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 Osteoporosis is a bone disorder characterized by reduced bone density and 
increased fracture risk. It challenges society's health, remarkably among the 
elderly population. This research proposed an innovative method by 
combining Shearlet-transform (ST) spectral analysis with a deep learning 
neural network (DLNN) and a convolutional neural network (CNN), for 

osteoporosis classification in lumbar vertebrae (LV) L1-L4 of spine X-ray 
images. The ST enables precise extraction of texture features from images 
by capturing significant information regarding trabecular bone micro-
architecture and bone mineral density (BMD) variations revealing in 
osteoporosis regions. These extracted features serve as input to a DLNN for 
automated classification of osteoporotic and non-osteoporotic vertebrae. 
Similarly, without extracting any features from ST image is directly used as 
an input to the CNN to classify the images.  The experimental results 
highlight the framework's effectiveness, achieving 96% accuracy in 

osteoporosis image classification using CNN. Early and precise detection of 
osteoporosis, particularly in the lumbar vertebrae, is vital for effective 
treatment and fracture prevention. This study particularly emphasizes the 
potential and effectiveness of integrating image spectral analysis technique 
with NN, to improving diagnostic accuracy and clinical decision-making in 
osteoporosis management. 
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1. INTRODUCTION 

Osteoporosis is characterized by reduced bone density and increased vulnerability to fractures 

affecting millions worldwide, particularly the elderly population.  Especially in critical areas like the lumbar 

vertebrae are vital, it needs effective management of bone disorder condition because of its importance in the 

body. While traditional diagnostic methods like dual-energy X-ray absorptiometry (DEXA) scan provides 

valuable information of bone mineral density (BMD), though often lack of capturing detailed structural 

variations that affect fracture risk. Over the past few years, advancements in medical imaging and machine 

learning (ML) techniques are promising in improving osteoporosis diagnosis by considering bone 
microarchitecture in the image. This paper highlights the research gap and presents novel contributions such as: 

https://creativecommons.org/licenses/by-sa/4.0/
mailto:chandrakalabm@yahoo.com


Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Shearlet-based texture analysis and deep learning for osteoporosis … (Poorvitha Hullukere Ramakrishna) 

4319 

a. Osteoporosis, a disease-causing reduced bone density and structural deterioration, poses a significant risk 

to lumbar vertebrae.  

b. Current diagnostic methods are costly, invasive and reliant on subjective interpretation. Traditional 

texture analysis not able to capture multi-scale and directional features essential for accurate 

classification. 

c. The ST, with its capability to analyses anisotropic structures, combined with neural networks, offers a 
promising solution.  

d. This research paper aims to develop a Shearlet-based texture analysis with NN framework for reliable and 

accurate osteoporosis classification in lumbar vertebrae. 

Dong et al. [1] aims to classify osteoporosis using deep learning on lumbar spine X-rays, achieving 

high accuracy through a convolutional neural network (CNN). It compares the model’s performance with 

traditional methods. The key gap includes the need for more diverse datasets to improve generalization. 

Interpretability of the model decisions remains a challenge for clinical adoption. Additional investigation is 

required on practical integration and comparison with newer techniques. Zhang et al. [2] developed a deep 

learning neural network (DLNN) model to classify osteopenia and osteoporosis using lumbar spine X-ray 

images. The model demonstrated promising performance, achieving an area under the curve (AUC) of 0.767 

for diagnosing osteoporosis and 0.787 for osteopenia in the test dataset. Diagnostic networks based on deep 

learning could be effective for screening osteoporosis and osteopenia based on lumbar spine radiographs. 
However, further research is necessary to verify and enhance diagnostic accuracy of DLNN models. Xue et 

al. [3] presents a multi-scale weighted fusion contextual transformer network (FCoTNet) for osteoporosis 

prediction in lumbar spine X-ray images. The model achieved high accuracy, sensitivity, and specificity, 

outperforming clinician performance in a 5-fold cross-validation. FCoTNet demonstrates potential for 

improving automated osteoporosis detection. However, the dataset size and number of clinicians involved 

were not specified, limiting the generalizability assessment. The study suggests that transformer-based 

models can enhance diagnostic tools in healthcare. Fan et al. [4] explores osteoporosis pre-screening with 

panoramic radiographs using a DLNN with an attention mechanism. The model aims to improve the 

identification of osteoporosis by focusing on relevant features in panoramic X-ray images. The attention 

mechanism improves model interpretability and accuracy. The method demonstrated promising results in 

automated screening. The study highlights the potential of integrating attention mechanisms to enhance 
DLNN for osteoporosis detection. Wang et al. [5] develops a method for estimating lumbar BMD from X-ray 

images through an anatomy-aware attentive multi-region of interest (ROI) model. The approach incorporates 

attention mechanisms to highlight pertinent region of interest (ROI) in X-ray images, improving BMD 

estimation accuracy. The method outperforms conventional approaches in terms of accuracy and robustness. 

