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This study addresses the critical gap in short-term electricity demand
forecasting in South Sulawesi, where inconsistencies between projected and
actual peak loads hinder daily operational planning, system stability, and
investment efficiency. While previous studies have applied approaches such
as fuzzy logic, ARIMA-ANN, and hybrid models, few have focused on
simple, robust ARIMA-based models validated across different time spans
for daily operational use. To address this, the autoregressive integrated
moving average (ARIMA) model is implemented within the Box-Jenkins
framework, using automated model selection through the pmdarima library
and Akaike’s information criterion (AIC) to identify optimal parameter
configurations. The study analyzes daily peak load data from 2018 to 2023,
producing realistic forecasts with high accuracy. The selected ARIMA
model achieves a mean absolute percentage error (MAPE) of 1.91% and a
root mean square error (RMSE) of 38.123, demonstrating its effectiveness in
capturing short-term load trends. These results confirm the suitability of
ARIMA for short-term forecasting in energy systems and its potential to
enhance operational decision-making, reduce forecasting errors, and
improve investment planning. The study also establishes a methodological
foundation for future development, including the integration of ARIMA with
machine learning and the use of extended datasets to support strategic
energy management.
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1. INTRODUCTION

Electric power, as one of the main pillars of energy sources in modern human life, plays a crucial
role in driving the wheels of development and meeting daily needs [1], [2]. Electricity can be converted into
various other forms of energy, such as heat, motion, mechanical, light, and sound [3], [4]. Along with
population growth and increased individual demand for electricity, energy providers, particularly PT. PLN
(Persero), the state-owned electricity company, face a significant challenge in ensuring an adequate
electricity supply at all times [5]. PLN has a major responsibility to plan and execute power generation
projects with long lead times, necessitating a long-term power system development plan [6]-[8]. This plan,
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known as the 2021-2030 electricity supply business plan (RUPTL), serves as PLN's main guideline to ensure
investment efficiency, respond to significant electricity consumption growth, and address deviations between
projected and actual peak loads [9], [10]. South Sulawesi, as one of Indonesia’s provinces experiencing
significant electricity growth, is a key focus in the 2021-2030 RUPTL. Despite having established projections
for electricity consumption growth, deviations between projected and actual peak loads have become a
critical issue. This highlights the need for short-term load forecasting to improve the realism and accuracy of
electricity demand projections [11]-[14].

Recent studies on electricity load forecasting have shown rapid methodological advancement driven
by the integration of intelligent systems and time series analysis. Liu ef al. [15] introduced a fuzzy rough set-
based feature selection method combined with a multi-kernel extreme learning machine (MKELM) for short-
term load forecasting (STLF), achieving high accuracy and robustness against data variability. Similarly,
Ziige and Coelho [16] proposed a granular weighted fuzzy approach that effectively handled uncertainty in
short-term load demand forecasting. Yolcu et al. [17] developed a cascade intuitionistic fuzzy time series
model integrated with neural networks to enhance nonlinear pattern recognition in electricity load prediction.
Park and Yang [18] conducted a comparative analysis of several time-series algorithms—including
autoregressive integrated moving average (ARIMA), seasonal ARIMA (SARIMA), long short-term memory
(LSTM), and support vector machine (SVM)—for short-term forecasting based on advanced metering
infrastructure (AMI) data, where SVM achieved the best performance in modeling nonlinear and volatile
demand patterns. Wang et al. [19] further improved short-term electrical load forecasting accuracy by
combining an extreme learning machine (ELM) with an enhanced optimization algorithm. A fuzzy—swarm
intelligence hybrid model was presented in [20], demonstrating superior convergence and stability for
dynamic load prediction. Ibrahim and Rabelo [21] proposed a deep learning-based model for peak load
forecasting using LSTM, emphasizing its capability in capturing temporal dependencies. Fan et al. [22]
developed a hybrid model integrating empirical mode decomposition (EMD), support vector regression
(SVR), particle swarm optimization (PSO), and AR-GARCH for electricity consumption forecasting,
resulting in significant error reduction compared to conventional ARIMA models. In addition, Bose and Mali
[23] provided a comprehensive survey of fuzzy time series forecasting models, highlighting their adaptability
for nonlinear and uncertain load data. Palomero et al. [24] conducted a systematic review of fuzzy-based time
series forecasting and modeling from 2017 to 2021, concluding that hybrid fuzzy—machine learning methods
consistently outperform classical statistical approaches in terms of MAPE and RMSE metrics.

