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 The Indonesian sign language system (SIBI) is the authorized sign system in 

Indonesia that the deaf society uses to convey in Indonesian. However, its 

use still needs to be expanded and more widespread in the community, 

causing difficulties in communication for hard-of-hearing people. The 

product of deep learning technologies such as faster region-based 

convolutional neural network (Faster R-CNN) in object recognition has the 

potential to help improve communication between deaf people and the 

general public. This research will implement the Faster R-CNN algorithm 

with three different residual network (ResNet) architectures (50, 101, and 

152) for SIBI recognition. The comparison of the faster R-CNN algorithm 

with different architectures is also conducted to identify the best architecture 

for SIBI recognition, and the results are evaluated using accuracy, precision, 

recall, and F1-score metrics from confusion matrix calculation and execution 

time. Faster R-CNN model with ResNet-50 architecture showed the best and 

most efficient performance with accuracy, recall, precision, and F1-score 

metrics of 96.15%, 95%, 93%, and 94%, respectively, and an execution time 

of 36.84 seconds in the testing process compared to models with ResNet-101 

and ResNet-152 architectures. 
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1. INTRODUCTION 

Gestures and signs are considered the considerable native way to obtain messages between people 

through body motions. Although gestures and signs are categorized as non-verbal contact, they can 

effectively express messages between hard-of-hearing people. Sign language is the most commonly used 

method of conveying words using body movements [1]. Sign language is vital in communication for the 

speech-impaired and deaf community [2].  

Indonesian sign language system (SIBI) is Indonesia's official sign language, standardized with 

specific finger and hand movements that follow the grammar and structure of the Indonesian language, as 

recognized in Ministerial Decree Number 0161/U/1994 [3]. Although SIBI is the authorized sign language in 

Indonesia, its use is still limited and has yet to be widely spread in the community. Not all Indonesians 

understand the sign language used by deaf people, so it will cause difficulties in communication for deaf 

people when interacting with people who do not understand sign language [4]. Many people find it difficult 

to interact and relate to deaf people, so they do not get regular social interactions because of their limitations, 

resulting in social inequality [5]. To address these communication barriers and promote social inclusion, 

https://creativecommons.org/licenses/by-sa/4.0/
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technological innovations in sign language recognition are critical. Recent advancements in deep learning, 

particularly in computer vision, offer promising solutions to automate SIBI recognition and bridge the 

communication gap [6]. 

Unlike isolated gesture recognition, SIBI requires precise detection of dynamic hand configurations 

and spatial relationships. Faster region-based convolutional neural network (Faster R-CNN), with its ability 

to localize and classify objects in complex scenes, is particularly suited for this task. The Faster R-CNN 

algorithm is a deep learning algorithm for object detection algorithm that combines a convolutional neural 

network (CNN) to detect region proposals and classify objects simultaneously by utilizing the region 

proposal network (RPN), which enables faster and more accurate processing time [7]. Several previous 

studies on identification using the Faster R-CNN algorithm have been conducted. In the study by Deng et al. 

[8], Faster-RCNN was applied to detect diabetic retinal disease using ResNet50 and VGG16 for feature 

extraction. The research demonstrated that the ResNet50-based model achieved a higher mean average 

precision (mAP) of 97.42% and a precision of 98.96%. Another research was conducted by Sabir et al. [9] 

using a transfer learning strategy with the Faster R-CNN model to detect faces that use masks and those that 

do not use masks obtained the most elevated average precision (AP) of 81% and the most elevated average 

recall (AR) of 84%. Research by Cao et al. [10] presents an improved algorithm based on Faster R-CNN for 

small object detection, addressing challenges such as complex backgrounds, occlusion, and low resolution, 

achieving a recall rate of 90% and an accuracy rate of 87% for traffic signs. Based on these studies, the Faster 

R-CNN algorithm has excellent potential in object recognition. 

Selecting the suitable algorithm is crucial for implementing Faster R-CNN in recognizing the 

Indonesian language system (SIBI). The residual network (ResNet) CNN architecture, introduced by  

He et al. [11], has proven effective in overcoming the performance degradation problem in deeper CNNs. 