However, the study primarily focuses on BMD estimation, and its performance on osteoporosis detection 

specifically remains unclear. Additional studies are required to evaluate the model clinical applicability in 

broader osteoporosis diagnosis. 

Nguyen et al. [6] presents a method for estimating lumbar BMD extracted from X-ray images 

through an anatomy-aware attentive ROI model. The model employs attention mechanisms to concentrate on 

the relevant aspects of ROI in the images, enhancing the accuracy of BMD estimation. The approach stands 

out conventional methods in accuracy and robustness. However, the model is focused on BMD estimation 
rather than direct osteoporosis diagnosis, which limits its applicability to broader clinical settings. Further 

work is required to evaluate its potential in osteoporosis detection. Soegijoko et al. [7] focuses on trabecular 

patterns in proximal femur radiographs for osteoporosis detection. The approach showed potential for 

automatic screening and diagnosis. However, the model does not specify the performance metrics, such as 

accuracy or sensitivity, which are vital for assessing model effectiveness. Ongoing research is essential to 

validate the method robustness and clinical applicability. Jeong et al. [8] investigates bone patterns in 

osteoporosis through texture parameters to characterize bone architecture. The method quantifies bone 

texture features in radiographic images to assist in the diagnosis of osteoporosis. The model displays the 

potential for identifying osteoporotic changes in bone structure. However, the model does not report specific 

performance metrics, which are essential for evaluating the model clinical utility. Additional validation and 

comparison with other diagnostic techniques are necessary to determine its effectiveness. Hong et al. [9] 

presents a deep-learning-based approach for detecting vertebral fractures and osteoporosis using lateral spine 
X-ray radiographs. The model demonstrated high accuracy in detecting both conditions, outperforming 

traditional methods. However, the model generalization to diverse populations and clinical settings was not 

fully explored and broader validation and comparison with other diagnostic techniques are essential. Mu et 

al. [10] explores the application of deep learning-based medical imaging in the treatment of lumbar 

degenerative diseases. The model holds promises for accurate diagnosis and treatment planning; however, it 

lacks detailed metrics for evaluating its performance in clinical settings. The method also does not address 

the dataset size, which could impact the model generalization. Additional research and validation on larger 

datasets are necessary to evaluate its practical clinical applicability. 
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Kim et al. [11] proposes a prediction model for spinal osteoporosis using lumbar spine X-ray 

images, employing transfer learning with deep CNNs. The model leverages pre-trained models to enhance 

accuracy in osteoporosis detection. It demonstrated promising results, but dataset size and diversity were not 

fully disclosed, raising concerns about its applicability to different populations. Further validation across 

larger, more diverse datasets is recommended to assess the model robustness. Kong et al. [12] develops a 

deep learning-based model for predicting spinal fractures using spine X-ray images. The model utilizes 

CNNs to identify fracture risk, showing high predictive accuracy, however, making it challenging to fully 
evaluate its clinical utility. Additionally, the dataset used was not large or diverse enough to generalize the 

results across different populations and more research with larger datasets and clinical validation is 

necessary. Kim et al. [13] compares deep learning models using anteroposterior and lateral X-rays for 

detecting osteoporotic vertebral compression fractures. Both models demonstrated promising performance by 

utilizing CNNs for fracture detection. However, the model lacks comparative advantage over traditional 

methods was not fully explored. Additional validation with varied datasets is required to verify its 

generalization and clinical applicability. Mebarkia et al. [14] reviews the progression of X-ray image analysis 

techniques for osteoporosis diagnosis, from shallow to deep learning methods. It explores various models, 

including traditional image processing and modern deep learning techniques for accurate detection. It 

highlights the advantages of deep learning in improving diagnostic accuracy. However, it does not provide 

specific performance metrics or a direct comparison of methods. More research is necessary to assess these 

techniques in actual clinical environments. 
To address the gap in existing research, this paper presents Shearlet-transform (ST) basis spectral 

analysis technique, which has gained attention for its ability to extract and analyze texture features in  

X-ray spine images (LV from L1-L4) with high precision. This multiscale, multi-directional transform is 

designed to capture directional features and edges in images, preserving important directional information. 

Unlike traditional methods such as Fourier or wavelet transforms, the ST technique is particularly  

effective for analyzing complex textures in lumbar vertebrae. The study applies ST spectral analysis for 

osteoporosis classification by extracting features that reflect bone microarchitecture and density variations. 

With DLNN and CNN models, this approach demonstrates improved accuracy and robustness in osteoporosis 

detection. 

