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 This research evaluates the implementation of advanced machine learning 

methodologies for concrete mix design to achieve better predictive models 

and sustainable outcomes. This study develops a hybrid optimization 

approach by combining dung beetle optimizer (DBOA) and firefly algorithm 

(FLA) to optimize hyperparameters for convolutional-recurrent neural 

networks in order to correctly predict concrete compressive strength when 

using supplementary cementitious materials (SCMs). Shapley additive 

explanations (SHAP) provide feature significance analysis, which ensures 

that the model produces understandable conclusions supported by empirical 

findings. The findings demonstrate that this method enhances the predictive 

accuracy of strength analysis, along with offering critical insights about 

SCM usage in order to improve sustainable construction methods. The 

model proves suitable for integration into actual concrete mix design and 

quality control systems because it achieves both computational speed and 

passes validation tests on distinct datasets. The research creates foundations 

for upcoming studies about multimodal learning enrichment and deals with 

ethical concerns in construction site safety when using machine learning 

systems. 
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1. INTRODUCTION 

  The building industry has implemented many cement manufacturing greenhouse gas emission 

reduction measures [1], [2]. Similar to burning gasoline, the manufacture of hydraulic cement accounts for 

7%–9% of world carbon dioxide emissions [3]–[5]. To lower CO2 emissions, cement mixes can include 

waste or industrial flows as multi-component binders [3], [6]–[14]. One way to cut greenhouse gas emissions 

by 47% to 5% is to use industrial waste instead of cement, such as ground granulated blast furnace slag 

(GGBS) from blast furnace iron ore extraction [15], [16]. One ton of GGBS production has a worldwide 

environmental emission factor of 0.143 t CO2-e/ton, which is less than the standard established by most 
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nations and international organizations. Cement uses 9 t CO2-e/ton, although concrete mixes are made using 

transportation technologies [17]. 

About 60% of the 530 million tons of global slag (GGBS) is used in construction [18], [19]. GGBS 

has been studied on various concrete and mortar types [3], [20], [21]. Another study [22] found that MS and 

GGBS synergistically improved concrete resistance to unfavorable consequences. According to a different 

research [23], resistance and durability without PC were best boosted by 20% MBS made from rice husk and 

by using slag powder instead. By converting fly ash and powdered blast furnace slag, waste glass-derived 

nano powder, into alkali-activated mortars, drying shrinkage is decreased and wear, freeze-thaw cycles, and 

sulfuric acid resistance are enhanced [24]. According to other studies, GGBS should be used in place of 20% 

of cement before sample workability and porosity cause resistance to drop [15], [25]. 

The workability, bleeding, heat of hydration, corrosion, porosity, and permeability of both fresh and 

hardened concrete are all improved by GGBS in cement [26]–[29]. Due to greater particle distribution, 

GGBS improved concrete workability by 40% [3]. Cement paste fills aggregate micro-spaces to reduce 

internal friction between concrete components, improving workability [25], [30]. 

Tensile strength, a vital road concrete property, has design parameter constraints that should be 

controlled to minimize cracks [31]. Concrete shrinkage depends on cement, water, aggregates, air dryness, 

and rising temperature [32]. Cement dose, C3A content, gel component, and alkali content affect shrinkage 

[33]. Early setting reduces cement paste volume by 1% of dry cement volume [33], [34].  

Shrinking values fall below zero. Concretes with a lot of binder can reach 6 mm/m [35]. Size 

decreases by 5% after one month, 60% after three months, and 75% after a year [32]. W/C ratios cause 

concrete pores to expand, which increases shrinkage. Additional aggregates prevent shrinkage because they 

are coarser [36]. More than 50% relative humidity and 800 ppm CO2 increase shrinkage rates because CO2 

dissolves and eliminates hydrosilicate hydration products [35]. The carbonation process is accelerated by 

high external CO2 concentrations, lowering the pH from 12–13 to less than 9 and rupturing the reinforcing 

bar's passivation layer, which causes corrosion [37]–[40]. 

As the largest component of concrete, aggregate usage has the greatest environmental impact. 

Annual international building aggregate demand exceeds 10 billion tons [41]–[44]. Road asphalt pavement 

(RAP) aggregates [45]–[47], quarry sand (QS) [48], recycled aggregate concrete (RAC) from building 

demolitions [43], [44], and ecological mortar that replaces natural aggregates with glass waste [49] have all 

been the subject of cadaveric research. 

ACBFS is another air-cooled road concrete aggregate source [50], [51]. It has been demonstrated 

that natural aggregates made from blast furnace slag may be used in asphalt [52]. For concrete structures, the 

Japanese Guide suggests a 20%–60% combination of natural and fine materials [53]. The reference standard 

for blast furnace slag concrete aggregates in our nation has been SR EN 12620 since 2003 [54]. It is possible 

to incorporate steel industry waste materials into road concrete mixtures, but it is important to assess how 

they affect both fresh and hardened concrete [55]. Utilizing innovative technologies and reusing synthetic 

materials can help the environment by reducing manufacturing costs and conserving non-renewable resources 

[56]. 

