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 This study presents a comparative analysis of 7 Convolutional Neural 

Network (CNN) architectures—MobileNetV2, VGG16, VGG19, LeNet5, 

AlexNet, ResNet50, and InceptionV3—for classifying post-forest fire areas 

using field-based vegetation imagery. A total of 56 models were evaluated 

through combinations of batch size, input size, and optimizer. The results 

show that MobileNetV2, VGG16, and VGG19 outperformed other models, 

with validation accuracies exceeding 88%. MobileNetV2 emerged as the 

most balanced model, achieving 96% accuracy with the lowest model size 

and training time, making it ideal for resource-constrained applications. This 

study highlights the potential of CNN-based classification using mobile field 

imagery, offering an efficient alternative to costly and condition-dependent 

satellite or drone data. The findings support real-time, localized 

identification of burned areas after forest fires, providing actionable insights 

for prioritizing recovery areas and guiding ecological restoration and land 

rehabilitation strategies. 
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1. INTRODUCTION 

Indonesia has a long-standing history of recurring forest fires, which have become an annual 

occurrence, severely affecting the environment and local communities. Forest fires have been a significant 

issue as early as the 1980s [1]. These fires have contributed to air pollution, health issues, biodiversity loss, 

and the degradation of ecosystems [2]. Analyzing post-fire areas is therefore crucial for mitigation, 

restoration, and sustainable land management. Recent studies have introduced convolutional neural networks 

(CNNs) as a promising solution for wildfire damage classification due to their powerful feature extraction 

and image recognition capabilities [3].  

Most existing works utilize satellite and drone imagery to classify post-forest fire areas using CNNs. 

For example, [4] and [5] used drone images with CNN-based models such as VGG-16 and FFireNet, 

achieving high accuracy levels of 96% and 98.42%, respectively. Other researcher utilized Sentinel-2 satellite 

images to classify images into five categories (‘field,’ ‘forest,’ ‘smoke,’ ‘urban,’ and ‘burned’) using ResNet 

and Xception models, with Xception achieving the highest accuracy of 96.7% [6]. Despite their success, 

these approaches still depend on expensive image acquisition, varying image resolutions, and are limited by 

spatial or weather-related constraints [7]. 

https://creativecommons.org/licenses/by-sa/4.0/
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To overcome these challenges, field-based or ground-level imagery has emerged as a viable 

alternative. Field images captured using mobile phones provide detailed vegetation and soil information and 

are less affected by cloud cover or atmospheric distortions. A study by [8] applied MobileNetV2 on field 

imagery from Jambi Province, achieving 77.7% accuracy. However, research in this direction remains 

limited, particularly in optimizing CNN architectures and hyperparameter combinations for such datasets. 

This study addresses this gap by systematically evaluating 7 CNN architectures (MobileNetV2, 

VGG16, VGG19, LeNet5, AlexNet, ResNet50, and InceptionV3) on a dataset of post-fire vegetation images 

collected in the field. This study applied hyperparameter tuning involving batch size, input size, and 

optimizer to determine their influence on model performance. The goal of this study is to identify an 

architecture that balances high classification accuracy with computational efficiency—especially relevant for 

real-time applications in remote or resource-limited environments. The key contributions of this work include 

a comparative evaluation of CNN architectures specifically tailored for post-forest fire classification in field 

conditions, an analysis of how batch size, input size, and optimizer affect performance, and valuable insights 

into the viability of using mobile-captured field images as a cost-effective and practical alternative to 

traditional remote sensing methods. 

 

 

2. METHOD 

The methodology of this research comprises five main stages: data collection, preprocessing, data 

splitting, modeling, and evaluation, as illustrated in Figure 1. These stages are adapted from widely accepted 

image classification workflows [9], and each is carefully designed to ensure high-quality input data, optimal 

model performance, and rigorous evaluation. The overall approach integrates field-collected image data with 

deep learning-based classification to assess post-fire land conditions. 

 

 

 
 

Figure 1. Research stages 

 

 

2.1.  Data collection 

This study utilized field images captured using mobile phones from 4 post-fire locations in Jambi 

Province, namely Pematang Rahim, Pematang Lumut, Pelayangan, and Tenam. Field imagery was chosen 

due to its high resolution, clearer visual details, immunity to atmospheric disturbances, and lower cost 

compared to satellite or drone imagery. The collected images were initially categorized into three factors: 

area, soil, and vegetation. However, only vegetation-related images were used for the classification model, as 

vegetation plays a significant role in assessing post-fire areas [10]. In total, 239 images were used, divided 

into two classes: burned area (139 images) and unburned area (100 images). Sample images from each class 

are presented in Figures 2 and 3. 

