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 This study addresses the critical gap in short-term electricity demand 

forecasting in South Sulawesi, where inconsistencies between projected and 

actual peak loads hinder daily operational planning, system stability, and 

investment efficiency. While previous studies have applied approaches such 

as fuzzy logic, ARIMA-ANN, and hybrid models, few have focused on 

simple, robust ARIMA-based models validated across different time spans 

for daily operational use. To address this, the autoregressive integrated 

moving average (ARIMA) model is implemented within the Box-Jenkins 

framework, using automated model selection through the pmdarima library 

and Akaike’s information criterion (AIC) to identify optimal parameter 

configurations. The study analyzes daily peak load data from 2018 to 2023, 

producing realistic forecasts with high accuracy. The selected ARIMA 

model achieves a mean absolute percentage error (MAPE) of 1.91% and a 

root mean square error (RMSE) of 38.123, demonstrating its effectiveness in 

capturing short-term load trends. These results confirm the suitability of 

ARIMA for short-term forecasting in energy systems and its potential to 

enhance operational decision-making, reduce forecasting errors, and 

improve investment planning. The study also establishes a methodological 

foundation for future development, including the integration of ARIMA with 

machine learning and the use of extended datasets to support strategic 

energy management. 
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1. INTRODUCTION 

Electric power, as one of the main pillars of energy sources in modern human life, plays a crucial 

role in driving the wheels of development and meeting daily needs [1], [2]. Electricity can be converted into 

various other forms of energy, such as heat, motion, mechanical, light, and sound [3], [4]. Along with 

population growth and increased individual demand for electricity, energy providers, particularly PT. PLN 

(Persero), the state-owned electricity company, face a significant challenge in ensuring an adequate 

electricity supply at all times [5]. PLN has a major responsibility to plan and execute power generation 

projects with long lead times, necessitating a long-term power system development plan [6]–[8]. This plan, 
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known as the 2021-2030 electricity supply business plan (RUPTL), serves as PLN's main guideline to ensure 

investment efficiency, respond to significant electricity consumption growth, and address deviations between 

projected and actual peak loads [9], [10]. South Sulawesi, as one of Indonesia’s provinces experiencing 

significant electricity growth, is a key focus in the 2021-2030 RUPTL. Despite having established projections 

for electricity consumption growth, deviations between projected and actual peak loads have become a 

critical issue. This highlights the need for short-term load forecasting to improve the realism and accuracy of 

electricity demand projections [11]–[14]. 

Recent studies on electricity load forecasting have shown rapid methodological advancement driven 

by the integration of intelligent systems and time series analysis. Liu et al. [15] introduced a fuzzy rough set-

based feature selection method combined with a multi-kernel extreme learning machine (MKELM) for short-

term load forecasting (STLF), achieving high accuracy and robustness against data variability. Similarly, 

Züge and Coelho [16] proposed a granular weighted fuzzy approach that effectively handled uncertainty in 

short-term load demand forecasting. Yolcu et al. [17] developed a cascade intuitionistic fuzzy time series 

model integrated with neural networks to enhance nonlinear pattern recognition in electricity load prediction. 

Park and Yang [18] conducted a comparative analysis of several time-series algorithms—including 

autoregressive integrated moving average (ARIMA), seasonal ARIMA (SARIMA), long short-term memory 

(LSTM), and support vector machine (SVM)—for short-term forecasting based on advanced metering 

infrastructure (AMI) data, where SVM achieved the best performance in modeling nonlinear and volatile 

demand patterns. Wang et al. [19] further improved short-term electrical load forecasting accuracy by 

combining an extreme learning machine (ELM) with an enhanced optimization algorithm. A fuzzy–swarm 

intelligence hybrid model was presented in [20], demonstrating superior convergence and stability for 

dynamic load prediction. Ibrahim and Rabelo [21] proposed a deep learning-based model for peak load 

forecasting using LSTM, emphasizing its capability in capturing temporal dependencies. Fan et al. [22] 

developed a hybrid model integrating empirical mode decomposition (EMD), support vector regression 

(SVR), particle swarm optimization (PSO), and AR-GARCH for electricity consumption forecasting, 

resulting in significant error reduction compared to conventional ARIMA models. In addition, Bose and Mali 

[23] provided a comprehensive survey of fuzzy time series forecasting models, highlighting their adaptability 

for nonlinear and uncertain load data. Palomero et al. [24] conducted a systematic review of fuzzy-based time 

series forecasting and modeling from 2017 to 2021, concluding that hybrid fuzzy–machine learning methods 

consistently outperform classical statistical approaches in terms of MAPE and RMSE metrics. 