 

 

2. PROPOSED MODEL  

This paper introduces a technique for classifying lumbar spine (L1-L4) X-ray images to distinguish 

between healthy and osteoporotic conditions, as illustrated in Figure 1. The process involves three steps.  
a. Preprocessing: Enhancements like sharpening make fine textures in the X-ray image more visible. 

b. Transformation: Application of ST to the enhanced input images. 
c. Classification: Transformed images are classified directly with CNN. In addition, a DLNN is applied to 

features derived from the ST images. 
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Figure 1. Outlined model 

 

 
2.1.  Pre-processing 

This step enhances X-ray images (L1-L4) for better visibility and texture quality often involves 
advanced preprocessing techniques, like contrast limited adaptive histogram equalization (CLAHE) [15] 

combined with edge-preserving filter [16] for better enhancement. CLAHE improves contrast adaptively by 

limiting the amplification of noise. To further refine the results, edge-preserving filters like the bilateral filter 

are used to smooth textures while preserving edges. 
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2.2.  Shearlet-transform 

The spectral analysis allows to analyze frequency information of the Shearlet-transformed 

coefficients across different scales and orientations [17], [18]. This provides disparities of intensity 

distribution of image features and textures in the spectral domain, which is vital to image aspects, including 

feature extraction, denoising and classification. The ST spectral analysis provides a robust framework for 

image analysis, particularly in tasks where directional and scale-dependent features are crucial. By 
decomposing images into Shearlet coefficients and analyzing their spectral properties to obtain underlying 

texture structure of the images. It covers the potential of traditional transforms techniques like Fourier or 

wavelet transforms by offering higher directional selectivity and sparsity properties. The ST decomposes the 

image into a group of localized and oriented basis functions, known as Shearlets, which are sensitive to edges 

and distinctive pixel intensity variations in the image. Shearlets are defined by scale, orientation and location, 

enabling them to accurately represent image features across various scales and directions. 

 

2.2.1. Shearlet transforms spectral analysis for an image 

Osteoporosis classification in lumbar vertebrae (L1-L4), the ST spectral analysis involves applying 

the ST to radiographic images [19], [20] of lumbar vertebrae to extract texture features indicative of bone 

microarchitecture and density variations associated with osteoporosis. The spectral analysis aspect involves 

analyzing the frequency information of the Shearlet coefficients obtained from transformation. This spectral 
information provides insights into the fine texture information of image features across different scales and 

orientations, allowing for a comprehensive characterization of the textural characteristics of the vertebrae. 

Mathematically, in spectral analysis, the Fourier transform of the Shearlet coefficients is computed at each 

scale and orientation. The ST is a potent of multiscale and multidirectional transform that is particularly 

effective for representing geometry of multidimensional information. Hence well suited for texture analysis 

in enhanced images (L1-L4), where the texture patterns can indicate various conditions or abnormalities. The 

ST expressed as in (1). 

 

, ,( )( , , ) , a s tSH f a s t f       (1)
 

 

whereas ( )f  
represents input image, 

, ,( )a s t represents Shearlet function with scale ( )a , shear ( )s  and 

translation ( )t . Hence Shearlet function 
, ,( )a s t

 
 is expressed as in (2). 
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 whereas ( )sS  and ( )aA  are the shear and scaling matrices, respectively.  

For image texture extraction, the ST is performed to decompose the image into different scales and 

orientations, capturing the intrinsic texture features at multiple resolutions.  Apply the ST to decompose the 

enhanced image into Shearlet coefficients. Analyze the obtained features to identify and classify 

osteoporosis. The equations of ST as in (3), 

 

, ,( )( , , ) , a s tSH f a s t f             (3) 

 

The Shearlet function is expressed as in (4), 
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The shear matrix Ss and its scaling matrix Aa as in (5). 
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Together, the shear and scaling matrices provide a framework for decomposing an image into a set of 

directional components at multiple scales. This combination gives the ST its unique ability to efficiently handle 

geometrical features such as edges, curves and textures, making it particularly powerful for image classification. 

The ST provides a robust method for image texture features in enhanced images (L1-L4), it enables detailed 

texture information. The features extracted using ST are highly versatile and applicable to a broad spectrum in 

image analysis and boost the potency of classification algorithms with increase diagnostic accuracy.  
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2.3.  Osteoporosis classification techniques 

DLNN [21], [22] and CNN [23], [24] are revealed remarkable capabilities in image classification 

tasks because of their capacity to learn hierarchical representations of data on images. The DLNN model is 

trained on ST image features dataset with the corresponding label and every image is related with a binary 

label indicating the existence or non-existence of osteoporosis. Similarly, the CNN model is trained directly 

on Shearlet transformed images. The network learns to map the Shearlet transformed spectral features to the 

corresponding class labels through an iterative optimization process. By leveraging the directional and 
spectral information derived from the ST with the learning capabilities of networks can achieve accurate and 

robust classification of osteoporotic and non-osteoporotic vertebrae, which helps in the prompt identification 

of osteoporosis. 

