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 Serverless computing is considered one of the most promising technologies 

for real-time applications, with function as a service (FaaS) managing 

service requests in serverless computing. Load balancing played a vital role 

in assigning tasks in serverless computing for customers; user requests were 

controlled by load balancing algorithms and managed using machine 

learning techniques to deliver results and performance metrics within 

specified time limits. All serverless computing applications aimed to achieve 

optimal performance based on the most effective load balancing techniques, 

which directed requests to the appropriate servers in a timely manner. This 

research focused on developing a novel Q-learning based active monitoring 

with least connection round robin load balancing principle (Q-LAMWLR 

LB) for serverless computing to address the aforementioned challenge. Also, 

aimed to intelligently assign requests to serverless computing based on the 

number of requests arriving at the load balancer and how intelligently they 

could be directed to the appropriate server. This work utilized standard 

techniques to calculate the average response time for each scheduling 

algorithm and develop a novel intelligent load-balancing technique in 

serverless computing. Required experiment were conducted and the results 

are giving the improvement as compared to other load balancing principles. 

The further research in this area also identified and presented. 
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1. INTRODUCTION 

Artificial intelligence (AI) helps to make the software reliability more convenient with intelligent 

software to handle the situations and it works automatically. Aligning concepts from theory, practice and 

future perspective and consequently described the research area to provide an extra mile to understand the 

AI-based load balancing techniques. The systems distribute the workload according to the serverless 

schedulers based on the application characteristics. A schedular which can be used as centralized one to 

provide a parallel framework for the serverless computing using AWS lambda. Also, it is ideal to combine 

two approaches. The prime focus of this paper is to reduce the response time of the request sent by the user 

and to increase the performance of every request through machine learning load-balancing techniques  

[1]–[3]. Figure 1 presents the principle of intelligent load balancing in serverless. AI helps to make the 

software reliability more convenient with intelligent software to handle the situations and it works 

automatically. Serverless computing with load balancing is a challenging research problem mentioned in 

https://creativecommons.org/licenses/by-sa/4.0/
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many research areas. Different load-balancing algorithms are proposed based on the load balancing in 

serverless computing. The problematic research areas are machine learning-based load-balancing techniques 

used in serverless computing. The research direction focuses on the advantage of strategic implementation to 

consider the managerial challenges. This research paper is structured as follows: section 2 comprises of 

related works and section 3 discusses the problem with underlying assumptions. A detailed introduction to 

the planned request scheduling principle is given in section 4. The experimental results and performance 

evaluation are presented in section 5, along with a comparison with a few current scheduling principles. 

Section 6 presents the conclusion and the future directions for this research work. 

 

 

 
 

Figure 1. Intelligent load balancing techniques in serverless computing 

 

 

2. METHOD  

The modern world is entirely into internet, and users always avail information from internet. More 

users are helping the feature to achieve the desired technology in a better way. An appropriate 

communication system should be established to get a proper response to the request sent by the user. The 

intelligent load balancing techniques provide a platform for the above-mentioned problem. Smart load 

balancing techniques for the serverless computing method. In the serverless computing paradigm, the 

difficult part will be controlling the load received from the different users simultaneously. The response time 

accuracy of solving the request creates a high demand for intelligent load balancing [4]–[6]. There is a need 

for smart load balancing principles on serverless computing to ensure the load balancing serverless 

computing can reduce the response time and efficiently increase the availability of servers for the subsequent 

coming request. The serverless computing spins it up fresh and starts hosting the function through a cold 

start, and if the function is running successfully, it says warm start. If the function does not request anything 

again, it comes to the state of idle, and the following user will again be the cold start, which makes the time-

space trade- off using serverless functions [7], [8]. Through that, the issue of load balancing can be solved to 

an extent. The load balancing is presented in Figure 2. 