A low-carbon circular economy is a global goal, and the building industry is promoting green 

alternatives and minimizing environmental harm caused by the cement industry. The production of concrete 

and cement produces almost no emissions. Nine metric tons of CO2 must be released by the cement industry 

for every metric ton of cement produced. There are major repercussions linked to the global emissions from 

the building industry. Therefore, one of the greatest approaches to reduce greenhouse gas emissions is to 

replace cement with similar materials [57]. Supplementary cementitious materials (SCMs) are cost-effective 

and ecologically beneficial alternatives to cement. Most SCMs are pozzolanic, which improve concrete 

microstructure, late strength, and CO2 emissions [58]. 

Fly ash (FA) from coal power stations is the most common SCM in cement-based materials. 

Industry standards recommend replacing cement with FA by 10%–30% [59], [60]. High volume fly ash 

(HVFA) concrete has the best mechanical properties and durability, making it a sustainable construction 

material [61]–[66]. Following 56 and 91 days of mixing FA with cement and replacing 50% of the cement 

with FA at a W/C ratio of 0.42, Bouzoubaâ et al. [67] achieved compressive strengths of 32. 2 MPa and  

35. 2 MPa. These values were greater than ordinary portland cement (OPC) concrete's 0.53. According to 

Mardani-Aghabbaglou and Ramyar [68], after 180 days, 60% FA replacement increased compressor strength 

by 15%–18% above OPC. According to Chen et al. [69], drying shrinkage was decreased by 23%–30% when 

FA was substituted for 50%–80% of the cement. According to Müllauer et al. [70], 70% FA successfully 

decreased alkali-aggregate reactions. According to Wang et al. [71], to reduce the porosity of concrete, 30% 

by weight of coarse aggregate should be used for FGPS and 15% for FA. Additionally, Wang et al. [72] 

discovered that adding 30% FA to panel concrete improved its permeability and compressive strength with 

time. 
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Granulated ground blast furnace slag (GGBFS) blast furnace iron waste is frequently used as a 

cement alternative. Glassy blast furnace slag is quenched and cooled to form GGBFS, which binds well. 

Crossin [16] found that GGBFS as an SCM reduced greenhouse gas transparency by 47.5%. After 28 days of 

curing, the mechanical strength of ternary mixed cement containing a larger percentage of GGBFS was 

greater than that of OPC 22, [22], [73], [74]. Due to the diluting effect, Lim et al. [75] discovered that ternary 

mixed cement containing GGBFS had a lower peak compressive strength than OPC. However, it did better 

than 

After 28 to 365 days of therapy, OPC and acquired more between 28 and 91 days [73]–[77]. 

Cheah et al. [78] investigated a ternary mixed cement mortar that contained cement, GGBFS, and ground 

coal bottom ash (GCBA). They discovered that the mechanical and physical characteristics of cement mortar 

were enhanced by 40% GGBFS and 5% GCBA without SP and 40% GGBFS and 10% GCBA with SP [79]. 

Research on waste concrete aggregates and ternary cementitious ingredients like silica fume and 

GGBFS revealed that adding GGBFS to 25% of cement increased the GW P value. According to Weise et al. 

[80], the 30% weight metakaolin mix consumed the most CH between days 28 and 56, which had an impact 

on strength. Using SCMs in concrete improves cement reaction, but metakaolin content increases efficiency 

[81]. SCMs like FA and GGBFS can enable a low-carbon circular economy in building. These materials 

reduce greenhouse gas emissions and increase concrete structure efficiency and duration, encouraging 

construction sustainability. 

Impermeability in concrete affects resistance to water-soluble chloride ions, CO2, and sulfate, which 

impair concrete durability. These chemicals can infiltrate concrete, degrade it, and limit its lifespan, making 

them global threats [82]–[84]. Concrete porosity, which affects its permeability, depends on its size, shape, 

and interfacial transition zone. Recycled fine aggregate (RFA) %, W/C ratio, and mineral admixtures directly 

affect recycled fine aggregate concrete (RFAc) impermeability. According to research, admixtures and 

additives optimize concrete's microscopic structure, boosting its impermeability [85]–[87]. 

Concrete porosity is highly dependent on RFA quantitative properties. RFA has fewer physical 

properties than natural fine aggregates. Because RFAc uses more RFA, its performance is usually poorerRFA 

particles absorb gaps and microcracks from the previous mortar because of their poor grading, which makes 

the concrete porous. Thus, RFAc replacement increases the water vapor transmission barrier [88]–[91]. 

Because RFA is porous and absorbs water, SCC mixtures absorb more water with a higher RFA substitution 

rate. However, RFAc's permeability is lower in a sulfate environment than in regular concrete, and its water 

absorption is 25% lower [92]. The W/C ratio is crucial to concrete preparation and permeability resistance. A 

W/C ratio of 0.65 reduces impermeability compared to 0.55. Because a larger W/C ratio slows RFAc cement 

hydration, pores form and concrete compactness decreases [88], [89], [93]. 

