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 Ultrasonography, a medical imaging technique, is often affected by various 

types of noise and low brightness, which can result in low image quality. 

These drawbacks can significantly impede accurate interpretation and hinder 

effective medical diagnoses. Therefore, improving image quality is an 

essential aspect of the field of ultrasound systems. This study aims to 

enhance the quality of ultrasound images using deep learning (DL). The 

experiment is conducted using a custom dataset consisting of 2,175 infant 

heart ultrasound images collected from Indonesian hospitals, and the model 

is subsequently generalized using other datasets. We propose enhanced deep 

residual network combined convolutional neural networks (EDR-CNNs) to 

improve the image quality. After the enhancement process, our model 

achieved peak signal-to-noise ratio (PSNR) and structural similarity index 

metrics (SSIM) scores of 38.35 and 0.92 respectively, outperforming other 

methods. The benchmarking with other ultrasound medical images indicates 

that our proposed model produces good performance, as evidenced by higher 

PSNR, lower SSIM, a decrease in mean square error (MSE), and a lower 

contrast improvement index (CII). In conclusion, this study encapsulates the 

forthcoming trends in advancing low-illumination image enhancement, 

along with exploring the prevailing challenges and potential directions for 

further research. 
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1. INTRODUCTION 

Enhancing the quality of medical images, particularly in ultrasound systems, is a crucial area of 

focus in the medical field. This is primarily attributed to the extensive utilization of ultrasound technology in 

medical diagnosis and a wide range of medical procedures. Ultrasound images often suffer from issues such 

as noise and blur, which can significantly impede medical interpretation and accurate diagnosis [1]–[4]. 

Several factors contribute to the low quality of ultrasound images. One of these factors is acoustic variability, 

where the ultrasound image is affected by acoustic variations in the body, causing noise in the image [5]–[8]. 

In addition, signal deficiencies or attenuations may occur as the ultrasound signal passes through different 

body tissues, and resolution limitations may arise due to patient movement, suboptimal positioning, or 

the use of less sophisticated ultrasound technology [9]–[11]. These problems can significantly affect the 

quality of ultrasound images and make medical interpretation and diagnosis challenging. To address this 

problem, many research studies have focused on developing methods to improve the quality of ultrasound 

images. 

https://creativecommons.org/licenses/by-sa/4.0/
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There are two broad categories of traditional methods for low-light enhancement such as histogram 

equalization [11], [12] and Retinex models [13], [14]. The histogram technique aims to enhance the contrast 

of an image by redistributing the intensity values of the pixels, resulting in a brighter and more vibrant image. 

Whereas a typical approach based on Retinex models decomposes a low-light image into two components: 

the reflection component and the illumination component using priors or regularizations. The estimated 

reflection component is considered the enhanced result. However such two methods have several limitations 

[14], i) Both histogram equalization and Retinex models can be particularly problematic when dealing with 

images containing sharp edges and textures, as they may become exaggerated and appear artificial; ii) In such 

approaches, the existing noise in the images is often disregarded, leading to either its persistence or 

amplification in the enhanced results; iii) Complex optimization processes involved in Retinex models and 

the computation of image histograms and cumulative distribution functions in histogram equalization 

increasing the computational time, and iv) Both approaches necessitate manual adjustments and interventions 

to accommodate specific scenarios or edge cases. 

In recent times, profound advancements have been made in the realm of image enhancement 

techniques, specifically leveraging DL techniques such as convolutional neural networks (CNNs) [15], [16]. 

These remarkable developments have shown great potential in reducing noise, augmenting resolution, and 

mitigating artifacts. As a result, CNNs have emerged as highly promising solutions to tackle the persistent 

challenge of enhancing ultrasound image quality, ultimately leading to a substantial improvement in 

diagnostic accuracy. There has been research focused on developing more specialized and effective DL 

techniques to improve ultrasound image quality, such as using transfer learning on existing DL architectures 

[12]–[14], [17]–[20]. These advances continue to improve the quality of ultrasound images and improve the 

accuracy of medical diagnoses and interventions. This research contributes as follows: 

a. Proposing a custom deep residual CNNs architecture to improve the quality of ultrasound images in terms 

of both performance and efficiency. 

b. Validating the effectiveness of our proposed model using rigorous experiments and benchmarks against 

established state-of-the-art DL models. 

c. Demonstrating the proposed custom architecture with four ultrasound datasets i.e., infant heart, fetal 

heart, fetal head, and abdomen. 

d. Implementing the proposed model for predicting the fetal heart substructure abnormality. 