This study introduces machine learning methods as an approach to enhance the accuracy of short-

term electricity demand forecasting. Previous research has demonstrated the effectiveness of machine 

learning in predicting electricity needs, offering new hope in addressing inaccuracies caused by dynamic 

consumption pattern changes. Specifically, this study employs the ARIMA model within the Box-Jenkins 

framework to provide a strong theoretical foundation for short-term electricity demand forecasting. The 

ARIMA model is selected through automated model selection using the Akaike information criterion (AIC) 

to ensure optimal model performance. The robustness of the model is validated across different data spans to 

strengthen its applicability. 

The aim of this research is to optimize short-term electricity demand forecasting in South Sulawesi, 

thereby reducing the gap between projected and actual peak loads. More accurate and realistic forecasts are 

expected to support daily operational planning, improve investment efficiency, and enhance decision-making 

in the power sector. Furthermore, the findings of this study are anticipated to contribute to the refinement of 

planning and operational strategies in the development of the next Rencana Umum Penyediaan Tenaga 

Listrik (RUPTL). This will help minimize deviations between projections and actual loads, and optimize 

investments in the electricity sector. 

 

 

2. METHOD 

2.1.   Electrical system 

The electrical system is an interconnected unit where electricity produced by power plants is 

delivered to electricity users (consumers) according to their needs, as illustrated in Figure 1 [25]. Electricity 

is an energy that can be wasted if not used immediately, and it cannot be stored in large quantities because, to 

this day, battery storage capacity remains very limited [26]. Therefore, the electricity produced must be 

adjusted to match the amount of electrical load required by consumers [27]. 

 

2.2.  Forecasting 

Forecasting, or prediction, is a systematic process of estimating what may happen in the future 

based on past and present information to minimize errors [28]. According to Heizer and Render (2014), 

forecasting is both an art and a science of predicting future events using historical data and projecting them 

into the future with various mathematical models [29]. Therefore, forecasting does not guarantee certainty 
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but provides a probability based on solid grounds, aiding decision-making by considering factors such as data 

sources, modeling methods, and future conditions [30]. Forecasting can be categorized into two types: 

qualitative forecasting, which uses categorical data from the past, and quantitative forecasting, which 

employs numerical data under the assumption that certain patterns from the past will continue in the future. 

In the context of demand forecasting, predicting future electricity consumption is crucial to ensure that 

energy is available when needed. Accurate forecasting forms the basis for developing investment plans and 

operational strategies for the power system. Investment plans for power plant development are created by the 

Indonesian government, executed by state-owned enterprises or private companies, and are based on 

economic growth projections. Meanwhile, the operational plan for the power system is designed to ensure the 

continuous availability of electricity, relying on historical usage data from previous periods. 

 

 

 
 

Figure 1. Electrical system 

 

 

2.3.  Time series analysis and forecasting 

Time series data is a type of data collected in a specific time order over a certain period. The basic 

premise of time series is that the current observation (𝑍𝑡) is influenced by one or more previous observations 

(𝑍𝑡−𝑘) [31]. The purpose of time series analysis is to understand and explain specific mechanisms, forecast a 

future value, and optimize a control system. Forecasting is the activity of estimating something that will 

happen in the future over a relatively long period. In contrast, a prediction refers to a condition expected to 

occur in the future. To make such predictions, accurate past data is required to help determine future 

situations. 

 

2.4.  ARIMA method 

The ARIMA method is a time series analysis method known as the Box-Jenkins method [32]. This 

method combines the autoregressive (AR) and moving average (MA) models developed by George Box and 

Gwilym Jenkins. According to the Box-Jenkins methodology, the ARIMA method consists of four stages: 

identification of the time series model, estimation of parameters for alternative models, model testing, and 

forecasting of time series values [33]. The stationarity assumption is a prerequisite for modeling time series. 

A non-stationary series can be transformed into a stationary series by differencing. To verify stationarity and 

guide differencing selection, an augmented Dickey-Fuller (ADF) test was conducted on the peak load data. 

The test results informed the appropriate differencing order (d) applied before model fitting. Non-stationarity 

in a time series can involve a non-constant mean, a non-constant variance, or both (non-constant mean and 

variance) [34]. The general form of the ARIMA model equation is: 

 

Φ𝑝(𝐵)(1 − 𝐵)𝑑𝑦𝑡 = Θ𝑞(𝐵)𝜀𝑡 

 

where 𝐵 is the backshift operator, Φ𝑝(𝐵) is the autoregressive operator, Θ𝑞(𝐵) is the moving average 

operator, and 𝜀𝑡 represents white noise. 