FA can replace silicate cement in construction due to its pozzolanic characteristics [93]. Concrete 

that contains fine fly ash has better hydration, zeolite, accumulation, and nucleation [94]. Concrete density 

rises as a result of the early hydration response of FA, which increases the quantity of hydration products in 

the pores [95]. The permeability of self-compacting concrete containing 10% FA and 100% RFA was lower 

than that of control mixes devoid of FA [96]. 

Due to RFA's poor physical and chemical characterization and RAC's weak interfacial transition 

zone (ITZ), alternative mixing strategies have been introduced. This comprises the optimal triple mixing 

technique (OTM), triple mixing method (TM) [97], and double mixing method (DM) [98]. To conclude, 

OTM staff add SPs, water-reducing agents, in varied orders. SP is added to the mix with other gelling 

components to increase gelling and ITZ proportion. This method uses the zeolite effect more effectively; 

hence the RAC has an 8-permeability rating [99]. By choosing the correct materials and ratios and improving 

procedures, the building industry can waterproof and strengthen concrete. This provides durable 

constructions. RFA beats NFA due to fine aggregate's poor water absorption. RFA's water content must be 

evaluated before integration because higher absorption affects concrete's mechanical qualities. AD, OD, and 

SSD RFA methods were tested for RFAc permeability. The study found that RFA permeability resistance in 

concrete follows the order SSD > AD > OD, while for recycled coarse aggregate, the order is reversed (SSD 

< AD < OD) [100]. Compared to RCA, RFA restricts water more because its particles are smaller and its 

specific surface area is larger [101]. Concrete pore size is significantly impacted by RFA integration, and 

permeability is decreased by raising the W/C ratio and RFA replacement rate, as shown in Figure 1.  

Saturated surface-dried RFA, improved mixing, and fly ash addition, on the other hand, consistently 

lower RFAc permeability. Fly ash with two pozzolanic minerals, silica fume, and metakaolin, together, 

increases the impermeability of RFAc. Table 1 lists the variables influencing RFAc sealing. In conclusion, 

although increased water absorption is a problem with RFA, its permeability and durability may be 

significantly increased by controlling its moisture content, merging SCM, and using the precise mix 

proportions for RFAc. 

This paper presents a unique hybrid optimization technique that combines the dung beetle optimizer 

(DBOA) and firefly algorithm (FLA) to improve the hyperparameters of a convolutional-recurrent neural 
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network in addition to using traditional approaches. Through their combination, the approach performs a 

strong global search using FLA alongside precise local search optimization done by DBOA. Our method 

combines conceptual novelty by applying biological concepts to material scientific applications when 

predicting concrete compressive strength as an essential factor for sustainable construction. In addition, this 

research aims to address the critical gap in sustainable construction practices by significantly reducing the 

CO2 emissions associated with conventional cement production. The study examines how concrete's 

mechanical characteristics change after supplemental cementitious materials (SCMs) such fly ash (FA) and 

ground granulated blast furnace slag (GGBS) are added. 
 

 

 
 

Figure 1. RAC 𝑊𝑏 is the weight percentage of SCM's residual water in the gelling material overall; 𝑊𝑎 is 

60–80% of the product of RA's weight and water absorption; and 𝑊𝑐 is the result of mixed water −𝑊𝑏−𝑊𝑎 
 

 

Table 1. Numerous elements' effects on RFA concrete's (RFAc) impermeability 
Factor Impact Variation 

RFA moisture level Positive Increase 

Mineral additives Positive - 

Enhanced triple mixing technique (OTM) Positive - 

RFA proportion Negative Increase 

Water-cement ratio Negative Increase 

 

 
Research results show that our hybrid algorithm optimized neural network achieves precise 

compressive strength prognosis and provides sustainable mixtures with lower environmental effects. The 

manuscript establishes multiple new findings for both construction engineering science and environmental 

sustainability research. This manuscript proves the effectiveness of combining bio-inspired optimization 

methods for material assessment purposes in an atypical application domain. The research demonstrates that 

optimized. SCMs have the potential to reduce greenhouse gas emissions substantially. The predictive features 

of this research will result in new modeling capabilities for planning and simulation tools to integrate directly 

into construction processes, thus enabling real-time, environmentally responsible material selection choices. 

We will begin by providing an overview of the current state of cement manufacturing and its 

environmental impacts, highlighting the use of SCMs as a sustainable alternative. Following this, we will 

delve into the methodology section, outlining the hybrid optimization techniques and neural network models 

employed to enhance the predictive accuracy of concrete compressive strength. Subsequent sections will 

discuss the experimental setup, results, and a detailed analysis of the findings, focusing on the performance 

and generalizability of the model. Finally, we will conclude with a discussion on the implications of our 

research, future research directions, and the potential integration of our findings into a concrete mix design 

and quality control systems. 

