, the PATIENCE parameter to 500, and the MAX_ITER to 1500. 

 

 

Table 1. Model parameter tuning 

Parameter Exp1 Exp2 Exp3 Exp4 

IMS_PER BATCH 2 4 2 4 

BASE_LR 0.001 0.00025 0.00025 0.001 
ROI_HEADS_BATCH_SIZE_PER_IMAGE 512 256 512 256 

 

 

Detectron2 offers pre-trained models with optimized weights for standard datasets, making them 

adaptable for custom datasets. To evaluate their effectiveness on new data, a multi-component loss function 

is utilized during training.  

The total loss function consists of: 

a. Classification loss (loss_cls): Measures the classification error. 

b. Bounding box regression loss (loss_box_reg): Measures localization error. 

c. Segmentation mask loss (loss_mask): Measures segmentation accuracy. 

The overall loss is computed as a weighted sum of these components, enabling the model to classify 

objects, adjust bounding boxes, and generate precise segmentation masks concurrently. 

 

𝑙𝑜𝑠𝑠𝑡𝑜𝑡 = 𝑙𝑜𝑠𝑠𝑐𝑙𝑠 + 𝑙𝑜𝑠𝑠𝑏𝑜𝑥𝑟𝑒𝑔 + 𝑙𝑜𝑠𝑠𝑚𝑎𝑠𝑘 (1) 

 

3.2.  Model evaluation metrics 

Model performance is primarily assessed using average precision (AP) metrics, which evaluate both 

localization and segmentation accuracy. These metrics are based on Intersection over Union (IoU), which 

quantifies the overlap between predicted and ground truth masks and serves as a scale-invariant measure of 

detection quality. A commonly used threshold of IoU ≥ 0.50 helps distinguish accurate detections from false 

positives. Table 2 outlines the evaluation metrics used, including AP across different IoU thresholds and 

object scales (in pixels). 

 

 

Table 2. Average precision (AP) and AP across scales 
Metric Description 

AP IoU= .50 Average precision at intersection over union (IoU) = 0.50 
AP IoU= .75 Average precision at IoU = 0.75 

AP Average precision across IoU range [0.50:0.95] 

AP small Average precision for small objects (area < 322 px) 
AP medium Average precision for medium objects (322 < area < 962 px) 

AP large Average precision for large objects (area > 962 px) 

AP all Average precision considering all object sizes without regard to size 

 

 

3.3.  Performance analysis 

The model’s performance was evaluated using loss values from the training dataset and AP metrics 

from the validation dataset. Among the four experiments, Experiment 4 yielded the best results. Figure 4 

presents the loss curves for classification, detection, segmentation, and overall loss, indicating a consistent 

decline, which signifies effective learning. By iteration 1500, the total loss converged to 1.143 (classification: 

0.123, detection: 0.3178, segmentation: 0.3703). 
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Tables 3 and 4 summarize the model’s AP values for bounding box (Bbox) and segmentation (Seg) 

across different defect categories. The highest precision was observed at IoU=0.50, particularly for 

'mouse_bite' and 'missing_hole.' In contrast, categories like 'spur' and 'spurious_copper' exhibited lower AP 

values, indicating challenges in detecting smaller or less distinct defects. These findings highlight the need 

for further fine-tuning and data augmentation to enhance precision for subtle and complex defect type. 

 

 

 
 

Figure 4. Losses vs iterations curve 

 

 

Table 3. Evaluation of AP for BBox and mask 
Metric Bbox Seg 

AP 27.07 23.59 

AP IoU= .50 74.31 69.32 

AP IoU= .75 11.58 8.08 

AP small 26.64 21.48 
AP medium 31.86 32.20 

AP large nan nan 

 

 

Table 4. AP for each category of defects 
Category Bbox Seg 

missing_hole 28.03 24.72 

mouse_bite 35.59 33.41 
open_circuit 26.13 23.22 

short 27.47 22.39 

spur 21.55 15.54 
spurious_copper 23.64 20.25 

 

 

Figure 5 illustrates the model's predictions, including bounding boxes and segmentation masks, for 

various PCBs in the validation dataset. Each PCB image features a single defect type, selected from six 

distinct categories: missing hole, mouse bite, open circuit, short, spur, and spurious copper, as described in 

the dataset section. The consolidated figure offers a clear visualization of the model's performance across 

these defect types, with the corresponding AP percentages displayed for each defect instance. 

 

3.4.  Discussion on key findings 

The results demonstrate that Detectron2’s Mask R-CNN framework is highly effective for PCB 

defect detection, particularly for defects like 'mouse_bite' and 'missing_hole,' which exhibited high precision. 

By leveraging instance segmentation, the model improves both object localization and pixel-level 

segmentation, outperforming traditional image processing and earlier deep learning approaches. Parameter 

tuning, such as adjusting IMS_PER_BATCH and BASE_LR, significantly impacted performance, with 

Experiment 4 yielding the best results. However, subtle defects like 'spur' and 'spurious_copper' showed 

lower precision, highlighting the need for further refinement. Future work should focus on data augmentation 

and fine-tuning, as increasing dataset diversity—especially for subtle defects—can improve generalization 

and enhance real-world detection accuracy. 
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Figure 5. Model predictions of bounding boxes and segmentation masks for various defect instances in PCBs 

with corresponding AP percentages 

 

 

4. CONCLUSION 

This study demonstrates the efficiency of Detectron2’s Mask R-CNN in detecting and segmenting 

PCB defects, enhancing localization accuracy and minimizing false positives using pixel-level masks. The 

model achieved high precision for defects like “mouse_bite” and “missing_hole,” with bounding box AP of 

27.07 and segmentation AP of 23.59. At an IoU threshold of 0.50, it recorded 74.31 (Bbox) and 69.32 (Seg), 

demonstrating robust performance. However, performance for smaller or more complex defects, such as 

“spur” and “spurious_copper,” was lower, reflecting the need for further refinement, potentially through 

additional training data or fine-tuning. The consistent decline in classification, detection, and segmentation 

loss values confirms the model’s learning efficacy. This research highlights the potential of segmentation-

based models to improve automated PCB inspection, enabling detailed defect analysis to complement 

traditional methods. Future directions may involve integrating advanced models like YOLO or ensemble 

approaches to further enhance defect detection for real-time quality control in industrial settings. 
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