Q-learning active monitoring weighted least connection round robin load balancing (Q-LAMWLR 

LB) uses a reinforcement learning technique, and N number of requests arrives at the load balancer; it 

collects the server and function information at the earlier stage [9], [10]. The request from R1 to RN will be 

sent to the Q-LAMWLR LB methodology, and with the help of machine learning techniques associated with 

different load balancing algorithms, it will finalize the highest weight for the server T time an invocation 

needs to schedule and Q-LAMWLR LB will be having N clusters available in total. Q-LAMWLR LB 

receives a batch of the latest state Rt=(R1,. .., Rn,. .., RN ) from the cluster, where n is the Nth available 

server. Once the data is received for the weight allotting procedure, Q- LAMWLR LB creates the index table 

with all the information hired, mainly the server and Function information [11], [12]. Allocating weight to 

the server is done with the help of reinforcement learning. The actor network and critic network are used to 

giving weight to the different servers. Figure 3 presents the placement of the designed load balancing 

principle specific to serverless computing. 
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Figure 2. Identifying the right server using Q-LAMWLCRR LB 

 

 

 
 

Figure 3. The Q-LAMWLR LB architecture 

 

 

Algorithm 1 presents the algorithm represents the way of applying the Q-learning training with the 

best set of servers which is available and based on that the second algorithm will be provided and will find 

the best server for the request that is raised and an intelligent load balancer based on the Q-learning 

techniques and the other load balancing algorithms will be selecting the best server for the request [13]–[15]. 

The algorithm is about two conditions to get into the loop. One is if it explores the other is if its exploit. In 

the both condition the algorithms works and make a prompt attempt to get the result. The accurate values are 

to get the server in a average response time to choose a best server. If an agent chooses to explore (with 
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probability ϵ), it evenly chooses a random action from among all options. If an agent chooses to exploit (with 

probability 1−ϵ), it determines the highest value. These are the condition which accepts with the algorithm. If 

the agent which relate with the Q-learning technique chooses to explore the probabiility of values and 

chooses a random action to exploit the same.  

 

Algorithm 1. Finding the best server using Q-learning 
Algorithm: Q-learning training based on the request 

begin 
Step 1: The load balancer receives a request. 

Step 2: Determine which serverless Function is best for the request  

                   S: List of serverless functions that are accessible. 
N: The number of serverless features in S Wi: The weight of the serverless 

Function is i 

Ci: The Connection count for serverless Function i 
Q (i, j): The Q-value that indicates the acquired usefulness of changing from state i to state j. 

Step 3: Create a Q-table of dimensions (N, N) and set all of its values to zero at first. Step 4: Initialize weights Wi for 

each serverless Function 
Step 5: Initialize connection counts Ci for each serverless Function  

Step 6 : Q-learning Training 

∈ + (1−∈). 
𝒬 (𝑠, 𝑎) 

𝑖𝑓 𝑒𝑥𝑝𝑙𝑜𝑟𝑒                      (1)                            

Initialize state s and Choose action a {|
𝒜| ∑𝑎` 𝒬 (𝑠, 𝑎`)

 

𝒬(𝑠,𝑎) 𝑖𝑓 𝑒𝑥𝑝𝑙𝑜𝑖𝑡                                    (2) 
                                                                                                                ∑𝑎` 𝒬(𝑠,𝑎`) 

π(a∣s): The possibility of picking a method of action a in state s. 

∣A∣: The total amount of possible outcomes. 

Q (s, a): The Q-value for state-action pair (s, a). ϵ: The exploration parameter (0 

< ϵ ≤ 1) 
If an agent chooses to explore (with probability ϵ), it evenly chooses a random action from among all options. If an agent chooses to 

exploit (with probability 1−ϵ), it determines the highest value. 

/* End of Q-learning Training */ 
 Output: Q-learning table updated 
 

The second algorithm presented in algorithm 2 gives a complete explanation of how Q-LAMWLR 

LB works [16], [17]. Based on the training of q-learning, the load balancer understands each request that 

arrives at the same or different interval of time and can be assigned to the server, which is available at a 

particular time based on the Q-values calculated using the algorithm [18], [19]. The algorithm provides more 

clarity to understand the working procedure in a detailed method. The algorithms give a complete 

explanation of how Q-LAMWLR LB works [20]–[22]. Based on the training of q-learning, the load balancer 

understands each request that arrives at the same or different interval of time and can be assigned to the 

server, which is available at a particular time based on the Q-values calculated using the algorithm. The 

algorithm checks the possible way of assigning the request to the proper server with the arrival of proper request 

to the algorithm.  

 

Algorithm 2. Update Q-Value: For the current state-action pair, update the Q-value 
Algorithm: Allocating the request to the server 

begin 

Step 1: The Q-value update for a state-action pair (s, a) 

Q (s, a) ←Q (s, a) ⋅ (1−α) + (γ⋅maxa′Q (s′, a′)+R (s, a))) ⋅ α                            (3) 

       Q (s, a): state action pair Q-value(s,a). 