 

 

2. PREVIOUS WORK 

Numerous studies on concrete technology have identified important factors and enhanced the 

prediction of concrete strength (CS) through the use of cutting-edge machine learning algorithms. For fly 

ash-based geopolymer concrete CS, decision tree algorithms, bagging, and AdaBoost regressors were used 

[102]. The bagging model made the best predictions, with an R-squared of 0.97. The most crucial CS 

characteristics were identified by a comprehensive sensitivity investigation, supporting the environmental 

sustainability of geopolymer concrete. Feng et al.  [103] developed an intelligent CS prediction method based 
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on AdaBoost. Using AdaBoost, they outperformed artificial neural network (ANN) and support vector 

machine (SVM) on more than 1,030 case sets. In their article, they used sensitivity analysis and 10-fold 

cross-validation to calculate accuracy and precision. Research on recycling aggregate concrete (RAC) [104] 

using ANN symbolic learning and GEP. Sensitivity study revealed CS-affecting factors, and GEP performed 

better than ANN. Additionally, the study proposed that bagging and boosting might enhance prediction. 

SFRC beam shear resistance was predicted by many machine-learning algorithms [105]. The dependent 

variable was best predicted by XGBoost using tried-and-true machine learning techniques. Input parameters 

are anticipated in the study. Chen et al. [106] GBRT predicted concrete-FRP bond resistance. The best 

method and model, GBRT, predicted the issue. ANNs and genetic algorithms (Gas) or particle swarm 

optimization (PSO) predicted CES bond strength [107]. Test sensitivity analysis identified crucial variables. 

CS was evaluated at high temperatures using AdaBoost, Random Forests, and decision trees [108].  

Highly cement sensitive, Gaussian process regression (GPR) with the Matern32 kernel function 

predicted high-performance concrete's CS better than ANNs [109]. In the sensitivity study, cement 

concentration and testing age were crucial. CS was predicted by Random Forest using field and lab data 

[110]. Field-trained models showed improved accuracy, indicating that several data sources reduce 

overprediction. Decision tree and gradient boosting tree models were used to examine the bending 

performance of FRP-reinforced concrete beams [111]. Beam depth, flexural reinforcement area, and 

assessment metrics supported the gradient-boosting tree model. ANNs, decision trees, Bagging, and gene 

expression programming predicted CS [112]. Bagging was most accurate at 0.95 R-squared.  

The XGBoost model with manually selected features performed well in [113] when estimating CS 

based on concrete composition and cure period. According to the study, a decrease in dimensionality helps 

the support vector regression model. Machine-learning approaches were used to forecast setting time and 

strength development in Ordinary Portland cement binders [114]. The results were comparable to ASTM test 

methods. Finally, [115] tested ANN, boosting, and AdaBoost ensemble machine-learning approaches for 

geopolymer concrete CS prediction using high-calcium fly ash. Due to its accuracy, the boosting approach 

was acknowledged, and these findings suggest ensemble methods for enhancing concrete for sustainable 

development. 

This study aims to improve concrete property forecasts. Improving predictive models requires 

understanding the intricate relationship between material components, ambient environments, and concrete 

physical properties. In the construction industry's quest for efficiency and sustainability, this study will 

enhance the prediction model's accuracy and adaptability through an analysis of environmental impacts and 

mechanical behaviors. 

 

 

3. PROPOSED METHODOLOGY 

This study uses extensive analysis, data management and manipulation methods, advanced artificial 

neural network architecture, and hybrid optimization algorithms. For optimal dataset use and high-quality 

findings, the dataset was cleaned and preprocessed using concrete properties. Data was normalized to reduce 

skewness in feature scales. 

The neural network architecture served as the foundation for the built predictive model, which 

included convolutional and recurrent layers to extract the temporal relationships of the data in order to 

guarantee an accurate forecast of concrete strength. Because it provided a solid basis for further 

enhancements, this model arrangement was initially appropriate for testing performance.  

The study advises creating FLA and dung beetle optimizers. This procedure improved model 

hyperparameter values more than normal. FLA effectively explores parameter space via global search 

optimization; DBOA founds the local optimum. A large solution space and reliable model prediction are 

guaranteed by comprehensive search approaches. Figure 2 shows the important methodology's application 

and linkages. Finally, the FLA+DBOA model's algorithm flow and predictive model integration are 

displayed in the following Figure 2. 

In our methodology, we conducted a comprehensive dataset preprocessing to ensure the integrity 

and consistency of our model. The implementation of normalization standardized numerical values to match 

ranges while maintaining stability and convergence, through which the IQR method detected outliers to 

remove anomalous data that affected the analysis. The Min-Max scaler method was implemented for feature 

scaling in order to equalize the effects of each input feature upon model predictions. 

Shapley additive explanations (SHAP) assessed the influence of different variables on concrete 

compressive strength predictions by assigning value weights to each contributing feature in the prediction. 

The predictive model gained both enhanced interpretability and transparency when using SHAP, which 

revealed vital features together with clearer explanations to increase the reliability of predictions. 
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Figure 2. Proposed scheme 

 

 

The model performed its training on hardware optimized for GPU computing to decrease processing 

time while attempting to scale the system. The design enables our system to process extended datasets 

effectively thus enabling practical applications that need immediate, precise outcomes. The implemented 

model relies on state-of-the-art computer tools and methods to guarantee computational productivity. 