This study introduces machine learning methods as an approach to enhance the accuracy of short-
term electricity demand forecasting. Previous research has demonstrated the effectiveness of machine
learning in predicting electricity needs, offering new hope in addressing inaccuracies caused by dynamic
consumption pattern changes. Specifically, this study employs the ARIMA model within the Box-Jenkins
framework to provide a strong theoretical foundation for short-term electricity demand forecasting. The
ARIMA model is selected through automated model selection using the Akaike information criterion (AIC)
to ensure optimal model performance. The robustness of the model is validated across different data spans to
strengthen its applicability.

The aim of this research is to optimize short-term electricity demand forecasting in South Sulawesi,
thereby reducing the gap between projected and actual peak loads. More accurate and realistic forecasts are
expected to support daily operational planning, improve investment efficiency, and enhance decision-making
in the power sector. Furthermore, the findings of this study are anticipated to contribute to the refinement of
planning and operational strategies in the development of the next Rencana Umum Penyediaan Tenaga
Listrik (RUPTL). This will help minimize deviations between projections and actual loads, and optimize
investments in the electricity sector.

2. METHOD
2.1. Electrical system

The electrical system is an interconnected unit where electricity produced by power plants is
delivered to electricity users (consumers) according to their needs, as illustrated in Figure 1 [25]. Electricity
is an energy that can be wasted if not used immediately, and it cannot be stored in large quantities because, to
this day, battery storage capacity remains very limited [26]. Therefore, the electricity produced must be
adjusted to match the amount of electrical load required by consumers [27].

2.2. Forecasting

Forecasting, or prediction, is a systematic process of estimating what may happen in the future
based on past and present information to minimize errors [28]. According to Heizer and Render (2014),
forecasting is both an art and a science of predicting future events using historical data and projecting them
into the future with various mathematical models [29]. Therefore, forecasting does not guarantee certainty
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but provides a probability based on solid grounds, aiding decision-making by considering factors such as data
sources, modeling methods, and future conditions [30]. Forecasting can be categorized into two types:
qualitative forecasting, which uses categorical data from the past, and quantitative forecasting, which
employs numerical data under the assumption that certain patterns from the past will continue in the future.
In the context of demand forecasting, predicting future electricity consumption is crucial to ensure that
energy is available when needed. Accurate forecasting forms the basis for developing investment plans and
operational strategies for the power system. Investment plans for power plant development are created by the
Indonesian government, executed by state-owned enterprises or private companies, and are based on
economic growth projections. Meanwhile, the operational plan for the power system is designed to ensure the
continuous availability of electricity, relying on historical usage data from previous periods.
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Figure 1. Electrical system

2.3. Time series analysis and forecasting

Time series data is a type of data collected in a specific time order over a certain period. The basic
premise of time series is that the current observation (Zt) is influenced by one or more previous observations
(Zt—k) [31]. The purpose of time series analysis is to understand and explain specific mechanisms, forecast a
future value, and optimize a control system. Forecasting is the activity of estimating something that will
happen in the future over a relatively long period. In contrast, a prediction refers to a condition expected to
occur in the future. To make such predictions, accurate past data is required to help determine future
situations.