 

2.3.1. Shearlet with DLNN  

The DLNN architecture presented here is specifically designed for binary classification tasks, such 

as distinguishing between osteoporosis and healthy cases. The architecture is carefully structured to extract 

meaningful patterns from feature vectors derived from Shearlet coefficients while mitigating overfitting and 

optimizing performance. The DLNN is organized sequentially input and output sizes for batch sizes of 10 

with input shape (60) as follows. 

a. Dense: Input Shape (10, 60), Output Shape (10, 128) 

b. Dropout Layer: Input Shape (10, 128), Output Shape (10, 128). Dropout does not change shape, only 
randomly drops some connections during training 

c. Second Dense Layer: Input Shape: (10, 128), Output Shape: (10, 64) 

d. Second Dropout Layer: Input Shape (10, 64), Output Shape (10, 64). Dropout does not change shape  

e. Third Dense Layer: Input Shape (10, 64), Output Shape (10, 32) 

f. Output Layer: Input Shape (10, 32), Output Shape (10, 1) 

(i) Input Layer: This layer serves as the entry point for the feature vector derived from Shearlet 

coefficients. The length of the feature vector as 60 and each feature acts as a neuron in this layer.  

(ii) Hidden Layers: The hidden layers are composed of fully connected (dense) layers and dropout 

layers for enhanced feature extraction and regularization. 

- Dense Layers: Each dense layer has fully connected neurons that process and transform the input 

features using learned weights and biases. The first dense layer has 128 neurons, activation function 

(AF) is ReLU (Rectified Linear Unit), which introduces non-linearity by allowing only positive values 

to pass through. Second dense layer has 64 neurons, AF is ReLU. Third dense layer has 32 neurons, AF 

is ReLU. 

- Dropout Layers: Dropout layers are introduced after each dense layer to prevent overfitting by 

randomly setting a fraction of input units to zero during training. The first dropout layer has a dropout 

rate of 0.5 (50% of the neurons are randomly deactivated during training). The second dropout layer has 
a dropout rate of 0.5. 

(iii) Output Layer: The output layer purpose is to provide the final prediction for binary classification. 

(single neuron, representing the binary outcome). AF as Sigmoid, which maps the output to a 

probability value between 0 and 1. A threshold (e.g., 0.5) is applied to decide between the two classes: 

osteoporosis or healthy. 

The advantages of architecture are the features of learning, the dense layers with ReLU activation 

allow the network to learn complex, non-linear representations of the input data. The regularization, dropout 

layers reduce overfitting by introducing randomness in the training process, ensuring the network generalizes 

well to unseen data. The sigmoid activation in the output layer is well-suited for binary classification, 

providing probabilistic outputs. The scalability can be adjusted easily to handle feature vectors of different 

lengths by modifying the input layer size. This architecture provides a robust framework for the classification 

task, combining effective feature representation with regularization to achieve reliable predictions. 
 

2.3.2. Shearlet with CNN  

The CNN architecture is organized sequentially as follows, input size of (62, 62, 1) and a batch size 

of 32. 

a. Input Tensor: (32, 62, 62, 1) 

b. Conv1 (32 filters, 3x3): Output shape (32, 62, 62, 32) 

c. MaxPool1 (2x2): Output shape (32, 31, 31, 32) 

d. Conv2 (64 filters, 3x3): Output shape (32, 29, 29, 64) 

e. MaxPool2 (2x2): Output shape (32, 14, 14, 64) 

f. Conv3 (128 filters, 3x3): Output shape (32, 12, 12, 128) 

g. MaxPool3 (2x2): Output shape (32, 6, 6, 128) 
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h. Flatten Layer: Output shape (32, 6*6*128 = 4608) 

i. Dense Layer (128 units): Output shape (32, 128) 

j. Dropout: No change in shape (32, 128) 

k. Dense Layer (64 units): Output shape (32, 64) 

l. Dropout: No change in shape (32, 64) 

m. Output Layer (1 unit): Output shape (32, 1) 
Input layer takes a 2D matrix as input, which represents the Shearlet transformed, the input shape is 

defined based on the image's dimensions, such as (height=64, width=64). Convolutional layers, perform 

convolution operations to extract spatial features from the input image. The layers used 32 filters and each 

size of the filter kernel 3×3. Activation function is rectified linear unit (ReLU) to introduce non-linearity. 

Pooling layers are used to reduce the spatial dimensions of the feature maps to prevent overfitting and reduce 

computational complexity. Pooling type is max pooling (retains the maximum value in each pooling region). 

The size of the pooling window (e.g., 2×2). Flatten layer, converts the 2D output of the convolutional layers 

into a 1D feature vector. Fully connected layers, dense layers like those in the DLNN structure. Includes: 

Dense Layer 1, 128 units with ReLU activation, Dense Layer 2, 64 units with ReLU activation. 