A convolutional-recurrent neural network serves as our main computational element to process sequential 

and spatial concrete mix data efficiently. The model runs on a computing platform with powerful GPUs for 

its deployment. The specific configuration serves as an essential requirement to make deep learning models 

perform quickly during training and inference, thus enabling fast processing of big datasets and intricate 

operations. Using GPUs in the system enhances both processing speed and model scalability thus allowing 

the analysis of large datasets at high performance rates. The development process utilizes TensorFlow and 

Keras frameworks as optimized deep learning applications specifically designed for this purpose. The 

frameworks offer efficient neural network implementation, which includes automatic differentiation and 

GPU acceleration capabilities built right into their system. The provided support maximizes resource usage in 

order to enhance model speed and accuracy during computations. The computation process adopts standard 

software engineering principles that include logical modularization of code with optimized data arrays and 

parallel algorithm execution approaches. Model maintenance becomes simpler through these practices, while 

calculations run faster, and the system becomes ready for growth requirements. 

The predictive accuracy of our model was validated through statistical tests that included t-tests and 

ANOVA for comparing different configuration results. The model performance was evaluated through an 

analysis that determined the effects of shifting GGBS or fly ash percentages. Our model required this 

evaluation to demonstrate its performance across various concrete mixed conditions as we aimed to generate 

robust findings applicable to different production scenarios. 
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The depiction in Figure 2 shows how the FLA and DBOA combine in a hybrid optimization 

structure without interruptions. The diagram shows how the iterative steps of the dual algorithm function 

through parameter establishment and population initial creation. The system computes fitness values to guide 

the search direction towards optimal solutions after this procedure. 

The DBOA section allows the model to work without obstacles by readjusting individual positions 

through an equation designed for improved algorithm exploration. By detecting local minimum obstacles, the 

trajectory makes intended modifications that allow smooth navigation towards optimal solutions. The 

algorithm conducts a renewal procedure whenever it discovers an optimal solution, which allows it to 

perform more precise checks regarding boundary overstep from prior runs. 

The FLA begins its hybrid system operations by establishing adjustable parameters that derive from 

DBOA outputs. A dynamic feedback mechanism created between the algorithms improves both adaptability 

and robustness during the optimization process. FLA separates its population across two groups, which 

conduct position updates based on fitness evaluations that are recalculated after every positional 

readjustment. The algorithm divides its execution into multiple phases, which activate when iteration counts 

reach their defined thresholds in order to achieve efficient exploration and exploitation of the search space. 

Both algorithms update their strategies with each iteration using changes in search space conditions 

to reach their final identification of the global best position and fitness. This interactive algorithm mechanism 

both enhances individual algorithm effectiveness while utilizing their collective power to produce an 

optimized solution, which represents efficient management of exploration and exploitation resources needed 

for sophisticated optimization problems. 

Our model evaluation includes examination of physics-informed machine learning (PIML) because 

we seek to elevate both interpretability and reliability of our predictive methods. PIML strengthens model 

outcomes by implementing domain knowledge into training because it enables users to understand how 

concrete mix design principles affect predictions, which leads to more accurate, trustworthy results. This 

method proves useful in material science because its analysis handles complex physical and chemical 

interactions that exhibit strong nonlinearity. 

 

3.1.  Dataset overview 

The main dataset used for this study examines concrete mixtures as a whole system to understand 

how components work together during compression tests. The 1,030 samples have eight characteristics and 

one target variable. The type (10 classes) and age are also listed. With an average volume per mix of  

281.17 kg, cement, the primary binder in concrete, is crucial to the structural behavior and longevity of the 

masonry industry. 
Supplementary table cementitious materials average 73.90 kg blast furnace slag and 54.19kg fly ash. 

Read Intro. These improve durability and workability, but their proportions vary, providing a variety of 

experimental mixes. Water, which is needed for concrete workability and strength, weighs 181.57 kg per 

mix, whereas superplasticizers, which increase concrete fluidity without reducing strength, weigh  

6.20 kilogram per mix. The bulk of the mix is composed of both coarse and fine aggregates, weighing  

972.92 kg and 773.58 kg, respectively. These factors affect concrete texture, density, and strength. The 

average age of concrete samples was 45.66 days, representing a cure period, a key parameter for strength 

growth layers. Concrete undergoes chemical processes that release load-bearing properties. The average 

compressive strength, or load-carrying ability, of concrete is 35.82 MPa in this dataset. Other high-

dimensional meta-features possess this scale, indicating aptitude for training predictive models that can 

handle many construction specifications and situations. In conclusion, the dataset helps estimate quench-flow 

composite compressive strength by measuring ingredients and weather conditions and monitoring difficult 

concrete mix interactions. This large data collection enables deeper examination of empirical relationships 

that affect concrete performance and customized mix designs for diverse construction applications. 
In addition, we have included a comprehensive comparative Table 2 that details various 

optimization methods alongside the FLA and DBOA. Each optimization technique's accuracy, together with 

its computational timing and benefits and drawbacks, appears in this table, which includes particle swarm 

optimization (PSO) and genetic algorithm, and Bayesian optimization. An organized analysis enables better 

comprehension regarding why FLA and DBOA were selected for this research because of their particular 

advantages in resolving complex multi-dimensional optimization issues in concrete mixture design. 