 
 

2. MATERIALS AND METHOD 

The general methodology of our experiment is depicted in Figure 1, consisting of four main stages. 

The first stage, data acquisition is carried out. Data for the acquisition was obtained from several previously 

collected ultrasound videos. The data is then extracted based on the frame and cropped the heart object 

directly. The second stage involves data pre-processing, where low-resolution data using noise injection and 

high resolution are generated as targets. This process involves labeling the data for further analysis. In the 

third stage, the proposed deep learning algorithm proposes an enhanced residual CNN architecture. The final 

stage involves performance measurement, where the peak signal-to-noise ratio (PSNR), structural similarity 

index metrics (SSIM), mean square error (MSE), and contrast improvement index (CII) values are calculated 

to evaluate the performance of the proposed deep-learning model. The whole steps constitute the general 

methodology of our experiment. 

 

 

 
 

Figure 1. The general methodology of our experiment 
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2.1.  Data acquisition 

The dataset used in this research consists of medical images acquired from ultra-sound devices, 

including images of infant hearts, fetal hearts, fetal heads, and abdomens. While infant and fetal heart 

datasets are custom-made from Indonesian hospitals, the remaining datasets are sourced from public 

repositories. The data distribution of our proposed model can be found in Table 1. The study was carried out 

in two main stages: i) In the first stage, we focused on generating an image enhancement model using images 

of infant hearts, and ii) Subsequently, the enhancement model that demonstrated the best performance was 

selected and applied to the other datasets for benchmarking purposes. 

 

 

Table 1. Data distribution for the learning process. 
USG Object Training Validation Testing Unseen Total 

Infant's heart 1177 732 244 60 2213 

Fetal heart 410 78 26 28 542 
Fetal head 915 279 84 56 1334 

Abdomen 472 132 84 23 711 

 

 

The custom of the infant heart dataset is obtained from a general hospital, Dr. Mohammad Hoesin, 

Indonesia. Videos are captured using a Philips EPIQ Elite ultrasound machine and video file sizes range from 

30-50 MB. To generate a reliable image enhancement model, we used 1,171 training data and 976 validation 

data. All the image data used to build the image enhancement model originated from images of a child's 

heart. It can be seen a sample image of an infant’s heart used for model enhancement development in  

Figure 2. 

 

 

    
    

    
 

Figure 2. A sample image of an infant's heart as raw data for the development of the model enhancement 

 

 

2.2.  Data pre-processing 

Based on the data acquisition process, previously collected several ultrasound videos. Data is 

extracted frame by frame, and all data is cropped to 800×600 size. Then, the dataset is processed by 

producing high-resolution and low-resolution images as input for model training as shown in Figure 3. High-

resolution images are the target output from the image processing process and low-resolution images is 

generated as the input for the image enhancement model. Low-resolution images as input models use noise 

injection which often occurs in medical ultrasound data that can give the raw image a smoother or more 

blurry appearance. Different types of noise are added, such as poison, salt-and-pepper noise, or speckle noise. 

We control the intensity and type of noise to add based on the different settings to achieve the desired level of 

noise. High-resolution images serve as the target result of image processing, while low-resolution images are 

the input needed to train the model to learn patterns in low-resolution data and improve image quality. The 

results of the pre-processing stage are visualized in Figure 4. After low-resolution images are entered into the 

model, a multiscale information representation process is performed, combining information from various 

spatial scales and extracting relevant features to improve image quality. By taking advantage of low and 

high-resolution image types, the enhancement model can effectively improve image quality and produce 

high-quality images. 
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Figure 3. Data pre-processing process 
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Figure 4. High-resolution and low-resolution 

 

 

2.3.  Image enhancement model 

This study proposed customized enhanced deep residual network combined convolutional neural 

networks (EDR-CNNs) architecture as shown in Figure 5. The structure is modified by emulating residual 

network (ResNet) which is designed to address the challenge of image noise [14], [15]. The EDR-CNN 

structure focuses on convolution widening, enabling networks to expand their visual range without 

compromising image resolution. It uses multi-resolution branches with different resolutions to handle 

information at various scales. The network bypass connections enable the learning of more complex features 

and accelerate network convergence. 