 

 

  
 

Figure 2. Burned area image 

 

Figure 3. Unburned area image 
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2.2.  Preprocessing data 

Preprocessing is a critical step in deep learning pipelines to improve model learning efficiency and 

output quality [11]. In this study, three key preprocessing operations were applied. First, resizing was 

performed by standardizing all images to dimensions of either 192×192 or 224×224 pixels. This not only 

reduced computational cost and memory usage but also ensured consistent input dimensions across models. 

While resizing can introduce information loss, this was mitigated by selecting relatively high target 

resolutions and preserving aspect ratios where possible [12]. Second, normalization was applied by scaling 

pixel values to the [0, 1] range, which facilitated faster and more stable convergence during training, 

particularly when using gradient-based optimizers [13]. Third, data augmentation techniques such as random 

rotation, flipping, and zooming were employed to increase data variability, reduce overfitting, and improve 

model generalization [14].  

 

2.3.  Data partition 

Before training, the dataset was divided into three subsets: training, validation, and test sets. The 

training set was used to fit the model, the validation set was used to tune the model and prevent overfitting 

during training, and the test set was reserved for final performance evaluation on unseen data [15]. This 

partitioning ensures that the model has sufficient data to learn effectively while also being properly validated 

and tested. The dataset was split with the following proportions: 80% for training (111 burned images and 80 

unburned images), 10% for validation (14 burned and 10 unburned), and 10% for testing (14 burned and 10 

unburned). 

 

2.4.  Model development 

This study explored two approaches to CNN model development: transfer learning using pretrained 

models and training from scratch. The pretrained models included MobileNetV2, VGG-16, VGG-19, 

ResNet-50, and Inception, all of which were pretrained on the ImageNet dataset. Leveraging transfer learning 

allows for improved performance on small datasets and faster convergence due to the reuse of learned feature 

representations [16]. In parallel, two CNN models—LeNet-5 and AlexNet—were trained from scratch. These 

architectures serve as baseline models and enable comparison of shallow versus deep feature extractors, 

particularly in the context of forest fire classification, which lacks dedicated pretrained models. 

To optimize model performance, hyperparameter tuning was conducted on three primary 

parameters: batch size (16 and 32), input size (192×192 and 224×224), and optimizer (Adam and RMSprop). 

Batch size determines how many samples are processed at each training step [17], while input size defines 

the image dimensions provided to the CNN model. Optimizers, which help find the optimal model 

parameters by minimizing the loss function through gradient computation, significantly impact training speed 

and convergence [18]. Each optimizer also affects the learning speed and convergence of a model [19]. These 

hyperparameter combinations resulted in 8 unique scheme as shown in Table 1. Hyperparameter tuning is 

critical to finding the most effective configuration for achieving accurate and efficient classification of post-

fire areas [20].  

All models were trained for 50 epochs and other training parameters, such as learning rate and 

dropout rate, were kept at their default values to isolate the impact of the selected hyperparameters. Model 

training and evaluation were conducted on a local machine equipped with an AMD Ryzen 5 5600X CPU,  

64 GB RAM, and a 512 GB SSD. The software environment included Python 3.8 along with essential 

libraries such as TensorFlow 2.13, Scikit-learn, Pillow, NumPy, Seaborn, Pandas, and Matplotlib. 

 

 

Table 1. Hyperparameter scheme in building model 
Scheme Batch size Input size Optimizer  Scheme Batch size Input size Optimizer 

1 32 192×192 Adam  4 32 192×192 Adam 
2 32 224×224 Adam  6 16 224×224 RMSProp 

3 16 192×192 Adam  7 32 192×192 RMSProp 

4 16 224×224 Adam  8 32 224×224 RMSProp 

 

 

2.5.  Evaluation and comparison 

The performance of each model was evaluated through both quantitative metrics, training metrics, 

and visual assessment techniques. Quantitative metrics involved the calculation of accuracy, precision, recall, 

and F1-score based on the confusion matrix. These metrics provide a comprehensive assessment of 

classification performance, especially in scenarios involving class imbalance [21], [22]. Accuracy, in 

particular, was computed using in (1): 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (1) 

 

where TP, TN, FP, and FN represent true positives, true negatives, false positives, and false negatives, 

respectively. To assess training dynamics and model generalization, training metrics such as training and 

validation accuracy, training time (in seconds), and model size (in megabytes) were also recorded. Visual 

analysis was conducted using confusion matrices to observe misclassification trends, along with accuracy and 

loss plots throughout training epochs to evaluate learning progress and detect potential overfitting or 

underfitting. The overall evaluation aimed to identify not only the best-performing CNN architecture but also 

the optimal combination of hyperparameters by considering both predictive performance and computational 

efficiency. 