 

2.5.  Simulation and implementation detail the implementation of the ARIMA 

Models in this study was conducted using Python version 3.10 with the pmdarima library version 

1.8.5. The dataset used consists of daily peak load data obtained from the South Sulawesi electrical system 

database managed by PT. PLN (Persero), covering two periods: January 1, 2022 to October 31, 2022  

(396 records), and January 1, 2018 to July 14, 2023 (2021 records). The variables extracted include daily 

maximum peak (DMP), power balance (BP), MV Sent, MV received, capacity available (CAD), and system 
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status, collected for both daytime and nighttime. Data preprocessing included handling missing values using 

linear interpolation and normalization (min-max scaling) for visualization. The stationarity of the data was 

verified using the augmented dickey-fuller (ADF) test. Model selection was performed through auto_arima 

from pmdarima, which automated the search for optimal (p, d, q) parameters based on the minimum AIC. 

The search space was set from 0 to 5 for p and q, and up to 2 for d, including seasonal and non-seasonal 

settings. The model training used the entire dataset for each experimental period, and RMSE was used to 

evaluate forecasting accuracy. Simulations were run on a standard laptop with Intel Core i7 processor and 

16GB RAM, ensuring reproducibility with open-source tools. 

 

2.6.  Justification of methodology and conceptual framework 

Approach in this study is based on the ARIMA model within the Box-Jenkins framework, consisting 

of model identification, parameter estimation, diagnostic checking, and forecasting. To ensure rigor in model 

selection, automated hyperparameter tuning for p, d, and q was performed using the Python-based pmdarima 

library. This tool systematically evaluates multiple ARIMA configurations and selects the optimal model 

based on the lowest AIC value, thereby balancing model complexity and forecasting accuracy. Bayesian 

information criterion (BIC) values were also examined to provide additional confirmation during model 

selection. Cross-validation was not applied in this study due to the sequential dependency inherent in time 

series data and because the use of information criteria (AIC, BIC) is standard in the Box-Jenkins 

methodology. The conceptual novelty of this study lies in applying ARIMA across different data spans 

(short-term and long-term datasets) to validate model robustness for short-term peak load forecasting. This 

approach provides practical value for daily operational planning and investment efficiency, and offers a 

foundation for future enhancements through machine learning integration. 

 

 

3. RESULTS AND DISCUSSION 

3.1.   Dataset 

The success of research heavily depends on the quality of the data obtained. Without a thorough 

understanding of the appropriate data collection techniques, researchers may struggle to obtain data that 

meets the desired standards of validity and reliability. Therefore, data collection methods are a crucial 

element in scientific research. To acquire valid and accurate data, researchers must have access to 

trustworthy and relevant data sources. In this study, the researcher gained access to the electrical system 

database and Power Balance managed by PT. PLN (Persero). This access allows the researcher to collect the 

necessary data directly from an authentic source, thereby supporting the validity of the findings and 

conclusions drawn. The dataset obtained covers two periods: January 1, 2022, to October 31, 2022, 

consisting of 396 daily peak load records, and January 1, 2018, to July 14, 2023, consisting of 2021 records. 

The data include detailed operational conditions such as daily maximum peak (DMP), power balance (BP), 

MV sent, MV received, capacity available (CAD), and System Status, recorded for both day time and night 

time periods. With data obtained through structured and systematic methods, this research is expected to 

make a significant contribution to the related field of study and meet the high standards required for 

publication in reputable scientific journals. 

 

3.2.  Data normalization 

The data obtained from the web-based application is converted into Excel (*.xlsx) format to 

facilitate further processing. The first step involves data normalization by separating it into independent and 

dependent variables. In this study, the independent variables consist of the date and peak load columns, 

which are used as predictors. The dependent variables include capacity, reserve power, and system status, 

which represent the outputs to be predicted. After separation, the independent variables are exported into 

CSV (*.csv) format to ensure compatibility with data analysis and machine learning tools. This format also 

makes data handling and system integration easier. The CSV file is then checked for anomalies such as 

missing or zero values to maintain data integrity. Ensuring clean and complete data is critical for the accuracy 

of the machine learning model. By following these steps, the researcher ensures that the dataset meets high 

quality standards. This process supports the development of a valid and reliable prediction model, while also 

meeting the methodological standards required for scientific publication. 

 

3.3.  Algorithm implementation 

The implementation of ARIMA models in this study builds upon the methodological foundation 

outlined in the previous section. This approach follows the Box-Jenkins framework for time series 

forecasting, incorporating model identification, parameter estimation, diagnostic checking, and forecasting. 