Our analysis of the dataset composition has been carried out to confirm the inclusion of diverse 

cement types across different geographic regions, which reduces biases related to materials and regions. This 

analysis confirms our model's ability to apply to various cement materials through different testing systems 

for sustainable global construction deployment. 
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Table 2. An overview of the concrete dataset's statistics 
Feature Count Mean Std Dev Min 25% 50% 75% Max 

Cement 1030 281.17 104.51 102.00 192.38 272.90 350.00 540.00 
Blast furnace slag 1030 73.90 86.28 0.00 0.00 22.00 142.95 359.40 

Fly ash 1030 54.19 64.00 0.00 0.00 0.00 118.30 200.10 

Water 1030 181.57 21.35 121.80 164.90 185.00 192.00 247.00 
Superplasticizer 1030 6.20 5.97 0.00 0.00 6.40 10.20 32.20 

Coarse aggregate 1030 972.92 77.75 801.00 932.00 968.00 1029.40 1145.00 

Fine aggregate 1030 773.58 80.18 594.00 730.95 779.50 824.00 992.60 
Age 1030 45.66 63.17 1.00 7.00 28.00 56.00 365.00 

Strength (MPa) 1030 35.82 16.71 2.33 23.71 34.45 46.14 82.60 

 

 

3.2.  Preprocessing and exploratory data analysis 

In the initial stage of empirical research, the concrete dataset and accurate processing were 

prioritized. The dataset was adjusted to scale all input features to similar ranges to generalize them and make 

neural network learning easier. Standardizing variables prevents the model from prioritizing features with 

greater numbers, balancing feature relevance. 

Figure 3 presents a comprehensive analysis of the distribution of various concrete mix components 

through histograms, each detailing the frequency and range of one particular ingredient. The visualization 

begins with cement, displaying a right-skewed distribution that reflects a concentration of values at lower 

amounts with a gradual decline as the quantity increases. This pattern suggests that smaller amounts of 

cement are more commonly used in the mixtures within the dataset. 

Moving to the blast furnace slag and fly ash histograms, both show a significant number of samples 

containing minimal to no amounts, highlighted by the sharp peaks at the lower end of the scale. These 

supplementary materials are applied on an optional basis or in minimal quantities across many concrete 

formulations found in the dataset. 

The distribution shapes of water, along with superplasticizer and both coarse and fine aggregates, 

demonstrate typical usage patterns and value ranges within concrete mixtures. The water distribution 

indicates that most concrete mixes use amounts that fall near their median values. Superplasticizers are 

concentrated below the median amount, which shows many mixtures only use minimal amounts because this 

substance functions as an advanced additive rather than a regular mixture component. 

Because of their essential role in the composition of concrete mixtures, coarse and fine aggregates 

appear to have a wide range of applications. Standards in curing periods have shaped the observed peaks 

within the age distribution since many concrete mixtures receive their prescribed curing durations. 

Compressive strength data follows a normal distribution, giving evidence of typical concrete mix 

behavioral patterns in the tested samples. This visualization not only aids in understanding the typical 

properties of the materials used but also serves as a critical tool for identifying trends, anomalies, and the 

overall behavior of the components in concrete mix formulation. 

Standardized exploratory data analysis (EDA) identified variable connections and distributions. The 

histograms in Figure 3 show that the "distribution of distribution" can be of any kind and that the data 

distribution differs for each data set. Because of low density at high cement concentration and denser 

locations at low cement levels, the cement feature displays a skewed right distribution. This skewness is 

important because cement determines the strength and durability of concrete. 
At zero, the distribution of fly ash and blast furnace slag is noteworthy; thus, many mixtures do not 

use them. As shown by their widespread use in various fields, they can improve concrete properties.  

Water is crucial to the concrete mix ratio, but most components are balanced. The right water levels 

affect curing, hydration, concrete strength, and movement. Superplasticizer is less popular than Frequent 

Limestone. Without water, mixed workability must be improved due to its increased frequency at lesser 

levels. Given that the bulk of concrete's volume is composed of course and fine aggregate, their distributions 

aid in explaining this. The variation in their quantities in the two samples suggests they can change mix 

density and strength. 

Figure 4 correlation heatmap demonstrates a strong inverse relationship between water and 

superplasticizers, showing that superplasticizers reduce water use and strengthen mixes. In the line plot as 

shown in Figure 5, the positive correlation between Age and Strength emphasizes the necessity of curing, 

where strength grows with time. Concrete quality should be evaluated based on its age. These exploratory 

discoveries help optimize concrete mix designs for greater performance and sustainability in construction by 

understanding the intricate interaction of concrete components. This rigorous investigation illuminates 

concrete strength parameters, paving the road for building material science advancements. 
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Figure 3. Histograms of concrete components 
 

 

 
 

Figure 4. Concrete features correlation matrix 
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Figure 5.  Impact of features on compressive strength 

 

 

2.3.  Hybrid convolutional-recurrent neural network (Conv1D-LSTM- GRU) architecture 

Convolutional and recurrent neural networks manage sequential input and predict concrete strength 

using composition profiles and time sequence in Table 3. Layer one, a 1D convolutional layer, captures 

spatial relationships in the data. Two kernels and 64 filters comprised this layer. This reveals complicated 

patterns in sequential input data like concrete mix ingredient interactions. The model's bidirectional long 

short-term memory (LSTM) follows the convolutional layer. This layer has 50 LSTM units that can learn 

forward and backward dependencies. Processing data in both directions reduces the need to comprehend each 

data point's context, revealing patterns that one-directional analysis misses. 