α: (0 < α ≤ 1) rate of learning 

R (s, a): Action a reward point 

γ: (0 < γ ≤ 1) the discounted rate 
maxa′Q (s′, a′): Maximum Q-value for the next state’s′ 

Step2: Next function index=(i+1) mod N 

Step 3: Selected function index=arg mini ( Ci) 
wi 

Step 4: New Weight=Function of Current Weight, Performance Metrics 
Step 5: New Q-value=Function of Current Q-value, Performance Metrics 

Step 6: Transition to the next state: Using load balancing strategy 

Step 7: Based on weights, determine the subsequent serverless Function. 
Step 8: Considering the weights, choose the serverless Function with the fewest active connections.  

Step 9: Track the performance indicators of serverless functions. 

Step 10: To respond to changing conditions, adjust weights and Q-values based on the results of active monitoring 
Step 11: Repeat from (d.ii) to (f) 

Step 12: Proceed with the procedure for the predetermined number of times or until convergence. 

end 
/* End of Server allocation algorithm */ 

 Output: Request allocated to the server 

 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Q-learning based active monitoring with weighted least connection round… (Yashwanth Balan) 

3175 

Table 1 shows the performance of how Q-LAMWLR LB with different sets of processes and 

assigns the method based on the arrival, burst, and exit time to the proper server. Figure 3 already presented 

how Q-LAMWLR LB principle and shows the working procedure of the load balancer when a request 

reaches the load balancer: i) based on the request reaches the server assigns and ii) with the help of different 

algorithm the comparison happening. The comparison gives the idea to understand the algorithm which is 

provided has an impact based on the request receives. 

The proposed methodology combines different load balancing algorithm with the machine learning 

algorithm Q-learning methodology from reinforcement learning. This approach addresses the challenges of 

serverless computing based on the number of requests arrives and the algorithm treats all the request in the 

effective way and assign to the server based on the arrival and burst time. The proposed methodology 

identifies the average time of the request based on the arrival and burst time. It helps the load balancer to 

identify the server and allocate it. The methodology increases the adaptability leveraging the real time feed 

back monitoring to refine system server and utilize the resources [23]–[25]. Through the real world testing 

and comprehensive simulation through the proposed methodology it can increase the scalability and reduce 

the response time to an extent while the requests are allocated efficiently to the server which is available. 

This proposed methodology of using Q-learning method used by the load balancer to allocate the server in 

the serverless computing improves the performance, reliability and cost management in the serverless 

computing. The algorithm completely focuses on reducing the response time and increase the scalability 

based on the arrival time and the burst time of the request. The approach clearly focuses on the areas 

mentioned in the proposed methodology. 

 

 

Table 1. The performance of Q-LAMWLR LB 
Process Server Arrival Burst Exit Turn Around Wait 

P1 S1 3 4 7 4 0 
P3 S2 3 5 8 5 0 

P5 S1 4 3 7 3 0 

P4 S3 6 7 13 7 0 
P2 S3 6 8 21 15 7 

 

 

3. RESULTS AND DISCUSSION 

This research conducted experiments deploying Q-LAMWLR LB on two different CloudSim 

clusters: one on the Compute Canada Cloud and the other on an Amazon elastic compute cloud (AWS EC2) 

cluster. Eachcluster comprised 13 virtual machines (VMs) with specific roles: one VM for hosting the 

controllers like application program interface (API) gateway and Redis services for the back end, messages 

are distributed and database as well, one for the Q-LAMWLR LB agent, and the function invokers are 10. In 

the Canada cloud compute, each 32 GBs of memory for VM and vCPU cores are 8. 2 GBs of random access 

memory (RAM) for invokers for each function execution, based on function memory requirements CPU 

power is allocated proportionally. On the EC2 AWS cluster, each VM was of type c5d.2xlarge with 8 vCPU 

cores and 16 GBs of memory, launched as spot instances. Similar to the Compute Canada Cloud. 

Q-LAMWLR LB independently on both clusters and then evaluated its. Figure 4 mentions about the request 

distribution in the serverless computing using the Q-LAMWLCRR LB. 

 

 

 
 

Figure 4. Request distribution to the servers using the Q-LAMWLCRR LB 
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3.1.  Average response time 

The Q-learning table will be updated for the Q-LAMWLR LB algorithm using the following 

algorithm based on the algorithm which is provided the average response time of accepting the request will 

be considered [26]–[28]. 