2.4. ARIMA method

The ARIMA method is a time series analysis method known as the Box-Jenkins method [32]. This
method combines the autoregressive (AR) and moving average (MA) models developed by George Box and
Gwilym Jenkins. According to the Box-Jenkins methodology, the ARIMA method consists of four stages:
identification of the time series model, estimation of parameters for alternative models, model testing, and
forecasting of time series values [33]. The stationarity assumption is a prerequisite for modeling time series.
A non-stationary series can be transformed into a stationary series by differencing. To verify stationarity and
guide differencing selection, an augmented Dickey-Fuller (ADF) test was conducted on the peak load data.
The test results informed the appropriate differencing order (d) applied before model fitting. Non-stationarity
in a time series can involve a non-constant mean, a non-constant variance, or both (non-constant mean and
variance) [34]. The general form of the ARIMA model equation is:

@, (BY(1 — B)*y, = 0,4(B)e;

where B is the backshift operator, ®,(B) is the autoregressive operator, ©,(B) is the moving average
operator, and &; represents white noise.

2.5. Simulation and implementation detail the implementation of the ARIMA

Models in this study was conducted using Python version 3.10 with the pmdarima library version
1.8.5. The dataset used consists of daily peak load data obtained from the South Sulawesi electrical system
database managed by PT. PLN (Persero), covering two periods: January 1, 2022 to October 31, 2022
(396 records), and January 1, 2018 to July 14, 2023 (2021 records). The variables extracted include daily
maximum peak (DMP), power balance (BP), MV Sent, MV received, capacity available (CAD), and system
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status, collected for both daytime and nighttime. Data preprocessing included handling missing values using
linear interpolation and normalization (min-max scaling) for visualization. The stationarity of the data was
verified using the augmented dickey-fuller (ADF) test. Model selection was performed through auto_arima
from pmdarima, which automated the search for optimal (p, d, q) parameters based on the minimum AIC.
The search space was set from 0 to 5 for p and q, and up to 2 for d, including seasonal and non-seasonal
settings. The model training used the entire dataset for each experimental period, and RMSE was used to
evaluate forecasting accuracy. Simulations were run on a standard laptop with Intel Core i7 processor and
16GB RAM, ensuring reproducibility with open-source tools.

2.6. Justification of methodology and conceptual framework

Approach in this study is based on the ARIMA model within the Box-Jenkins framework, consisting
of model identification, parameter estimation, diagnostic checking, and forecasting. To ensure rigor in model
selection, automated hyperparameter tuning for p, d, and q was performed using the Python-based pmdarima
library. This tool systematically evaluates multiple ARIMA configurations and selects the optimal model
based on the lowest AIC value, thereby balancing model complexity and forecasting accuracy. Bayesian
information criterion (BIC) values were also examined to provide additional confirmation during model
selection. Cross-validation was not applied in this study due to the sequential dependency inherent in time
series data and because the use of information criteria (AIC, BIC) is standard in the Box-Jenkins
methodology. The conceptual novelty of this study lies in applying ARIMA across different data spans
(short-term and long-term datasets) to validate model robustness for short-term peak load forecasting. This
approach provides practical value for daily operational planning and investment efficiency, and offers a
foundation for future enhancements through machine learning integration.

3.  RESULTS AND DISCUSSION
3.1. Dataset

The success of research heavily depends on the quality of the data obtained. Without a thorough
understanding of the appropriate data collection techniques, researchers may struggle to obtain data that
meets the desired standards of validity and reliability. Therefore, data collection methods are a crucial
element in scientific research. To acquire valid and accurate data, researchers must have access to
trustworthy and relevant data sources. In this study, the researcher gained access to the electrical system
database and Power Balance managed by PT. PLN (Persero). This access allows the researcher to collect the
necessary data directly from an authentic source, thereby supporting the validity of the findings and
conclusions drawn. The dataset obtained covers two periods: January 1, 2022, to October 31, 2022,
consisting of 396 daily peak load records, and January 1, 2018, to July 14, 2023, consisting of 2021 records.
The data include detailed operational conditions such as daily maximum peak (DMP), power balance (BP),
MYV sent, MV received, capacity available (CAD), and System Status, recorded for both day time and night
time periods. With data obtained through structured and systematic methods, this research is expected to
make a significant contribution to the related field of study and meet the high standards required for
publication in reputable scientific journals.