In order to improve model performance and efficiency, the modified structure includes deeply 

separable attention and convolution modules. The network structure is shown in Table 2. Deep convolution is 

used to reduce the computational complexity in the convolutional layer and reduce the number of parameters 
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required by the model. In addition, the proposed model has been modified with a sampling technique called 

sub-pixel convolution to increase the image resolution after super-resolution processing. This technique 

estimates new pixels and studies existing spatial patterns in low-resolution image quality. The structure of the 

EDR-CNNs model comprises convolutions with 3×3 filters followed by the LeakyReLU activation function 

and Charbonnier Loss, as (1): 

 

𝐿(𝑥, 𝑦) = ((𝑥 − 𝑦2 + 𝜖2)
𝑝

2 (1) 

 

where 𝑥 and 𝑦 are the input and target images, respectively. 𝜖 is a small constant to avoid division by zero. 

 

 

 
 

Figure 5. The proposed EDR-CNNs architecture 

 

 

Table 2. The proposed EDR-CNNs network 
Convolution Layer (type) Output Shape Number of Parameters 

Input Image Input_1 (InputLayer) [(None, None, None, 3)] 0 

Conv 1 Conv2d (Conv2D) [(None, None, None, 64)] 1792 
leaky_re_lu 

(LeakyReLU) 

[(None, None, None, 64)] 0 

Conv 2 conv2d_1 (Conv2D) [(None, None, None, 64)] 36928 
leaky_re_lu_1 

(LeakyReLU) 

[(None, None, None, 64)] 0 

Conv 3 conv2d_2 (Conv2D) [(None, None, None, 64)] 36928 
leaky_re_lu_2 

(LeakyReLU) 

[(None, None, None, 64)] 0 

Conv 4 conv2d_3 (Conv2D) [(None, None, None, 64)] 36928 
leaky_re_lu_3 

(LeakyReLU) 

[(None, None, None, 64)] 0 

Conv 5 conv2d_4 (Conv2D) [(None, None, None, 64)] 36928 
leaky_re_lu_4 

(LeakyReLU) 

[(None, None, None, 64)] 0 

Residual add_1 (Add) [(None, None, None, 3)] 0 
Conv 6 conv2d_5 (Conv2D) [(None, None, None, 64)] 36928 

leaky_re_lu_5 
(LeakyReLU) 

[(None, None, None, 64)] 0 

Conv 7 conv2d_6 (Conv2D) [(None, None, None, 64)] 36928 

leaky_re_lu_6 
(LeakyReLU) 

[(None, None, None, 64)] 0 

Conv 8 conv2d_7 (Conv2D) [(None, None, None, 64)] 36928 

leaky_re_lu_7 
(LeakyReLU) 

[(None, None, None, 64)] 0 

Conv 9 conv2d_8 (Conv2D) [(None, None, None, 64)] 36928 

leaky_re_lu_8 
(LeakyReLU) 

[(None, None, None, 64)] 0 

Conv 10 conv2d_9 (Conv2D) [(None, None, None, 3)] 1731 

Residual add_1 (Add) [(None, None, None, 3)] 0 
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After several convolution layers there is residual linking which is done by adding the output of the 

first layer to the output of the last layer before the next convolution layer. This architectural design helps in 

studying more detailed features and preserving the original information of the input. The final output goes 

through the last convolution layer and the sigmoid activation function to produce the final output which is the 

enhanced image prediction. The total number of parameters in the model is 263,971 which also includes the 

weights and biases in each convolution layer. The proposed model is generated on hardware equipped with 

TensorFlow 2.7 and NVIDIA RTX 2080ti GPU. All data has an initial input size of 128×128 for the training 

and validation process. The model was trained using Adam's loss function and optimizer with a learning rate 

of 0.0001. Model enhanced deep residual CNNs are based on multiple residual blocks using a batch 

normalization layer for consistent results. Our implementation includes only 16 remaining blocks with 64 

channels. 

 

2.4.  Evaluation of image quality metrics  

The evaluation step is used to compare the performance of the proposed method with the image 

quality improvement method. The peak signal-to-noise ratio (PSNR) is used to measure the quality of the 

reconstructed image. Mathematically [21], PSNR is expressed by (2), 

 

𝑃𝑆𝑁𝑅 = 10. 𝑙𝑜𝑔10(
max(𝐼)2

𝑀𝑆𝐸
) (2) 

 

where 𝐼 represents each image and MSE is the mean square error. The lower the MSE, the higher the PSNR. 