ResNet can overcome the challenge of learning complex and deep representations using shortcut connections. 

Frequently used variants of the ResNet architecture are ResNet-50, 101, and 152, each of which has an 

appropriate number of layers to handle different levels of complexity. The ResNet architecture in the Faster 

R-CNN algorithm serves as the backbone in performing digital image feature extraction [12]. ResNet 

architecture as a backbone/foundation has been widely used in complex tasks, such as object detection and 

instance segmentation [13]. In this study, we employ the Faster R-CNN algorithm due to its strong accuracy 

performance in object detection tasks, particularly when dealing with detailed spatial features such as hand 

gestures. Compared to other detection models like YOLO and SSD, which prioritize inference speed, Faster 

R-CNN is more suitable for scenarios that demand high precision. This makes it ideal for recognizing fine-

grained hand sign variations in SIBI, where detection accuracy is paramount. Despite its slower inference 

speed, Faster R-CNN demonstrates superior accuracy, making it ideal for applications where detection 

precision is crucial [14]. Within this framework, we integrate three variants of the ResNet backbone  

ResNet-50, ResNet-101, and ResNet-152 and conduct a structured comparative analysis to recognize multi-

class SIBI hand signs. The novelty of this research is reflected in evaluating the trade-offs between detection 

accuracy, inference time, and model complexity under limited data conditions, providing practical insights 

for selecting efficient backbone architectures for real-world assistive technology applications. 

 

 

2. RESEARCH METHOD  

The study method employed is the research and development (R&D) method as illustrated in Figure 1. 

This research implements the Faster R-CNN algorithm to identify SIBI sign language in digital images. The 

implementation results will then be compared to determine the best architecture as a backbone for Faster  

R-CNN. The research process begins with data collection, where images of SIBI signs are gathered, followed 

by object annotation to label the regions of interest within each image. The annotated data undergoes data 

preprocessing to standardize and augment the images, ensuring their suitability for the training model phase, 

where the Faster R-CNN is trained to recognize SIBI signs. Finally, in the evaluate phase, the model's 

performance is assessed through various metrics. The source code for this work is publicly available at: 

https://github.com/paul-lestyo/faster-rcnn-sibi-handsign.  

 

 

 
 

Figure 1. Research flow 

 

https://github.com/paul-lestyo/faster-rcnn-sibi-handsign
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2.1.  Datasets 

The dataset used in this research consists of 546 labeled digital images representing 26 hand sign 

classes (letters A to Z) from the Indonesian Sign Language System (SIBI), with 21 images per class, as 

shown in Figure 2. This dataset was obtained from an open-source collection on Kaggle [15]. All images are 

in JPG format with a uniform square resolution of 2000×2000 pixels. Each image was manually annotated 

using the LabelImg tool, producing XML files that contain bounding box coordinates and associated class 

labels. The annotation files were then converted to CSV format and subsequently into TFRecord format to 

prepare the dataset for TensorFlow’s object detection pipeline. To introduce slight variation, data 

augmentation was applied during training, including horizontal flipping and brightness adjustment. These 

techniques produced variants image and improved model robustness by simulating slight environmental 

changes. However, the dataset presents limitations in diversity and representativeness. Most of the images 

feature similar lighting conditions, backgrounds, and hand characteristics, with minimal variation in skin 

tone, hand size, or environmental context. These factors may introduce dataset bias and limit the model’s 

generalization ability in real-world settings. A more comprehensive and varied dataset would be necessary to 

improve robustness, particularly in practical assistive applications intended for diverse user populations. 

 

 

 
 

Figure 2. Example of the SIBI 

 

 

2.2.  Object annotation 

 Object labeling or annotation is used to determine information related to the class and special 

features that represent objects in each image by creating a bounding box. This aims to train the model to be 

able to recognize objects that will be predicted. Object labeling in this research is done manually using the 

Labelimg tool. Labelimg is run in the Anaconda tools environment installed on the Windows operating 

system. Object labeling results in a .xml file with information regarding the object's class and the bounding 

box coordinates. The object labeling process produces one object class per image with 546 objects. After 

labeling objects on digital images using LabelImg, an XML file is produced that contains information related 

to the class and coordinates of the object. 