 
𝜖

|𝐴|
+ (1 − 𝜖) ⋅

𝑄(𝑆,𝑎)

𝛴𝑎`𝑄(𝑠,𝑎`)
  if explore  

𝑄(𝑠,𝑎)

𝛴𝑎`𝑄(𝑠,𝑎`)
  if exploit  (4) 

 

The equation (4) provides the updating of q-learning techniques and through the Q-learning update the server 

will be allotted and the request will be considered based on it. Once the request is treated to the server the 

average response time will be identified [29], [30]. The mathematical equation is to provide the final output 

of average responses time based on the request receives. Figure 5 showcases the result of comparison 

between the scheduling algorithms with the proposed algorithm in the research. Q-LAMWLR LB algorithm 

takes the less time as compared to the other algorithms. The comparison gives a clear picture of the proposed 

algorithm is working efficiently as compared to the other algorithms. The result is purely based on the 

request receives on the algorithm. 

Figure 6 represents two parameters time interval on the X- axis and data interval on the Y axis. The 

figure compares the Canada cloud and AWS EC2 based on the algorithm the result produces in this format. 

The blue line makes the Canada cloud and which show cases the difference among the AWS EC2 in the 

different interval of time and how data is travelling according the time changes. The variation show cases the 

difference based on the time changes and the data interval. 

 

 

 
 

Figure 5. Comparison of the different algorithms with Q-LAMWLR LB 

 

 

 
 

Figure 6. Comparison of the different algorithms with Q-LAMWLR LB 
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3.2.  Average turnaround time 

The turnaround time of the request is based on the arrival time and burst time of the algorithm. 

Based on these values the turnaround time will be calculated. The Algorithm 1 provides the data clearly. The 

equation provides the selection best server once the turnaround time is calculated [29]. 

 

𝑄 (𝑠, 𝑎)  ← 𝑄 (𝑠, 𝑎)  ⋅  (1 − 𝛼) +  (𝛾 ⋅ 𝑚𝑎𝑥𝑎′𝑄 (𝑠′, 𝑎′) + 𝑅 (𝑠, 𝑎)))  ⋅  𝛼                         (5) 

 

The Q-LAMWLR LB algorithm will be selecting the best server once the equation identies the 

server which is available at the moment based on the Q-learning table updating. Considering the Q-learning 

table data which is available the request will be considered and allots the server for the request [29], [30]. 

Figure 7 represents the comparison of different algorithm with the proposed algorithm to showcase the 

difference. 

 

 

 
 

 Figure 7. Comparison among different load balancing algorithms based on the Serverless environment 

 

 

This work mainly focuses on the serverless computing platform to make an intelligent load balancer. 

The methodology describes the algorithm and which showcases the working pattern of the algorithm when 

the request arrives. The load balancer manages the request and turns into a Q-learning table to make the next 

request work promptly. The different instruments and the methods are used in the methodology are explained 

in the proposed methodology and the working procedure is in the experimental and discussion part. There is 

different type of algorithms compared to make a statement that Q-LAMWLR LB can be some kind of 

changes in the serverless. computing platform while using the algorithm. Based on the request arrives the 

servers are allotted and the next request will be perfectly allotted to the server based on the reinforcement 

learning.  

 

 

4. CONCLUSION  
The reinforcement active monitoring round-robin weighted least connection algorithm described in 

the introduction stage properly reduces the response time once the request arrives at the load balancer. The 

Q-LAMWLR LB principle finds the best server available through machine learning techniques using 

reinforcement learning in detail using the Q-learning technique. Q-learning techniques applied to the three 

different load balancing algorithms provide less response time to the request received at the load balancer- 

value table, which will be updated all the time after selecting the server for the request received. The algorithm's 

primary objective is satisfied through the result and discussion area as mentioned in the introduction. Every 

request's primary goal is to reduce the response time. Response time can be reduced through the proposed 

algorithms. The research challenges are to finalize the test bud to apply the algorithms in the real world. The 

future enhancement can be using machine learning techniques for serverless computing to make the server 

scalable through machine learning techniques. The research proposes a novel algorithm using Q-learning 

techniques of reinforcement learning applied to the load balancing concept using active monitoring load 

balancing, weighted round robin, and weighted least connection load balancing algorithm to satisfy the request 

which arrives at the load balancer to appropriately transfer to the serverless computing paradigm in a less 

response time. 
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