3.2. Data normalization

The data obtained from the web-based application is converted into Excel (*xIsx) format to
facilitate further processing. The first step involves data normalization by separating it into independent and
dependent variables. In this study, the independent variables consist of the date and peak load columns,
which are used as predictors. The dependent variables include capacity, reserve power, and system status,
which represent the outputs to be predicted. After separation, the independent variables are exported into
CSV (*.csv) format to ensure compatibility with data analysis and machine learning tools. This format also
makes data handling and system integration easier. The CSV file is then checked for anomalies such as
missing or zero values to maintain data integrity. Ensuring clean and complete data is critical for the accuracy
of the machine learning model. By following these steps, the researcher ensures that the dataset meets high
quality standards. This process supports the development of a valid and reliable prediction model, while also
meeting the methodological standards required for scientific publication.

3.3. Algorithm implementation

The implementation of ARIMA models in this study builds upon the methodological foundation
outlined in the previous section. This approach follows the Box-Jenkins framework for time series
forecasting, incorporating model identification, parameter estimation, diagnostic checking, and forecasting.
To ensure rigor in model selection, the study employs automated hyperparameter tuning using the Python-
based pmdarima library. This tool systematically evaluates multiple ARIMA configurations and selects the
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optimal model based on the lowest AIC score, thereby balancing model complexity and forecasting accuracy.
By applying this robust conceptual and technical framework, the results presented in this section aim to
provide reliable and practical insights for short-term electricity demand forecasting and energy management.
The analysis conducted in this report uses the ARIMA model to forecast peak electrical loads. The testing is
carried out in two phases. In the first experiment, the peak load data used comes from the South Sulawesi
System for the period from January 1, 2022, to October 31, 2022, with a total of 396 peak load records, as
illustrated in Figure 2(a).

Based on the modeling results conducted using the ARIMA method with the help of the Python-
based pmdarima function, 21 models have been identified as suitable for the “Training” data characteristics.
These models have been selected as the most appropriate for forecasting future data. This model selection
process was carried out meticulously to ensure that each chosen model could accurately capture the patterns
and trends from historical data, thereby providing reliable predictions for future periods. With 21 models
available, the researcher has the flexibility to choose the model that best meets specific performance criteria
or to combine models to enhance prediction accuracy, as illustrated in Figure 2(b). In the second experiment,
the analysis was conducted using peak electrical load data from the South Sulawesi system for a longer
period, from January 1, 2018, to July 14, 2023 as shown in Figure 3. In this experiment, a total of 2021 peak
load records were obtained, covering a time span of over five years, as illustrated in Figure 3(a).

automodel = arimamodel(train)

Monthly Load Data (Training and Testing) print(automodel . summary())