To ensure rigor in model selection, the study employs automated hyperparameter tuning using the Python-

based pmdarima library. This tool systematically evaluates multiple ARIMA configurations and selects the 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 6, December 2025: 5924-5933 

5928 

optimal model based on the lowest AIC score, thereby balancing model complexity and forecasting accuracy. 

By applying this robust conceptual and technical framework, the results presented in this section aim to 

provide reliable and practical insights for short-term electricity demand forecasting and energy management. 

The analysis conducted in this report uses the ARIMA model to forecast peak electrical loads. The testing is 

carried out in two phases. In the first experiment, the peak load data used comes from the South Sulawesi 

System for the period from January 1, 2022, to October 31, 2022, with a total of 396 peak load records, as 

illustrated in Figure 2(a). 

Based on the modeling results conducted using the ARIMA method with the help of the Python-

based pmdarima function, 21 models have been identified as suitable for the “Training” data characteristics. 

These models have been selected as the most appropriate for forecasting future data. This model selection 

process was carried out meticulously to ensure that each chosen model could accurately capture the patterns 

and trends from historical data, thereby providing reliable predictions for future periods. With 21 models 

available, the researcher has the flexibility to choose the model that best meets specific performance criteria 

or to combine models to enhance prediction accuracy, as illustrated in Figure 2(b). In the second experiment, 

the analysis was conducted using peak electrical load data from the South Sulawesi system for a longer 

period, from January 1, 2018, to July 14, 2023 as shown in Figure 3. In this experiment, a total of 2021 peak 

load records were obtained, covering a time span of over five years, as illustrated in Figure 3(a). 
 

 

  

(a) (b) 
 

Figure 2. Comparison of actual and predicted peak load patterns for the South Sulawesi system during 2022: 

(a) peak load of the South Sulawesi system for the period January–December 2022 and (b) ARIMA 

modeling results 
 

 

  

(a) (b) 
 

Figure 3. Comparison of historical and predicted peak load patterns for the South Sulawesi system: (a) peak 

load of the South Sulawesi system for the period 2018–2023 and (b) ARIMA modeling results based on 

long-term data 
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The modeling results using the ARIMA method with the help of the Python-based pmdarima 

function produced 21 models that fit the characteristics of the “Training” data. These models have been 

identified as the most suitable for forecasting future data. Each model was selected based on its ability to 

capture patterns and trends from historical data, allowing for more accurate and reliable predictions for future 

periods. With these 21 models, the researcher has a broad selection to determine the best model or to 

combine several models to enhance prediction accuracy, as illustrated in Figure 3(b). Using two datasets with 

different periods allows the author to compare and validate the performance of the ARIMA models in 

predicting peak electrical loads with varying data coverage, providing deeper insights into electricity 

consumption trends over a longer time frame. The AIC is a mathematical method used to evaluate how well a 

model fits the data it produces. In statistics, AIC is used to compare different statistical models and choose 

the one that best fits the data. Introduced by Japanese statistician Hirotugu Akaike in 1974, it has become an 

essential tool in statistical modeling for balancing model complexity with its ability to explain the data. AIC 

provides a numerical score based on two main aspects: model complexity (determined by the number of 

parameters in the model) and model fit to the data. The goal of AIC is to find the simplest model that still 

explains the data well. In other words, AIC aims to minimize the information loss due to adding parameters 

to the model while maintaining a good fit to the data. A lower AIC value indicates a better model in 

describing the data. Therefore, among the models tested, the model with the lowest AIC is considered the 

most appropriate. In the first experiment, Automodel selected the ARIMA(5,1,0)(0,0,0)[1] model as the best 

for the characteristics of load growth, with an AIC value of 2953.416, which was the lowest compared to 

other models. This model was chosen for its best balance between complexity and the ability to explain the 

data. In the second experiment, auto model selected the ARIMA(2,0,1)(0,0,0)[1] model as the best with an 

AIC value of 21030.774. Although this model differs in structure from the one selected in the first 

experiment, the selection criteria remain the same, i.e., the lowest AIC value indicating the most efficient and 

accurate model in representing the characteristics of load data over a longer period. This result underscores 

the importance of AIC in the model selection process, particularly in the context of complex data modeling 

such as peak load forecasting. Root mean square error (RMSE) is a measure for evaluating the accuracy of 

forecasting results by calculating the average of the squared prediction errors. The calculation process involves 

squaring the difference between predicted values and observed values, averaging these squared values, and 

then taking the square root. A smaller RMSE value indicates a more accurate model in predicting the data, as 

a lower RMSE shows that the model's variance is closer to the variance of the observations. This unitless 

RMSE is very useful in determining the quality of forecasting models, as presented in Tables 1 and 2. 