Adding a second bidirectional layer with GRU increases model complexity and capability. GRU 

contains 50 units and accepts two-way data like LSTM. GRUs are more effective and computationally 
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simpler, allowing faster training despite a modest performance difference. LSTM's general features are 

reduced to the most important for the final choice by this layer. The final layer is a thick network with one 

node for integrating characteristics and predicting concrete compressive strength. In this layer, the model 

employs a linear activation function for regression issues using actual output. The mean squared error loss 

function and Adam optimizer reduce training prediction errors, while backpropagation adjusts weights. In 

material science, this robust model is the best predictive analytical model as it captures data communication 

and general concrete strength features. 

 

 

Table 3. Model values and parameters 
Parameter Value 

Conv1D filters 64 

Conv1D Kernel size 2 
Bidirectional LSTM units 50 

Bidirectional GRU units 50 

Dense layer units 1 
Optimizer Adam 

Loss function Mean squared error 

Total trainable parameters 91,893 

 

 

2.4.  FLA+DBOA hybrid 

The hybrid optimization method uses the FLA and the DBOA to maximize the hyperparameters of 

neural network models. This hybrid approach completely explores and utilizes the search space using both 

approaches. 

Step 1: Initialization 

The first step is to generate a population of possible solutions. Every solution is represented by a 

vector of hyperparameters. The initial population is created at random for each parameter within 

predetermined limitations. 

 

𝑥𝑖 = 𝑥𝑖1 , 𝑥𝑖2, … 𝑥𝑖𝑛 (1) 

 

In this case, the 𝑖-th solution of the population is denoted by 𝑥𝑖, and the 𝑗-th parameter of the 𝑖-th solution by 

𝑥𝑖𝑗 . 

Step 2: Calculating fitness  

Determine the goal function's fitness for every solution. The loss function of the neural network 

model is often the target function. 

 

𝑓(𝑥𝑖) = 𝐿𝑜𝑠𝑠(𝑥𝑖)  (2) 

 

The neural network model's performance using the hyperparameters given by 𝑥𝑖 is assessed by the fitness 

𝑓(𝑥𝑖). 

Step 3: Firefly algorithm (FLA) mechanism 

The FLA component updates the population by simulating firefly activity. Brighter (better) solutions 

attract fireflies, and the path a firefly 𝑖 follows to get close to another firefly 𝑗 is determined by (3): 

 

𝑥𝑖
(𝑡+1)

= 𝑥𝑖
(𝑡)

+ 𝛽𝑒−𝛾𝑟𝑖𝑗
2

(𝑥𝑗
(𝑡)

− 𝑥𝑖
(𝑡)

) + 𝛼𝜖𝑖  (3) 

 

where β represents the attraction at 𝑟 = 0. The symbol for the light absorption coefficient is 𝛾. Fireflies 𝐼 and 

𝐽 are separated by 𝑟𝑖𝑗 . The randomization parameter is denoted by α. The vector 𝜖𝑖 is random. In order to 

prevent local optima, this equation introduces randomization while guaranteeing that each firefly travels in 

the direction of brighter fireflies. 

Step 4: Dung beetle optimizer algorithm (DBOA) mechanism 

Through dung beetle simulation, the DBOA component refines the population. The ideal solution 

affects the direction and step size of solution 𝑥𝑖: 

 

𝑥𝑖
(𝑡+1)

= 𝑥𝑖
(𝑡)

+ 𝜃(𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖
(𝑡)

) + 𝛿𝜖𝑖 (4) 

 

where 𝛿 is an additional randomization parameter. 𝜃 is a scaling factor. This approach ensures convergence 

towards an ideal solution by actively using the excellent areas that the firefly has found. 
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Step 5: Analyzing and choosing 

Evaluate the solutions produced by FLA and DBOA for fitness. Update the optimal solution if the 

new one has a higher fitness value. 

 

xbest = argmin f(xi)  (5) 

 

Step 6: Iteration 

Continue until a predefined number of iterations is reached or convergence conditions are satisfied. 

To arrive at the ideal neural network model hyperparameters, the solutions are improved over iterations. 

 

 

4. EXPERIMENT RESULTS 

Different models predict concrete compressive strength using the dataset, according to experiments 

as shown in Table 4. Dung beetle optimizer (DBO), firefly algorithm (FLA), and hybrid (DBO+FLA) 

optimized models are included. The baseline model, Conv1D-LSTM-GRU, has 49.006192 MSE, 5.690420 

MAE, 7.000442 RMSE, and 0.809815 R2. These metrics quantify optimal model improvements.  