 

2.3.  Datasets preprocessing 

 In the data preprocessing phase, the collected Indonesian Sign Language System (SIBI) digital 

images are prepared for the needs of model training using Tensorflow. The initial step in the data 

preprocessing process involves the data that has been prepared along with the coordinate point information of 

objects and classes. Both data are converted into TFRecord (TensorFlow record) format. This process begins 

with the .xml file created from the object labeling process transformed into a .csv file. Furthermore, the .csv 

file created is used as the basis for the conversion process to the TFRecord format. In this process, the digital 

image information in the .csv file is processed in a TFRecord specification format.  

 

2.3.1. Dimension resizes 

 There is preprocessing that occurs in the data pipeline, where resizing is performed on both image 

size and object coordinate points. Resize on image size aims to ensure that all images have uniform 

dimensions, while resize on object coordinate points aims to maintain object proportions after image resize. 

 

2.3.2. Image augmentation 

The augmentation performed during model training consists of two main types of transformations. 

First, horizontal flipping with a probability of 0.3, producing a horizontally mirrored image to improve 
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orientation invariance. Second, brightness adjustment with a maximum delta of 0.3, enhancing robustness to 

lighting variations. Figure 3 shows image augmentation with horizontal flip and brightness adjustment. 

 

 

 
 

Figure 3. Data augmentation examples horizontal flip and adjust brightness 

 

 

2.4.  Proposed faster R-CNN with residual network 

Faster R-CNN is a network that combines Fast R-CNN and RPN to decrease duration complexity 

and generate high-quality region proposals, bounding boxes, and objectness scores simultaneously [16], 

which is illustrated in Figure 4. In study [17], the phases of the Faster R-CNN are as follows: 

˗ The input digital image undergoes convolution and pooling operations through feature extraction to 

obtain a feature map. 

˗ The feature map is then given to the RPN network, which performs objectness prediction. 

˗ The RPN network provides several proposed anchors through coordinate points and objectness prediction 

scores. 

˗ The RPN output is sent to the Fast R-CNN network, where the object output is processed in the fully 

connected layer for classification. 

 

 

 
 

Figure 4. Steps of the faster R-CNN process 

 

 

Faster R-CNN is a development of the previous methods called R-CNN and Fast R-CNN. R-CNN 

was first presented by Girshick et al. [18] in 2014 as an object detection method that uses a selective search 

algorithm to create around 2000 region proposals per image, then extracts features from each region proposal 

using a pre-trained convolutional neural network (CNN), and finally classifies the region proposals utilizing a 

support vector machine (SVM). After that, Girshick [19] introduced Fast R-CNN. The Fast R-CNN 

algorithm was developed to improve some of the shortcomings of R-CNN by allowing convolution to be 

performed only once on each image and using the resulting feature map to generate predicted region 

proposals, thus improving computational efficiency and object detection accuracy [20]. The algorithm was 

further improved to Faster R-CNN introduced by Ren et al. [20], utilizing an additional CNN called RPN to 

generate region proposals straight from vision features, thus stopping the need to use the selective search. 

 

2.4.1. Residual network architecture as backbone 

Faster R-CNN generally utilizes CNN architectures such as ResNet as a backbone to perform 

feature extraction, which is then used in the RPN and classification stages [12]. ResNet-50 has been widely 
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operated as a backbone in object detection, such as Faster R-CNN [21]. The ResNet architecture was formed 

to overcome the obstacles in deep learning training because, in general, it takes a long duration and is 

restricted to a specific number of layers [22]. Residual networks enhance deep network training with 

shortcuts that ease gradient flow, resulting in quicker training and increased accuracy of significant depth 

[23], as shown in Figure 5(a). The more representative the feature map extracted by the backbone, the better 

the performance of the detector, as a better feature map will help increase the accuracy level of object 

detection [24].  

There are various versions of the Residual Networks architecture, including ResNet-50, ResNet-101, 

and ResNet-152, which have different levels of depth and complexity to meet specific needs. Slimene et al. 