 

 

Table 1. Testing forecasting results using RMSE in the first experiment 
Variable Speed (rpm) Power (kW) (At - Ft)2 

10/2/2022 1539.13 1.561.143.233 484.5824271 

10/3/2022 1537.3 1.583.352.539 2120.836348 

10/4/2022 1599.22 159.526.917 15.60905769 

10/5/2022 1595.35 1.602.683.109 53.77448761 

10/6/2022 1521.77 159.974.597 6080.251897 

10/7/2022 1595.27 1.591.816.961 11.92347834 
10/8/2022 1544.75 1.587.346.254 1814.440855 

10/9/2022 1539.65 158.812.921 2350.233802 

10/10/2022 1572.2 1.590.855.819 348.0395826 

10/11/2022 1577.69 1.594.943.058 297.6680104 

10/12/2022 1619.9 1.598.116.051 474.540434 

10/13/2022 1577.14 1.598.937.232 475.1193229 

10/14/2022 1562.83 1.598.625.095 1281.288826 

10/15/2022 1561.95 1.598.502.658 1336.096807 
10/16/2022 1539.47 1.598.785.587 3518.338861 

10/17/2022 1638.16 1.599.787.748 1472.429724 

10/18/2022 1580.14 1.601.326.007 448.8468926 

10/19/2022 1582.11 1.602.755.734 426.2463324 

10/20/2022 1663.46 1.603.850.058 3553.345185 

10/21/2022 1654.65 1.604.725.643 2492.441422 

10/22/2022 1531.75 1.605.458.934 5433.006951 

10/23/2022 1530.46 1.606.210.781 5738.180822 
10/24/2022 1636.71 1.607.118.944 875.6305952 

10/25/2022 1617.3 1.608.135.375 83.99035139 

10/26/2022 1658.25 1.609.170.111 2408.835504 

10/27/2022 1590.25 1.610.184.689 397.3918255 

10/28/2022 1667.6 1.611.148.231 3186.802223 

10/29/2022 1576.04 1.612.064.436 1297.759989 

10/30/2022 1608.42 1.612.975.726 20.75463939 
10/31/2022 1627.48 161.390.627 184.2461461 

RMSE 40.28343448 
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Table 2. Testing forecasting results using RMSE in the second experiment 
Variable Speed (rpm) Power (kW) (At - Ft)2 

7/1/2023 1590.27 1.596.605.199 40.13474637 
7/2/2023 1604.84 1.599.318.388 30.48819908 

7/3/2023 1563.81 1.600.416.407 1340.029033 

7/4/2023 1618.24 1.600.726.908 306.7083914 
7/5/2023 1667.61 1.600.653.587 4483.161242 

7/6/2023 1660.73 1.600.393.353 3640.510971 

7/7/2023 1656.3 1.600.042.248 3164.93466 
7/8/2023 1634.6 159.964.712 1221.70382 

7/9/2023 1602.43 1.599.230.817 10.23477187 

7/10/2023 1653.47 1.598.804.484 2988.31864 
7/11/2023 1636.46 1.598.373.557 1450.57714 

7/12/2023 1633.19 1.597.940.686 1242.514137 

7/13/2023 1576.82 1.597.507.164 427.9587544 
7/14/2023 1596.53 1.597.073.621 0.2955237916 

RMSE 38.1234555 

 

 

4. CONCLUSION 

This study presents a comprehensive analysis aimed at optimizing short-term energy demand 

forecasting using the ARIMA method within the Box-Jenkins framework. By leveraging daily peak load data 

from South Sulawesi, the ARIMA model was successfully applied to produce realistic and accurate forecasts 

that support not only daily operational planning of power plants but also investment and development 

planning in the electricity sector. Through automated model selection using pmdarima and AIC, the optimal 

ARIMA configuration was identified, balancing model complexity and forecasting accuracy. The final model 

achieved a MAPE of 1.91% and a RMSE of 38.123, demonstrating its robustness in capturing short-term 

load patterns and fluctuations. This study fills a critical research gap by providing a simple yet effective 

ARIMA-based model validated across different data spans, offering practical value for daily operational 

decision-making. The results highlight the capability of ARIMA-based forecasting to reduce deviations 

between projected and actual peak loads, thereby contributing to improved operational management, 

enhanced investment efficiency, and cost savings in energy management. Moreover, this research lays a 

methodological foundation for future advancements, including the integration of ARIMA with machine 

learning techniques and the application of longer historical datasets to further enhance forecasting accuracy. 

The findings are expected to provide valuable insights for refining RUPTL planning, supporting the 

development of smart grid systems, and strengthening strategic energy management at both regional and 

national levels. 
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