The DBO model outperformed the baseline model with a test MSE of 44.015296, reducing 

prediction error. The DBO model had a smaller prediction error with a test MAE of 5.318566. Furthermore, a 

drop in the Test RMSE to 6.634402 indicated that the forecasts were more accurate. The test R2 increased to 

0.829184, indicating a higher connection between the actual and projected compressive strengths. 

As with FLA, performance improved. It had 44.748495 Test MSE, 5.326784 MAE, 6.689432 

RMSE, and 0.826339 R2. The FLA model outperformed the baseline model in prediction accuracy and error 

reduction. DBO+FLA performed best in the experiment. According to Test MSE, the model has the lowest 

prediction error, 40.159906, and Test MAE was 5.148660, which is the lowest prediction error. Test RMSE 

reduced to 6.337184, improving forecast accuracy. With the highest test R2 of any model (0.844146), the 

predicted and real compressive strengths showed the best connection. 

According to the experiment, the hybrid DBO+FLA model greatly enhances the ability to predict the 

compressive strength of concrete in Table 5. The DBO+FLA hybrid, in particular, is one of the optimum 

types, showing how modern optimization methods refine neural network hyperparameters, improving 

material science predictions. Comparing our results to related works, because of the size of our dataset, error 

measurements like root mean squared error (RMSE) and mean squared error (MSE) may rise. Bigger datasets 

are more complicated and varied, which makes prediction more difficult and raises absolute error levels. 

However, our hybrid optimization strategy is robust and effective because our models improve consistently. 

 

 

Table 4.  Results of the forecasting test for concrete compressive strength 
Model Test MSE Test MAE Test RMSE Test R2 

Conv1D-LSTM-GRU 49.006192 5.690420 7.000442 0.809815 
DBO 44.015296 5.318566 6.634402 0.829184 

FLA 44.748495 5.326784 6.689432 0.826339 

DBO+FLA 40.159906 5.148660 6.337184 0.844146 

 

 

Table 5. Comparing the outcomes of the experiment with related works 

Ref. RMSE R2 MSE MAE EV MAPE 

AdaBoost [109] - 0.938 - - - 12.523 
Boosting [103] 1.94 - 3.75 1.51 - - 

Bagging [113] 4.97 - 24.76 3.69 - - 

model_1 Our Work 7.00 0.81 49.01 5.69 - - 
DBO Our Work 6.63 0.83 44.02 5.32 - - 

FLA Our Work 6.69 0.83 44.75 5.33 - - 

DBO+FLA Our Work 6.34 0.84 40.16 5.15 - - 

 

 

The superiority of the developed models is underscored by the integration of the FLA and DBOA 

with a convolutional-recurrent neural network, offering significant enhancements over traditional modeling 

approaches. This hybrid optimization approach combines the accuracy of DBOA's local search with FLA's 

global search power, allowing the model to more successfully traverse intricate optimization landscapes and 

steer clear of local minima. Enhanced accuracy happens when predicting concrete compressive strength 

because of this method, which is vital for reliable construction material assessment. 
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The convolutional-recurrent architecture successfully detects spatial and temporal dependencies that 

naturally exist in concrete mix databases. Organizations depend on this functionality to understand complex 

interactions that impact the material properties of concrete components. The model demonstrates robustness 

through successful adoption across different datasets, which enables performance maintenance across various 

operational conditions. The developed models benefit from efficient operation since GPU acceleration 

supports the preservation of high computational efficiency, together with accurate prediction speed. The 

system delivers outstanding benefits to industries that require rapid resource management and quick 

execution times. 

The adoption of SHAP among feature analysis methods brings both enhanced model interpretability 

as well as transparency. The model gains wider practical use because users and decision-makers develop trust 

through feature explanation while gaining comprehension of which input elements lead to specific output 

predictions. The extensive understanding of model prediction reasons stands equally important to prediction 

accuracy, thus making model transparency an essential matter for specific sectors. When combined, these 

architectural elements demonstrate a major improvement in utilizing machine learning algorithms to forecast 

concrete strength, which results in outstanding operational effectiveness for practical and industrial use. 

 

 

5. CONCLUSION 

The project investigates methods of reducing CO2 emissions from the construction sector by 

enhancing concrete properties through the use of supplementary cementitious materials (SCMs), such as 

ground granulated blast furnace slag (GGBS) and fly ash (FA). The prediction of concrete compressive 

strength has increased thanks to thorough data analysis and potent machine learning techniques. The hybrid 

optimization method fine-tuned Convolutional-Recurrent Neural Network hyperparameters using the FLA 

and DBOA. It optimized the model better than earlier methods. Of all the models tested, the hybrid model 

scored the lowest MSE, RMSE, and R2. Our results show that FLA and DBOA work well for accuracy in 

material science forecasting. The hybrid method fully uses the hyperparameter search space for more 

accurate predictions. SCMs in concrete mixtures benefit the building industry's low-carbon circular economy. 

Finally, this research offers a new way to optimize concrete mix designs, adding to sustainable construction 

expertise. The results demonstrate that advanced optimization and SCMs may enhance material performance 

and environmental sustainability. To enhance them, future studies may apply these strategies to more 

concrete manufacturing processes and incorporate further optimization approaches. 
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