SSIM is an image processing technique that measures the structural similarity between the actual image  

and the reconstructed image, such as image compression or image up-sampling/down-sampling [17]. 

Mathematically, SSIM can be represented by (3), 

 

𝑆𝑆𝐼𝑀(𝐼, 𝐼)̅ =  
(2𝜇𝐼𝜇�̅�+𝑐1)(2𝜎𝐼�̅�+𝑐2)

(𝜇𝐼
2+𝜇

�̅�
2+𝑐1)(𝜎𝐼

2+𝜎
�̅�
2+𝑐2)

 (3) 

 

The equation (4) represents the per pixel comparison between the two images for SSIM. MSE has a 

duty as image recovery or image enhancement. MSE measures the average of the squared difference between 

the original pixel value and the predicted pixel value in the enhanced image. 

 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑌𝑖 − �̂�𝑖)2𝑛

𝑖=1  (4) 

 

The calculation process involves calculating the squared difference between the original pixels and 

the predicted pixels where 𝑛 is the data point number 𝑌𝑖 are the original pixels of the image and �̂�𝑖 is the pixel 

prediction from the model. The CII evaluates the competitiveness of various contrast enhancement 

techniques, the most well-known benchmark being the image enhancement measure. It is used to compare 

the results of contrast enhancement methods. Contrast enhancement can be measured using CII as a ratio. CII 

is defined in (5) as: 

 

𝐶𝐼𝐼 =
𝐶𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑

𝐶𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
 (5) 

 

where C is the average value of the local contrast measured with a 3×3 window as: 

 
𝑚𝑎𝑥−𝑚𝑖𝑛

𝑚𝑎𝑥+𝑚𝑖𝑛
 (6) 

 

𝐶𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 dan 𝐶𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙  is the average value of the local contrast in the output and original images, 

respectively. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Model enhancement with infant heart object 

In this section, experiments are conducted to create an image enhancement model that yields 

satisfactory performance in terms of PSNR, SSIM, MSE, and CII. To build such a model, only infant heart 

objects are used. Curating an infant heart dataset for constructing high-fidelity DL models tailored for clinical 

deployment necessitates images of sufficiently high quality. This enables the algorithm to discern both 
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common and distinct patterns among images and facilitates precise measurements. Five DL model structures 

have been developed, and we will assess the best performance of the selected model in Table 3. The entire 

image was trained by utilizing small 256×256 patches extracted from infant heart images. The training 

process spanned 50 epochs, employing a batch size of 4. Notably, the EDR-CNNs architecture was 

implemented, incorporating the Charbonnier loss as the loss function. For optimization, the Adam Optimizer 

was utilized, with a learning rate set at 0.0001. 

 

 
Table 3. The five models generated to select the best structure 

CNNs ResNet Model 1 Model 2 EDR-CNNs 

16 layer 50 layer 12 layer 10 layer 10 layer 
Input Image Input Image Input Image Input Image Input Image 

Conv 1 Conv 1 Conv 1 Conv 1 Conv 1 

Batch Normalization Conv 2.x Conv 2 Conv 2 LeakyReLU 
ReLU Batch Normalization Conv 3 Conv 3 Conv 2 

Conv n ReLU Conv 4 Conv 4 Conv 3 

Batch Normalization Addition (Residual) ReLU Conv 5 LeakyReLU 
Addition (Residual) Conv 3.x Addition (Residual) Addition (Residual) Conv 4 

ReLU Batch Normalization Conv 5 Conv 6 LeakyReLU 

Conv n ReLU Conv 6 Conv 7 Conv 5 
Batch Normalization Addition (Residual) Conv 7 Conv 8 LeakyReLU 

Addition (Residual) Conv 4.x Conv 8 Conv 9 Addition (Residual) 

ReLU Batch Normalization ReLU Conv 10 Conv 6 
Conv n ReLU Addition (Residual) Addition (Residual) LeakyReLU 

Batch Normalization Addition (Residual) Conv 9 Activation Sigmoid Conv 7 

Addition (Residual) Conv 5.x Conv 10 Loss charbonnier LeakyReLU 
ReLU Batch Normalization Conv 11 Optimizer Adam Conv 8 

Conv n ReLU Conv 12 - LeakyReLU 

Batch Normalization Addition (Residual) ReLU - Conv 9 
Addition (Residual) Activation Softmax Addition (Residual) - LeakyReLU 