 

 

3. RESULTS AND DISCUSSION  

3.1.  Model training results 

Based on the training process, a total of 56 CNN models were generated from 8 experiments 

conducted across 7 different architectures. The performance summary of each architecture was presented in 

Table 2, which includes metrics such as training accuracy, validation accuracy, training time, model size, and 

the corresponding hyperparameter combinations. Each architecture exhibited varying performance depending 

on the hyperparameter combinations applied. 

 

 

Table 2. Summary of model performance 
Architecture Train acc Val acc Train loss Val loss Train Time (second) Model size (mb) Scheme  

MobileNetV2 0.96 0.96 0.13 0.16 563 9 6 
VGG16 0.98 0.88 0.07 0.34 569 129.7 2 

VGG19 0.97 0.96 0.06 0.17 567 150.0 4 

LeNet5 0.94 0.88 0.18 0.82 550 29.8 5 
AlexNet 0.58 0.58 0.68 0.68 546 29.8 7 

ResNet50 0.66 0.63 0.65 0.68 560 90.3 6 

InceptionV3 0.94 0.92 0.23 0.32 552 83.7 7 

 

 

From Table 2, it can be observed that VGG16, VGG19, and MobileNetV2 demonstrated the best 

performance among the seven CNN architectures evaluated. MobileNetV2 achieved the highest validation 

accuracy of 96%, with relatively fast training time (563 seconds) and the smallest model size (9 MB), making 

it highly efficient for deployment on resource-constrained devices. Meanwhile, VGG16 recorded the highest 

training accuracy at 98%, although its validation accuracy (88%) was lower than that of MobileNetV2 and 

VGG19. VGG19 also performed well, with a validation accuracy of 96% and a low validation loss value 

(0.17), despite its relatively large model size (150 MB). In contrast, architectures such as AlexNet and 

ResNet50 showed poor performance, with low validation accuracies of 58% and 63%. These results suggest 

that despite their architectural depth, these models (AlexNet and ResNet50) may be less effective in learning 

from the limited, ground-level imagery used in this study. Considering validation accuracy, training time 

efficiency, and model size, MobileNetV2 is the most balanced model, while VGG19 and VGG16 stand out in 

terms of accuracy. To further analyze model performance, training history plots and confusion matrices of 

the three models are presented. The performance of MobileNetV2, VGG19, and VGG16 is illustrated in 

Figures 5, 6, and 7. 

 

 

 
 

Figure 5. MobileNet V2 performance result 
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Figure 6. VGG-19 performance result 

 

 

 
 

Figure 7. VGG-16 performance result 

 

 

Figures 5, 6, and 7 present the training history and confusion matrices of MobileNetV2, VGG16, 

and VGG19. These visualizations indicate that all three models exhibited steadily increasing accuracy over 

epochs and decreasing loss curves, confirming stable learning behavior. However, MobileNetV2 shows more 

fluctuations during training, suggesting that its performance, although efficient, may be more sensitive to 

data variations or due to insufficient data. In summary, VGG19 produced the most accurate predictions, 

while MobileNetV2 offered the best trade-off between performance and efficiency. This reinforces prior 

findings [23] which state that MobileNetV2 was designed to balance accuracy and computational demands 

through hyperparameter flexibility, making it ideal for field-based, low-resource scenarios. These results 

indicate that deep learning models—especially lightweight architectures like MobileNetV2—can effectively 

distinguish between burned and unburned areas based on field imagery, supporting the studies of CNN 

applicability in post-fire assessment. 

 

3.2.  The effect of hyperparameters on model performance  

In this study, several hyperparameters were tested on CNN models to evaluate their impact on 

performance. Each architecture was assigned a numerical label for ease of reference (1=MobileNetV2,  

2=VGG16, 3=VGG19, 4=LeNet5, 5=AlexNet, 6=ResNet50, and 7=InceptionV3). The hyperparameters 

tested include batch size, input size, and optimizer. The batch sizes tested were 16 and 32, input sizes were 

192×192 and 224×224, and the optimizers used were Adam and RMSProp. The following section discusses 

each hyperparameter in detail. 