17004 ARIMA(®,1,08)(8,08,8)[1] intercept : AIC=2983.689, Time=8.83 sec
[ ARIMA(@,1,1)(0,0,0)[1] intercept : AIC=2980.217, Time=0.14 sec
N ARIMA(@,1,2)(@,08,0)[1] intercept : AIC=2960.950, Time=8.21 sec
1600+ N ARIMA(®,1,3)(8,0,0)[1] intercept : AIC=296@.987, Time=0.28 sec
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ARIMA(@,1,5)(@,08,0)[1] intercept : AIC=2957.117, Time=8.56 sec
ARIMA(1,1,08)(@,0,@8)[1] intercept : AIC=2982.498, Time=8.085 sec
1500 ARTMA(1,1,1)(0,8,8)[1] intercept : AIC=2960.415, Time=0.22 sec
ARIMA(1,1,2)(8,0,8)[1] intercept : AIC=2959.863, Time=8.38 sec
ARIMA(1,1,3)(0,0,0)[1] intercept : AIC=2960.511, Time=0.43 sec
ARIMA(1,1,4)(8,0,0)[1] intercept : AIC=2958.467, Time=8.58 sec
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Figure 2. Comparison of actual and predicted peak load patterns for the South Sulawesi system during 2022:
(a) peak load of the South Sulawesi system for the period January—December 2022 and (b) ARIMA
modeling results
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Figure 3. Comparison of historical and predicted peak load patterns for the South Sulawesi system: (a) peak
load of the South Sulawesi system for the period 2018-2023 and (b) ARIMA modeling results based on
long-term data
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The modeling results using the ARIMA method with the help of the Python-based pmdarima
function produced 21 models that fit the characteristics of the “Training” data. These models have been
identified as the most suitable for forecasting future data. Each model was selected based on its ability to
capture patterns and trends from historical data, allowing for more accurate and reliable predictions for future
periods. With these 21 models, the researcher has a broad selection to determine the best model or to
combine several models to enhance prediction accuracy, as illustrated in Figure 3(b). Using two datasets with
different periods allows the author to compare and validate the performance of the ARIMA models in
predicting peak electrical loads with varying data coverage, providing deeper insights into electricity
consumption trends over a longer time frame. The AIC is a mathematical method used to evaluate how well a
model fits the data it produces. In statistics, AIC is used to compare different statistical models and choose
the one that best fits the data. Introduced by Japanese statistician Hirotugu Akaike in 1974, it has become an
essential tool in statistical modeling for balancing model complexity with its ability to explain the data. AIC
provides a numerical score based on two main aspects: model complexity (determined by the number of
parameters in the model) and model fit to the data. The goal of AIC is to find the simplest model that still
explains the data well. In other words, AIC aims to minimize the information loss due to adding parameters
to the model while maintaining a good fit to the data. A lower AIC value indicates a better model in
describing the data. Therefore, among the models tested, the model with the lowest AIC is considered the
most appropriate. In the first experiment, Automodel selected the ARIMA(5,1,0)(0,0,0)[1] model as the best
for the characteristics of load growth, with an AIC value of 2953.416, which was the lowest compared to
other models. This model was chosen for its best balance between complexity and the ability to explain the
data. In the second experiment, auto model selected the ARIMA(2,0,1)(0,0,0)[1] model as the best with an
AIC value of 21030.774. Although this model differs in structure from the one selected in the first
experiment, the selection criteria remain the same, i.e., the lowest AIC value indicating the most efficient and
accurate model in representing the characteristics of load data over a longer period. This result underscores
the importance of AIC in the model selection process, particularly in the context of complex data modeling
such as peak load forecasting. Root mean square error (RMSE) is a measure for evaluating the accuracy of
forecasting results by calculating the average of the squared prediction errors. The calculation process involves
squaring the difference between predicted values and observed values, averaging these squared values, and
then taking the square root. A smaller RMSE value indicates a more accurate model in predicting the data, as
a lower RMSE shows that the model's variance is closer to the variance of the observations. This unitless
RMSE is very useful in determining the quality of forecasting models, as presented in Tables 1 and 2.

Table 1. Testing forecasting results using RMSE in the first experiment
Variable Speed (rpm)  Power (kW) (At - Ft)?
10/2/2022 1539.13  1.561.143.233  484.5824271

10/3/2022 1537.3 1.583.352.539  2120.836348
10/4/2022 1599.22 159.526.917 15.60905769
10/5/2022 1595.35 1.602.683.109  53.77448761
10/6/2022 1521.77 159.974.597 6080.251897