Regularization with dropout layers (rate = 0.5). Output layer, a single neuron with a sigmoid activation 

function for binary classification (e.g., 0 = healthy, 1 = osteoporosis). 

 

2.4.  Implementation workflow  
The proposed workflow is divided into five parts based on X-ray image texture analysis with deep 

learning techniques to classify osteoporosis or healthy image in lumbar spine L1-L4. 

a. Preprocessing: Sharpening enhancements help reveal finer textures in the X-ray image more clearly. 

b. Apply the shearlet transform to the enhanced image: Decompose the image into two scales 

c. Extract ST coefficients: Extract horizontal (0°), vertical (90°) and diagonal (45°) coefficients at each scale 

and obtain the corresponding coefficient matrix. 

d. Calculate statistical Features: For each coefficient matrix, calculate [25], [26] mean coefficient (MC) is 

the mean of Shearlet coefficients at the given scale and orientation. Std deviation coefficient (SDC) of 

Shearlet coefficients. Energy (E) is the sum of squared coefficients, providing a measure of the image 

activity at the given scale and orientation. Entropy (Et) is a measure of randomness or complexity in the 
coefficient distribution. Skewness (Sk) is a measure of the asymmetry distribution of coefficients. 

Kurtosis (K) is a measure of the tailedness distribution of coefficients. Contrast (C) is a measure of the 

local variations in the coefficient values. Correlation (Cor) is a measure of how correlated the coefficient 

values are in different regions of the image. Homogeneity(H) is a measure of the resemblance of 

coefficient values in the image.  

e. Fusion: Used ST features to analyze the structural integrity of bone patterns for osteoporosis classification 

by concatenation of scale-1 and scale-2 features by making it as feature vector. 

The above-revealed features provide rich statistical information about the image's texture, structure, 

and complexity. Together, they capture both global and local image characteristics that are essential for 

effective classification. They can be particularly useful in distinguishing different types of textures, 

identifying patterns in specific regions within images. These features are useful in DLNN model, to classify 
images accurately based on their intrinsic properties. 

 

 

3. DATA SET DESCRIPTION   

The research study collected X-ray spine images with a focal distance of 0.812 meters and X-ray 

parameters set at 75-80 kV and 80 mAs for all patients. The images were provided by a prestigious hospital 

in Bangalore, Karnataka, India, and are 2D radiographic JPEGs. To test the system experimentally, datasets 

comprising 52 X-ray images from control subjects (CS/normal (healthy)) and 56 from pathological cases 

(osteoporotic or abnormal subjects (OS)), accompanied by DXA reports for the same individuals. These 

DXA reports detail the statistical status of the lumbar spine (L1-L4) as either normal or osteoporotic. Table 1 

lists the database of region of interest (ROI) X-ray images of the lumbar spine (L1-L4) employed for 

experimental validation along DXA reports. 
 

 

Table 1. Data description 
Images Numbers of X-ray images ROI sub images (L1-L4) Training  Testing 

CS 52 208 (52 × 4) 168 40 

OS 56 224 (56 × 4) 178 46 
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4. OUTCOME AND EVALUATION  

The result generated by this work is described in two stages, ST with feature extraction stage and 

classification stage. The ST is applied to enhanced image, which enhances specific structural features such as 

edges and textures. ST helps in capturing multi-scale and directional information for analyzing bone 

structures and then calculated features from ST image. In classification stage, calculated features are used in 

DLNN and ST images are used in CNN to distinguish between osteoporosis and healthy samples. 

 

4.1.  Shearlet transform and feature extraction 

Figure 2 illustrates the application of the ST on an enhanced image. Figure 2(a) represents a healthy 

bone (enhanced), where the internal texture details are not clearly visible. In contrast, Figure 2(b) shows the 

corresponding ST output, highlighting the internal structural features by emphasizing edges and patterns that 

reflect the trabecular network's integrity. Figure 2(c) depicts an osteoporotic bone (enhanced), exhibiting a 

less uniform texture compared to Figure 2(a). Similarly, Figure 2(d) presents the corresponding ST output, 

revealing fragmented structural patterns with more discontinuities and irregularities compared to Figure 2(b), 

this reflects the weakened and porous nature of osteoporotic bone. These results highlight the potential of ST 

in diagnosing osteoporosis by detecting and quantifying structural anomalies in bone images. 

 

 

 
 

Figure 2. Input and output of the ST: (a) enhanced healthy bone image, (b) ST output for the healthy bone, 

(c) enhanced osteoporosis bone image and (d) ST output for the osteoporosis bone 
 

 

 The application of the ST provides several key metrics for performance evaluation like edge 

detection accuracy (EDA) assesses how effectively the transform identifies edges. Structural similarity index 

(SSI) quantifies the similarity between the transformed image and the enhanced. Feature extraction time 

(FET) measures the time required to extract features from the ST image. Compression ratio (CR) represents 

the ratio of the enhanced image dimensions to those of the transformed image. Noise reduction efficiency 

(NRE) evaluates the transformability to reduce noise while preserving essential features. Table 2 presents the 

results for these metrics across five sample ST images. 