ReLU Loss MSE Activation ReLU - Conv 10 

Activation ReLU Optimizer Adam Loss MSE - Residual 
Loss MSE - Optimizer Adam - Activation Sigmoid 

Optimizer Adam - - - Loss Charbonnier 

- - - - Optimizer Adam 

 

 

Through the analysis of the five model structures, we observe diverse performance outcomes in 

PSNR, SSIM, MSE, and CII values. As found in the result, the custom EDR-CNNs structure stands out by 

surpassing the performance of the other models. The PSNR values approach 40 dB, and it demonstrates 

comparable performance in other metrics as well in Figure 6. This compelling performance suggests that the 

proposed model warrants further evaluation to ascertain its resilience and ability to generalize across various 

medical objects. 

 

 

 
 

Figure 6. The performance validation of the selected model 
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3.2.  Model evaluation 

This section pertains to the experimental report that focuses on the evaluation and interpretation of our 

model's performance. We benchmark a thorough analysis of the EDR-CNNs obtained results against various 

methods, including contrast limited adaptive histogram equalization (CLAHE) [21], bilateral filter [22], [23], 

MirNet, low-light convolutional neural network (LLCNN) [24], and Autoencoder [25] as seen in Table 4. Four 

performance values were used to indicate the best image enhancement architecture. Higher PSNR values 

indicate better image quality, SSIM values range from -1 to 1, where 1 indicates identical images, lower MSE 

values indicate better image quality and higher CII values indicate better color image quality. We can observe 

that the EDR-CNNs produce outstanding results, with 38.35 PSNR, 0.92 SSIM, 9.66 MSE, and 1.97 CII. All the 

test values demonstrate satisfactory results in comparison to the other five methods. 

 

 

Table 4. Model image enhancement performance with CLAHE, Bilateral filter, MirNet, LLCNN, 

Autoencoder, and EDSR-CNNs 
Metrics CLAHE Bilateral Filter MirNet LLCNN Autoencoder EDR-CNNs 

PSNR 31.92 37.76 35.81 37.78 36.10 38.35 
SSIM 0.55 0.94 0.76 0.91 0.898 0.92 

MSE 42.01 11.06 24.58 11.01 16.14 9.66 

CII 1.58 0.99 0.98 1.36 0.94 1.97 

 

 

The graphs for loss and PSNR during the training and validation process, indicate a consistent 

improvement in the quality of medical images throughout the enhancement process. Figure 7(a) to 7(d) 

visualizes the results of the model comparison using MirNet, LLCNN, Autoencoder, and EDR-CNNs. The 

whole graphical representation highlights a notable trend in the PSNR values, demonstrating an upward 

trajectory signifying enhanced image quality. It can be observed that the PSNR value varies with each 

iteration, but it should be noted that the PSNR value given to the EDR-CNNs method does not show 

significant fluctuations in Figure 7(d). As the model improves, the PSNR values should increase, indicating 

better image fidelity, as well as loss. The loss curve displays a gradual decline, eventually converging to zero 

with a smooth progression. A lower loss in EDR-CNNs response indicates that the model's predictions are 

getting closer to the actual values. It can be observed that the EDR-CNNs model effectively learns and adapts 

its parameters, leading to a desirable decrease in the loss. 

Figure 8(a) to 8(g), showcased the heightened image quality achieved through the implementation of 

several image enhancement models. It can be seen from the figure that all low-illumination image 

enhancement methods based on deep learning effectively improve the accuracy of an infant's heart. But the 

visual effect is different. These techniques showcase the advancements in using deep learning to improve the 

quality of images by enhancing details, reducing noise, and mitigating other image-related issues. Each 

approach has its unique characteristics and applications within the realm of image enhancement and 

restoration. Nevertheless, when it comes to PSNR, SSIM, and MSE performance, EDR-CNNs surpass other 

approaches. 