[25] mentioned that the name of the ResNet architecture depends on the number of layers, as in ResNet50, 

ResNet101, and ResNet152, which indicate having 50, 101, and 152 layers. These layers are calculated from 

the total number of skip connections, convolutional layers, pooling layers, and fully connected layers that 

comprise the network, which is detailed in Figure 5(b). 

The application of ResNet architecture to digital images has been used in various studies. As in the 

research of Sarwinda et al. [22], the detection of colorectal cancer was conducted using ResNet-50, which 

demonstrated an accuracy above 80% and a sensitivity above 87% on the 20% and 25% test sets. Another 

study by Zhang et al. [26] proposes a heartbeat classification method based on hybrid time-frequency 

analysis and transfer learning with ResNet-101, achieving 99.75% accuracy and an F1-score of 0.9016 for 14 

types of heartbeats from the MIT-BIH database. This study by Goh et al. [27] evaluates deep transfer 

learning models for detecting four categories of face mask-wearing, with ResNet-152 achieving the highest 

accuracy of 86.67% on a testing set and 84.47% on smartphone-captured videos. 

 

 

  
(a) (b) 

 

Figure 5. Residual network architecture (a) skip connections in ResNet and (b) network architecture of 

ResNet-50, ResNet-101, ResNet-152 

 

 

2.4.2. Model configuration and training pipeline 

This research will use ResNet-50, ResNet-101, and ResNet-152 as the backbone of the Faster  

R-CNN algorithm in SIBI recognition and will be compared to get the best architecture of the three models. 

The modeling was conducted using TensorFlow version 2.10 with built-in GPU support. Training was 

performed on a personal laptop equipped with a 12th Gen Intel(R) Core(TM) i5-12500H 2.50 GHz CPU, 

NVIDIA GeForce RTX 3050 Laptop GPU, and 16 GB RAM. GPU acceleration was enabled, with an 

average GPU memory usage between 3 to 4 GB. To streamline the experiments and simplify the evaluation, 

the three models were integrated in a pipeline using TensorFlow tools. This pipeline is designed to automate 

the workflow from data pre-processing, model training, to result evaluation. The following is the 

configuration of the 3-model training pipeline used in this study, which is described in the Table 1. 
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Table 1. Configuration of training pipeline 
Configuration Value 

Dimension size 320×320 
Num of class 26 

Input label map "/𝑐𝑜𝑛𝑡𝑒𝑛𝑡/𝑑𝑎𝑡𝑎𝑠𝑒𝑡/𝑜𝑏𝑗𝑒𝑐𝑡 − 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛. 𝑝𝑏𝑡𝑥𝑡" 

Learning rate Cosine Decay Learning Rate: 

base=0.04 

warmup=0.013333 

total steps=46800 

warmup_steps: 2000 

Data augmentation Horizontal Flip (Probabilitas=0.3),  

Adjust Brightness (Delta maks=0.3) 

Batch size 1 

Num steps 46800 num steps (100 epoch) 

 

 

2.5.  Performance metrics  

This study compares the performance of three different ResNet architectures (ResNet-50, ResNet-101, 

and ResNet-152) when used as the backbone for the Faster R-CNN algorithm. The goal is to detect Indonesian 

Sign Language (SIBI) signs in digital images. To evaluate each model's effectiveness, a confusion matrix will 

be used, which is a tool that compares the actual sign with the model's predicted sign [28]. A confusion 

matrix is a square matrix where the rows define the actual class of the instance, and the columns are the 

predicted class [29]. Identifying SIBI sign language consisting of 26 classes requires a multiclass confusion 

matrix. Confusion matrix for multiclass classification uses a 𝑘 × 𝑘 contingency table where cells [𝑖, 𝑗]  
(𝑖 = 1, . . . , 𝑘, 𝑗 = 1, . . . , 𝑘) represent the frequency of class observations with actual class 𝐾𝑖 and predicted 

class 𝐾𝑗 [30]. Table 2 illustrates an example of a confusion matrix for multiclass classification, where each 

cell shows the relationship between the actual and predicted classes. 

In the confusion matrix for multiclass classification, there are 4 sections that show the results of the 

test as follows. 