 

 

Table 2. Performance of five sample images 
Image ID EDA SSI FET (Seconds) CR NRF (%) 

Image - 01 0.92 0.88 1.5 2.8 85 

Image - 02 0.89 0.86 1.7 2.8 82 

Image - 03 0.94 0.89 1.6 3.0 88 

Image - 04 0.90 0.87 1.4 2.7 83 

Image - 05 0,91 0.88 1.5 2.9 84 

 

 
The EDA values range from 0.89 to 0.94, demonstrating high edge detection accuracy across all 

images. Image-03 achieves the highest EDA (0.94), highlighting the technique of strong edge detection 

capability for that specific image. The SSI, which typically ranges from 0 to 1 (higher values indicate better 

similarity), varies between 0.86 and 0.89. This indicates consistent structural preservation. Image-03 also 

shows the highest SSI (0.89), suggesting greater retention of details. The FET ranges from 1.4 to 1.7 seconds, 

with Image-04 being the fastest (1.4 seconds), indicating computational efficiency with minimal variation. 

The CR values span from 2.7 to 3.0, with Image-03 achieving the highest value (3.0), demonstrating effective 

image compression while preserving essential features. Lastly, the NRE values range from 82% to 88%, with 

Image-03 exhibiting the highest noise reduction (88%), reflecting strong denoising capability. 

Image-03 consistently outperforms other images across most metrics, achieving the highest EDA, 

SSI, CR, and NRE, making it the most effectively processed image in the dataset. All images exhibit high 
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EDA and SSI values, confirming the technique’s strong performance in edge detection and structural 

preservation. Computational efficiency (FET) remains stable and reasonable, ranging from 1.4-1.7 seconds. 

Additionally, the high NRE ensures clear and noise-free outputs. These results demonstrate the technique’s 

effectiveness and reliability across multiple performance metrics, highlighting its robustness and versatility 

for image analysis tasks. 

The overall performance proposed work by providing mean values and standard deviations of the 
metrics as demonstrated in Table 3. The low standard deviations for EDA, FET, CR and NRF highlight the 

method robustness and reliability, performing consistently across various images. High accuracy specifies 

that the high mean EDA (0.912) and SSI (0.876) values indicate that the technique effectively identifies 

edges and preserves structural details. The low mean FET (1.54 seconds) suggests the method is 

computationally efficient and suitable for large-scale processing tasks. Quality assurance indicates that the 

high NRF mean (84.4%) ensures the outputs are clean and of high quality, while the CR (2.78) shows an 

excellent balance between compression and feature preservation, making the technique useful for storage. 

This highlights the technique as a promising choice for image texture analysis. 

 

 

Table 3. Overall outcomes of ST 
Metrics Mean Standard deviation 

EDA 0.912 0.018 

SSI 0.876 0.11 

FET (Seconds) 1.54 0.11 

CR 2.78 0.17 

NRE (%) 84.4 2.05 

 

 

A Table 4 that displays an example of four Shearlet coefficients (ST-Cs) at two different scales and 
three different orientations for one image. The ST decomposes an image into multiple scales and orientations, 

to extract coefficients, used the Shearlet filter oriented at 0° to extract coefficients capturing horizontal (H) 

structures in the image. Used the Shearlet filter oriented at 90° to capture vertical (V) structures. Used 

Shearlet filters oriented at 45° to capture diagonal (D) features. The results show a clear dominance of 

horizontal structures, consistent vertical patterns and weaker diagonal features. This information is significant 

for understanding the nature of the images and tailoring techniques for task texture pattern recognition. 

Dominance of horizontal features are consistently higher across both scales, indicating the predominance of 

horizontal structures in the analyzed images. Diagonal feature strengths are moderate in strength, whereas 

diagonal features are the weakest, suggesting that the dataset or technique prioritizes horizontal and vertical 

edges over diagonal ones. Scale analysis, scale 1 (finer scale) generally has higher coefficients than scale 2 

(coarser scale), which is expected since finer scales capture more detailed features, while coarser scales 

capture broader structures. The variation between scale 1 and scale 2 demonstrates the effectiveness of the 
ST in capturing both fine and coarse details, which is essential for texture analysis in feature extraction of 

medical image. 