In this section, we undertook a comprehensive benchmarking analysis using the latest advancements 

in the field. This analysis involves a meticulous evaluation and comparison of our proposed model against 

well-established deep-learning approaches within the domain of enhancement. To facilitate this assessment, 

we employed four distinct datasets: the infant heart dataset for the development of our enhancement model, 

and three additional datasets — fetal heart, fetal head, and abdomen — to thoroughly evaluate the model's 

performance. To ensure the fairness of the test, all the methods are tested under the same hardware 

environment after reaching the optimal level of training. The experimental outcomes yielded noteworthy 

insights, specifically in terms of PSNR, SSIM, and MSE metrics across all four datasets in detail for various 

techniques refer to Figures 9(a) to 9(c). It observes that our proposed model EDR-CNNs consistently delivers 

satisfactory results across the entire dataset, achieving higher PSNR, lower SSIM, and decreased MSE 

values. This indicates that our suggested model consistently produces favorable performance. By evaluating 

the enhanced images using different techniques and datasets, it can be stated that the results are promising 

To ensure the performance of the proposed image enhancement technique using EDR-CNNs, such a 

model has been implemented for segmenting and detecting the 10 objects of the fetal heart substructure, 

including the left atrium (LA), right atrium (RA), left ventricle (LV), right ventricle (RV), tricuspid valve 

(TV), pulmonary valve (PV), mitral valve (MV), interventricular septum (IVS), aorta (Ao) and hole (defect). 

The experiments involved the utilization of the you only look at once with masking (YOLACT) framework. 

YOLACT is an algorithm designed for real-time object detection that combines object detection with 

instance segmentation. Its goal is to concurrently identify and segment objects present in an image. Detecting 

the fetal heart sub-structure object proves to be highly challenging due to its small size, the poor quality of 
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images, and its shape that dynamically changes due to fetal movements [5]. While it often performs well 

during testing using validation data, its effectiveness tends to decline or even result in failure when faced 

with unseen data [6], [7]. The image sample as visualized in Figure 10. 

 

 

  

(a) 
 

  
(b) 

 

  
(c) 

 

  
(d) 

 

Figure 7. Graphic training and validation of loss and PSNR over epochs for infant heart object including  

(a) MirNet, (b) LLCNN, (c) Autoencoder, and (d) EDR-CNNs structure 
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(a) 
    

    

(b) 
    

    

(c) 
    

    

(d) 
    

    

(e) 
    

    

(f) 
    

    

(g) 

 

Figure 8. The sample of infant heart image enhancement with six of the existing model (a) target,  

(b) CLAHE, (c) bilateral filter, (d) MirNet, (e) LLCNN, (f) autoencoder, and (g) EDSR-CNNs 
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure 9. Performance of proposed model evaluation against other models with various datasets: (a) PSNR, 

(b) SSIM, and (c) MSE 

 

 

We attempted to perform detection and segmentation of these fetal heart substructures using 

training, validation, and unseen data. The data sample is about 243 images for training data, 58 images for 

testing data, and 28 images for unseen data. The segmentation results before and after the image 

enhancement process, along with predictions using unseen data, were compared against several previously 
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employed models, as presented in Table 5. As indicated by the results, using the YOLACT and EDR-CNNs 

model produces satisfactory performance in terms of mean average precision (mAP) for bounding box 

(Bbox), and masking (mask). From the nine fetal heart substructures, AO, LA, MV, and IVS produce a 

detection rate above 60%, while LV, PV, RA, and RV produce detection in the range of 44%–55%. 

However, TV is hard to detect only reaching around 27%. The size of the fetal heart can vary depending on 

the gestational age of the fetus around 60–100 millimeters. During different stages of pregnancy, the fetal 

heart undergoes significant growth and development. Hence, due to the fetal heart substructure being even 

smaller, attaining an overlap of approximately 30%-50% Bbox and Mask between the ground truth and the 

predicted image proves to be quite challenging. By using unseen data indicating that the nine substructures 

are capable of segmenting and detecting. This suggests that the proposed model is proficient in delivering 

satisfactory detection performance for fetal heart substructure, both when employing validation data and 

unseen data, with results that outperform other methods. 

 

 

Ao LA RA LV RV 

     
TV MV PV IVS Hole as a defect 

     
 

Figure 10. The sample annotation of 10 fetal heart substructures; the fetal heart has a defect in the ventricle 

 

 

Table 5. The fetal heart substructure detection using EDR-CNNs image enhancement and YOLACT model 

with unseen data 
Model mAP (%) 

AO LA RA LV RV MV IVS TV PV 

YOLACT BBox 46.71 52.29 37.67 32.87 43.96 26.80 55.93 15.73 42.60 

Mask 62.20 65.58 37.67 32.87 44.24 34.31 65.81 19.85 42.30 
YOLACT + CLAHE BBox 57.13 51.22 31.52 41.00 46.63 52.95 45.53 23.31 55.31 