− True Positive (TP) refers to instances where the actual class is correctly predicted.   
− True Negative (TN) is the actual class predicted to be true in the negative class. 
− False Positive (FP) happens when a negative class is incorrectly predicted as positive. 
− False Negative (FN) is when a positive class is incorrectly predicted as negative. 

To measure the quality of a multiclass classification model, you can compare its architecture with a 

confusion matrix technique. This process generates accuracy, precision, recall, and the F1-score, which are 

all used to evaluate the model's performance. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2 ∗ (𝑟𝑒𝑐𝑎𝑙𝑙 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

 

 

3. RESULTS AND DISCUSSION  

3.1.  Training model 

The faster R-CNN model was trained 3 times with different architectures. Each model was trained 

for 100 epochs or 46.800 steps, with a total training time of approximately 4,783 seconds (47.83 seconds  

per epoch) for ResNet-50, 7530 seconds (75.30 seconds per epoch) for ResNet-101, and 11811 seconds 

(118.11 seconds per epoch) for ResNet-152. Model training uses loss as a measurement of the quality and 

performance of the model in making predictions on training data. Figure 6(a) to (c) represents a combination 

of loss in the box classifier and RPN for each architecture. 

In the total loss graph of the Faster R-CNN model training above, it is known that the three models 

show a significant decrease in total loss until the 100th epoch. The results of the total loss of model training 

obtained a total loss value of 0.002 in the ResNet-50 model, 0.037 in the ResNet-101 model, and 0.0005 in 
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the ResNet-152 model. This shows that the model successfully converges and performs well in detecting 

objects in the training data. 

 

 

  
(a) (b) 

  

 
(c) 

 

Figure 6. Total loss graph Faster R-CNN training (a) ResNet-50, (b) ResNet-101, and (c) ResNet-152 

 

 

 

3.2.  Testing model  

Each model with three different architectures is then tested using test data. The test data consists of 

six data in each class, each of which contains one original data set and five different digital image 

augmentation results. Therefore, 156 data will be used for testing. Testing is done to see the model's 

performance in recognizing SIBI digital images. An example of model prediction result assessment during 

testing can be seen in Table 2. 

 

 

Table 2. Model prediction results assessment during testing 
Output Actual class Prediction class Result 

 

A A True 

 

M E False 

 

D None False 
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Figure 7(a) to (c) shows confusion matrix for each model used to calculate the evaluation value: 

ResNet-50, ResNet-101, and ResNet-152. These results are in the form of a multiclass confusion matrix with 

27 rows and 27 columns. The row value in the confusion matrix shows the actual class, while the column 

value shows the model's prediction. Classes consist of the letters A to Z and plus the None class, which 

indicates that the model does not recognize any objects in the input image. 

 

 

  
(a) (b) 

  

 
(c) 

 

Figure 7. Confusion matrix of test results (a) ResNet-50, (b) ResNet-101, and (c) ResNet-152 

 

 

3.3.  Performance 

Confusion matrix from the test results is calculated to obtain the model performance evaluation 

value. The evaluation metrics used are accuracy, precision, recall, and F1-score. Table 3 presents the 

evaluation metrics for all three models. 

Based on Table 3, architectures in the Faster R-CNN algorithm for recognizing SIBI, it is known 

that the performance of the three models differs significantly. ResNet-50 outperformed ResNet-101 and 

ResNet-152 in both accuracy and efficiency, processing faster and delivering superior results. ResNet-101 

showed the lowest performance, while ResNet-152 improved upon it but still fell short of ResNet-50. 

 

 

Table 3. Performance evaluation of the models 
Model Architecture Accuracy Precision Recall F1-Score Time (second) 

ResNet-50 96% 95% 93% 94% 36.84 

ResNet-101 71% 79% 69% 70% 38.82 

ResNet-152 81% 85% 78% 79% 40.20 
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3.3.1. ResNet-50 

The Faster R-CNN algorithm with ResNet-50 architecture as the backbone has reliable performance 

in detecting each class in 26 letters of the Indonesian sign language system (SIBI). This is shown through the 

evaluation results where the model is able to predict test data with metric values of accuracy 96%, precision 

95%, recall 93% and F1-score 94%. In terms of test execution time, it can be seen that the model with 

ResNet-50 architecture is superior to the models with ResNet-101 and ResNet-152 architectures. The simple 

architectural layers in ResNet-50 provide the benefit of less resource utilization. 