 

 

Table 4. ST coefficients of an image for two different scales 
ST coefficients Scale 1 - H Scale 1 - V Scale 1 - D Scale 2 - H Scale 2 - V Scale 2 - D 

Shearlet coefficient 1 0.12 0.08 0.05 0.11 0.07 0.04 

Shearlet coefficient 2 0.10 0.09 0.06 0.10 0.08 0.05 

Shearlet coefficient 3 0.11 0.07 0.05 0.09 0.06 0.03 

Shearlet coefficient 4 0.13 0.09 0.06 0.12 0.08 0.05 

 

 

Figure 3 illustrates a grouped bar chart that visualizes the ST-Cs across different scales and 

orientations. The x-axis represents the various pairings, combinations of scales and orientations.  There are 

two scales (Scale 1 and Scale 2) and three orientations within each scale (H, V and D). The y-axis shows the 
values of the ST-Cs values. The plot is significant for several reasons, it allows us to visually compare how 

the ST-Cs vary across different scales and orientations and have significant implications in osteoporosis 

detection, provide a robust representation of image textures at various scales and directions. By leveraging 

multi-directional and multi-scale, this approach enhances the sensitivity and specificity of osteoporosis 

detection.  

A Table 5 indicates features are calculated from the ST image sample image-01 at two scales and 

three different orientations, these features are useful for osteoporosis image classification. Variations in MC 

across different orientations and scales can reveal directional texture information. Lower SDC at certain 

scales could suggest smoother regions, while higher values could indicate detailed or noisy areas. Energy 
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differences across scales could highlight regions with dominant features (e.g., edges or corners). Increasing 

entropy with certain orientations or scales may reveal regions with intricate details. High skewness could 

point to outlier features or abrupt changes in intensity. Higher kurtosis could imply regions with highly 

concentrated features or edges. 

 

 

 
 

Figure 3. ST coefficients grouped bar chart 

 

 
Table 5.  Calculated features from ST image 

Image - ID S Or MC SDC E Et Sk K C Cor H 

Image - 01 1 0o 0.045 0.012 0.034 1.54 0.23 3.21 0.45 0.76 0.89 

Image - 01 1 90o 0.0325 0.011 0.036 1.56 0.25 3.19 0.46 0.73 0.86 

Image - 01 1 45o 0.0548 0.010 0.039 1.58 0.27 3.15 0.49 0.72 0.85 

Image - 01 2 0o 0.038 0.015 0.028 1.49 0.20 3.30 0.40 0.78 0.83 

Image - 01 2 90o 0.040 0.013 0.031 1.51 0.22 3.28 0.42 0.73 0.86 

Image - 01 2 45o 0.043 0.014 0.033 1.53 0.24 3.25 0.44 0.75 0.87 

 

 

Regions with high contrast might correspond to areas of interest for feature detection. Correlation 

changes across scales could reveal patterns or periodic structures. Homogeneity might decrease in areas with 

sharp edges or complex textures. Directional dependence refers to variations across orientations (0°, 45°, 
90°), which reveal anisotropic structures or dominant directions within the image. Scale sensitivity highlights 

differences across scales, showing how image features change in size or resolution. Combined metrics offer a 

comprehensive representation of regions with rich textures or prominent features, making them especially 

valuable for tasks like image classification. 

 

4.2.  Osteoporosis classification 

In this work, a DLNN is trained for osteoporosis classification using the computed texture feature 

vector as input, with each ST image input vector having a total length of 60. Similarly, the Shearlet 

transformed images are fed into CNN. Both networks demonstrated promising performance in differentiating 

between osteoporotic and non-osteoporotic lumbar spine images (L1-L4). The classification task utilized a 

sigmoid activation function in the output layer for binary classification (osteoporosis vs. healthy). The dataset 

was divided into training and testing subsets, ensuring balanced classes to mitigate bias. Binary cross-entropy 
was employed as the loss function, with the Adam optimizer used for model training. The model was trained 

on the training set and hyperparameters were fine-tuned using a validation set. 

Figure 4 graph illustrates CNN training and validation accuracy of a model over 20 epochs. Initially, 

both training and validation accuracy increase steadily, showing consistent improvement as the model learns. 

Around the middle epochs, the training accuracy continues to rise, while validation accuracy shows minor 

fluctuations, indicating slight overfitting or model instability. Toward the later epochs, validation accuracy 

aligns closely with training accuracy, suggesting good generalization and effective learning. Overall, the 

model achieves high performance, with accuracy more than 95% by the final epochs for both training and 

validation. 
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Figure 4. CNN training and validation over epochs 

 

 

4.3.  Performance calculation 

The metrics are calculated [19][20]as follows: Accuracy is (TP + TN) / (TP + TN + FP + FN). 

Precision is TP / (TP + FP). Recall (Sensitivity) is TP / (TP + FN). Specificity is TN / (TN + FP). F1-score is   

2× (Precision × Recall) / (Precision + Recall). 
The baseline model uses traditional features without Shearlet transform, serving as a comparison 

point. Shearlet with DLNN demonstrates the improvement when incorporating Shearlet statistical values. 