Mask 59.13 52.37 31.19 40.08 45.99 47.78 64.14 22.44 41.40 

YOLACT + 
Bilateral Filter 

BBox 57.64 62.24 39.37 39.68 45.73 58.72 57.14 33.00 63.00 
Mask 59.52 64.24 39.21 44.12 45.42 58.32 61.23 33.22 53.14 

YOLACT + MirNet BBox 31.84 47.18 28.93 32.66 40.97 45.01 50.16 19.46 48.17 

Mask 34.75 48.39 29.98 40.43 40.01 35.07 51.22 17.54 35.21 
YOLACT + 

LLCNN 

BBox 24.32 30.98 28.34 26.22 36.84 26.30 53.29 15.92 41.11 

Mask 25.00 29.64 28.76 33.73 36.03 16.81 54.66 15.57 28.75 

YOLACT + 
Autoencoder 

BBox 34.77 45.04 32.83 32.57 40.27 50.21 58.80 22.60 51.89 
Mask 3745 45.19 32.97 38.37 39.63 46.09 58.34 17.88 46.07 

YOLACT + EDR-

CNN 

BBox 59.08 66.60 44.97 56.53 49.66 61.96 65.90 27.25 58.58 

Mask 62.06 67.69 44.22 55.89 47.94 62.94 67.82 28.64 52.29 

 

 

In this research, the proposed model was also examined for its ability to detect abnormalities in the 

structure of the fetal heart. In our previous investigation, our accomplishments remained constrained, 

yielding validation data exclusively [6], [7]. This limitation arose from the difficulty in identifying fetal 

hearts with unseen data, which occasionally led to instances of failure. Nevertheless, through the 

implementation of an enhancement process, the detection outcomes witnessed a notable advancement, 

reaching 60%-70% for Bbox and mask mAP, see Table 6. This marked improvement signifies a significant 

result and surpasses other methods. 
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Although the utilization of the proposed method offers numerous benefits, there are still several 

limitations within this research. The dataset used for comparison remains relatively restricted, encompassing 

only four types of medical objects, and the number of benchmarking methods is limited to five. 

Consideration could be given to integrating currently advanced image enhancement methods as 

supplementary benchmarks. Additionally, there is a dearth of definitive outcomes, such as predictions or 

determinations concerning the anomalies present within these medical objects. It is worth noting that research 

in the realm of medical imaging fundamentally serves the purpose of facilitating diagnosis. The use of the 

enhancement methods in terms of classification or detection of the diseases will be subject to further 

exploration in forthcoming investigations. 

 

 

Table 6. The fetal heart abnormality as a defect detection with unseen data 
Model mAP (%) 

BBox Mask 

YOLACT 52.79 28.65 

YOLACT + CLAHE 35.43 10.33 

YOLACT + Bilateral Filter 45.86 18.04 
YOLACT + MirNet 58.94 42.97 

YOLACT + LLCNN 51.49 43.85 

YOLACT + Autoencoder 50.47 37.65 
YOLACT + EDR-CNN 72.82 62.40 

 

 

4. CONCLUSION 

In conclusion, improving the quality of medical images, especially ultrasound images, is very 

important for accurate medical diagnosis and procedures. Ultrasound images often suffer from low quality 

due to acoustic variability, signal deficiency, attenuation, and limited resolution. These problems can 

interpret inhibition and medical diagnosis. To overcome this challenge, researchers have explored various 

methods, including image processing techniques and deep learning algorithms such as CNNs. These 

techniques have shown promise in reducing noise, increasing resolution, and reducing artifacts in ultrasound 

images, thereby increasing diagnostic accuracy. Recent advances have focused on developing specialized 

deep learning techniques, such as transfer learning on the proposed architecture of enhanced residual CNNs 

(EDR-CNNs). This architecture uses techniques such as residual learning, extended convolution, and 

attention-channel mechanisms to improve image quality. The results of improving the quality of the image 

will be tested into a special detection model to detect the structure of the fetal heart object. The results of this 

study can contribute to the development of technology to improve the quality of medical images in the future. 

The results of the detection of the structure of the fetal heart object increased from the results before the 

increase was carried out and after the increase had an increase that was able to increase the accuracy of the 

detection diagnosis. By gaining a clearer understanding of the strengths and weaknesses of various deep 

learning architectures, medical professionals can make informed decisions about the most effective 

approaches to improve the quality of medical images and consequently, improve medical diagnoses and 

interventions. 
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