10/7/2022 1595.27 1.591.816.961  11.92347834
10/8/2022 1544.75 1.587.346.254  1814.440855
10/9/2022 1539.65 158.812.921 2350.233802
10/10/2022 1572.2 1.590.855.819  348.0395826
10/11/2022 1577.69 1.594.943.058  297.6680104
10/12/2022 1619.9 1.598.116.051  474.540434
10/13/2022 1577.14 1.598.937.232  475.1193229
10/14/2022 1562.83 1.598.625.095  1281.288826
10/15/2022 1561.95 1.598.502.658  1336.096807
10/16/2022 1539.47 1.598.785.587  3518.338861
10/17/2022 1638.16 1.599.787.748  1472.429724
10/18/2022 1580.14 1.601.326.007  448.8468926
10/19/2022 1582.11 1.602.755.734  426.2463324
10/20/2022 1663.46 1.603.850.058  3553.345185
10/21/2022 1654.65 1.604.725.643  2492.441422
10/22/2022 1531.75 1.605.458.934  5433.006951
10/23/2022 1530.46 1.606.210.781  5738.180822
10/24/2022 1636.71 1.607.118.944  875.6305952
10/25/2022 1617.3 1.608.135.375  83.99035139
10/26/2022 1658.25 1.609.170.111  2408.835504
10/27/2022 1590.25 1.610.184.689  397.3918255
10/28/2022 1667.6 1.611.148.231  3186.802223
10/29/2022 1576.04 1.612.064.436  1297.759989
10/30/2022 1608.42 1.612.975.726  20.75463939
10/31/2022 1627.48 161.390.627 184.2461461

RMSE 40.28343448
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Table 2. Testing forecasting results using RMSE in the second experiment
Variable  Speed (rpm)  Power (kW) (At - Ft)?
7/1/2023 1590.27 1.596.605.199 40.13474637
7/2/2023 1604.84 1.599.318.388 30.48819908
7/3/2023 1563.81 1.600.416.407 1340.029033
7/4/2023 1618.24 1.600.726.908 306.7083914
7/5/2023 1667.61 1.600.653.587 4483.161242
7/6/2023 1660.73 1.600.393.353 3640.510971
7/7/2023 1656.3 1.600.042.248 3164.93466
7/8/2023 1634.6 159.964.712 1221.70382
7/9/2023 1602.43 1.599.230.817 10.23477187
7/10/2023 1653.47 1.598.804.484 2988.31864
7/11/2023 1636.46 1.598.373.557 1450.57714
7/12/2023 1633.19 1.597.940.686 1242.514137
7/13/2023 1576.82 1.597.507.164 427.9587544
7/14/2023 1596.53 1.597.073.621 0.2955237916

RMSE 38.1234555

4. CONCLUSION

This study presents a comprehensive analysis aimed at optimizing short-term energy demand
forecasting using the ARIMA method within the Box-Jenkins framework. By leveraging daily peak load data
from South Sulawesi, the ARIMA model was successfully applied to produce realistic and accurate forecasts
that support not only daily operational planning of power plants but also investment and development
planning in the electricity sector. Through automated model selection using pmdarima and AIC, the optimal
ARIMA configuration was identified, balancing model complexity and forecasting accuracy. The final model
achieved a MAPE of 1.91% and a RMSE of 38.123, demonstrating its robustness in capturing short-term
load patterns and fluctuations. This study fills a critical research gap by providing a simple yet effective
ARIMA-based model validated across different data spans, offering practical value for daily operational
decision-making. The results highlight the capability of ARIMA-based forecasting to reduce deviations
between projected and actual peak loads, thereby contributing to improved operational management,
enhanced investment efficiency, and cost savings in energy management. Moreover, this research lays a
methodological foundation for future advancements, including the integration of ARIMA with machine
learning techniques and the application of longer historical datasets to further enhance forecasting accuracy.
The findings are expected to provide valuable insights for refining RUPTL planning, supporting the
development of smart grid systems, and strengthening strategic energy management at both regional and
national levels.
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