Shearlet with CNN shows further enhancement when combining ST images with a CNN, which is adept at 

handling image data and enhances the classification model performance. The multi-scale and multi-

directional features captured by the Shearlet transform enhance the ability to distinguish between 

osteoporosis and healthy individuals in enhanced images. Especially with CNN architectures, substantial 

gains in accuracy, precision, recall, specificity and F1-score as in Table 6. CNN generally performs better 

with ST image data due to its ability to capture spatial relationships. Based on the provided performance, the 

ST with CNN model is generally the best model for this task. It leverages the raw Shearlet coefficients more 

effectively through convolutional layers, which are adept at extracting spatial features from images. This 

leads to higher accuracy, precision, recall, specificity, and F1-score compared to the DLNN model. 
 

 

Table 6. The results of the three approaches 

Model Accuracy Precision Recall Specificity F1-score 

Baseline (No shearlet) 91% 90% 89% 91% 89.5% 

ST+ DLNN 92% 91% 90% 93% 90.5% 

ST+ CNN 96% 95% 94% 96% 95.5% 

 

 

Figure 5 a confusion matrix is a useful for evaluating the performance of a classification model, The 
confusion matrix shows the classification results of a binary model distinguishing between osteoporosis and 

healthy individuals. The model correctly classified 45 osteoporosis cases and 39 healthy cases, indicating 

high sensitivity and specificity. There is only 1 false positive (a healthy individual misclassified as 

osteoporosis) and 1 false negative (Osteoporosis case misclassified as healthy), demonstrating excellent 

performance. The low error rate suggests the model is well-trained and effective in distinguishing the two 

classes. Overall, the confusion matrix reflects a highly accurate classification system. 

Figure 6 illustrates a graphical representation of different models’ receiver operating characteristic 

(ROC) and area under curve (AUC) [27], needs the true positive rate (TPR) and the false positive rate (FPR) 

for each model. The TPR is equivalent to recall, and the FPR can be calculated as 1−specificity. Shearlet with 

CNN is the best ROC curve with the highest AUC, meaning it is the most effective at distinguishing between 

classes. Shearlet with DLNN performs better than the baseline but not as well as the CNN model. Baseline 

(No Shearlet) is good compared to the existing techniques, however in this case it is the least effective among 
the three in terms of the ROC and AUC. These metrics help in understanding the trade-offs each model 

makes in terms of true positives versus false positives, which is crucial in selecting the best model depending 

on the applications. Table 7 illustrates the proposed method (ST + CNN) outperforms the existing DLNN 
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approaches in all three metrics accuracy, specificity, and sensitivity when analyzing X-ray lumbar images. 

This suggests that the new method is not only more accurate but also better at identifying both the presence 

and absence of osteoporotic conditions in these medical images. 

 

 

 
 

Figure 5. Performance of a CNN model 

 

 

 
 

Figure 6. AUC-ROC for different models 
 

 

Table 7. Evaluation of performance of different approaches 
Ref. No. Methods Modality Accuracy Specificity Sensitivity 

[2] DLNN X-ray lumbar images 89% 90% 87% 

[3] FCoTNet X-ray spine image 85% 90% 88% 

[11] DLNN X-ray lumbar images 82%, 84% 86%, 

[28] DLNN CT images of the spine 95% 94% 93% 

[29] DLNN CT images of the spine 84% 87% 90.% 

[30] HT- CNN CT images of the spine 95% 93% 91% 

[31] DLNN X-ray spine image 89% 87% 85% 

Proposed  ST+ CNN X-ray lumbar image 96% 96% 94% 

 

 

5. CONCLUSION 

 Osteoporosis, a condition characterized by reduced bone density and increased fracture risk, poses a 

significant health challenge, especially among the elderly. Accurate and early diagnosis is crucial for 

effective treatment and fracture prevention. This study addresses this challenge by proposing an innovative 

framework that integrates ST spectral analysis with DLNN and CNN for osteoporosis classification in lumbar 

vertebrae (L1-L4) X-ray images.   

The proposed method effectively extracts trabecular bone micro-architecture information using 

ST, providing meaningful texture features for classification. The DLNN utilizes texture features for 

automated osteoporosis classification, while the CNN directly processes ST images without feature 
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extraction. The experimental results demonstrate the effectiveness of this approach, achieving a high 

classification accuracy of 96% using CNN.  This study highlights the potential of combining spectral analysis 

techniques with deep learning to improve osteoporosis diagnosis. The framework enhances diagnostic 

accuracy and clinical decision making, offering a robust and reliable solution for early osteoporosis detection 

and management. 

To improve the accuracy and robustness of osteoporosis classification, future research can focus on 
the following areas. Expanding the dataset with a larger and more diverse population can enhance the 

generalizability of the model. Exploring more advanced neural network models, such as transformers or 

hybrid architecture, may further enhance classification performance. 
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