The lower architecture complexity in ResNet-50 allows the model to learn essential features without 

overfitting, especially on data with a limited variety and amount of data. However, testing on blurred digital 

image scenarios such as classes D, O, S, and U were identified less accurately and were not recognized as 

objects by RPN. This is because the object in the image is too blurred to be recognized by the model. 

 

3.3.2. ResNet-101 

The Faster R-CNN algorithm with ResNet-101 architecture shows less than optimal performance 

with metrics accuracy of 71%, precision of 79%, recall of 69%, and F1-score of 70%. Of the 26 existing 

classes, this model can only accurately predict classes in 9 classes, namely classes D, F, I, J, K, L, X, Y, and 

Z. In fact, there is class data that cannot be predicted. There are even class data that cannot be predicted 

correctly, which are the R and U class data.  

The execution time of the ResNet-101 architecture model is 38.82 seconds. This shows that this 

model is longer than the ResNet-50 architecture model, with an increase in test execution time of 5.37%. This 

is due to the higher complexity of the ResNet-101 architecture compared to ResNet-50, which results in 

greater resource utilization and computational processes. 

The lack of optimization of the model with ResNet-101 architecture is due to the overfitting of the 

model to the limited training data. In addition, it appears that the variations in the test data are poorly 

recognized by the model, indicating that the model cannot generalize well to variations not present in the 

training data. Another factor contributing to this low performance is the lack of training data as the 

complexity of the ResNet-101 architecture requires more data for effective training. 

 

3.3.3. ResNet-152 

Feature extraction on ResNet-152 is the most complex compared to ResNet-50 and ResNet-101. The 

high complexity of the architecture makes the test execution time of this model the longest compared to the 

other two models. Based on the research, the execution time takes 40.20 seconds for the testing process. The 

ResNet-152 architecture model is good in the testing process, with an accuracy metric value of 80.75%, 

precision of 85%, recall of 78%, and F1-score of 79%. The evaluation values show that this model is better at 

predicting test data than the ResNet-101 architecture model but lower than the ResNet-50. 

The model quality with ResNet-152 architecture tends to experience overfitting, similar to the 

ResNet-101 architecture model. This is because the small amount of data used in training makes it less 

effective for models with high complexity, such as ResNet-152, to generalize the data. As a result, this model 

performs very well in training but less optimally in testing with new data variations. 

 

 

4. CONCLUSION  

This research successfully implements the ResNet-50, ResNet-101, and ResNet-152 architectures in 

the Faster R-CNN algorithm to recognize the Indonesian language sign system (SIBI). This can be proven 

through the smooth training process until it reaches the final epoch and the entire model experiences a consistent 

decrease in loss in the training process. From the evaluation results, the Faster R-CNN model with ResNet-50 

architecture showed the best and most efficient performance with an accuracy value of 96.15% and an execution 

time of 36.84 seconds in the testing process. Therefore, ResNet-50 was chosen as the best backbone/feature 

extraction architecture in the Faster R-CNN algorithm for recognizing the SIBI. This study contributes to the 

field by empirical evaluation of backbone selection based on detection performance, inference time, and model 

complexity under limited data conditions, providing practical insights for real-world deployment. 

Based on this research, ResNet-50 is recommended as the top choice for the Faster R-CNN 

algorithm's backbone in applications designed to recognize Indonesian sign language (SIBI). These 

applications could be mobile apps or communication devices that help bridge the communication gap 

between the deaf community and the general public, promoting more inclusive interactions. For future 

research, it's suggested to use larger datasets and experiment with different Faster R-CNN configurations. 

The current findings lay a strong foundation for building SIBI recognition systems that can be integrated into 

assistive technologies. While this study's prototype was tested in a controlled environment, future work 

should focus on real-time deployment and usability studies, including implementation on mobile or 

embedded platforms for practical, real-world use. 
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