 

3.2.1. Batch size 

Batch size affects several aspects of training, including convergence time, training stability, and the 

model’s ability to generalize to unseen data. For instance, smaller batch sizes often allow faster computations 

but may require more iterations to converge compared to larger batch sizes [24]. To further explore the effect 

of batch size on model performance, the results of the experiments are presented in Table 3. 

Based on Table 3, the use of different batch sizes had a significant impact on both validation 

accuracy and training time across various CNN architectures. With a batch size of 16, models such as 

MobileNetV2 (1) performed exceptionally well, achieving validation accuracies up to 1.00 in certain 

experiments. However, other models like VGG16 (2) and VGG19 (3) showed more variability, with 

validation accuracies tending to be lower (around 0.79). Conversely, a batch size of 32 generally produced 

more consistent validation accuracy. For instance, InceptionV3 (7) achieved near-perfect validation accuracy 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 5, October 2025: 4723-4731 

4728 

in several experiments. However, VGG16 and VGG19 showed a decrease in accuracy when using the larger 

batch size. In terms of training time, batch size 32 generally reduced the overall training time compared to 

batch size 16, as the model could process more data in a single iteration, thus requiring fewer iterations to 

complete the training process. 

Nevertheless, smaller batch sizes (e.g., 16) tended to result in higher validation accuracy, the cost of 

longer training time. For architectures like AlexNet and ResNet50, validation accuracy remained relatively 

low under both batch size settings, suggesting that batch size had less influence on these models within the 

context of this dataset. In summary, smaller batch sizes yielded better accuracy for certain models, whereas 

larger batch sizes were more efficient in terms of training time but could potentially compromise accuracy. 

This trend is consistent with findings from previous research [25], where smaller batch sizes (e.g., 8) yielded 

higher accuracy compared to larger batch sizes (e.g., 128). 

 

 

Table 3. Model performance results for each batch size 
Batch size Scheme Val accuracy Training time (second) 

1 2 3 4 5 6 7 1 2 3 4 5 6 7 

16 3 0.88 0.83 0.83 0.75 0.58 0.63 0.96 547 553 544 545 549 553 550 

4 0.92 0.88 0.96 0.79 0.58 0.63 0.88 568 568 567 562 561 567 558 

5 0.96 0.92 0.88 0.88 0.58 0.58 0.88 547 549 549 550 548 554 554 
6 0.96 0.88 0.92 0.71 0.58 0.63 0.96 563 568 568 562 559 560 571 

32 1 0.88 0.79 0.92 0.75 0.58 0.58 0.88 561 560 550 546 543 561 561 
2 1.00 0.88 0.92 0.79 0.58 0.63 0.96 548 569 553 534 543 551 546 

7 0.92 0.79 0.79 0.88 0.58 0.58 0.92 557 558 555 547 546 557 552 

8 1.00 0.79 0.67 0.79 0.58 0.58 0.96 556 560 546 539 526 542 541 

 

 

3.2.2. Input size 

Input size, or image resolution, influences the extent to which spatial features within an image can 

be effectively extracted by a model. To examine the impact of input size variations on model performance, 

experiments were conducted using input sizes of 192×192 and 224×224 pixels. This allowed for an 

assessment of how input size affects both validation accuracy and training time across different CNN 

architectures. The experimental results are summarized in Table 4. Overall, Table 4 shows that an input size 

of 224×224 tends to produce higher and more consistent validation accuracy compared to 192×192, 

particularly in architectures such as MobileNetV2, VGG16, and VGG19. For example, in MobileNetV2 

(model 1), the highest validation accuracy of 1.00 was achieved with a 224×224 input size during experiment 

8, whereas with 192×192 input size, the highest accuracy reached only 0.96 in experiment 5. This suggests 

that increasing image resolution enables the model to better recognize patterns and extract features. This is in 

line with findings from studies [26], which state that larger image resolutions tend to improve model 

performance, though they also increase computational time and resource consumption, leading to a trade-off 

between computational efficiency and recognition accuracy. 

However, other studies have shown that increasing image size does not necessarily improve deep 

learning model performance, as it highly depends on the complexity of the images and the problem being 

solved. In general, increasing input size does not guarantee better accuracy; in some cases, smaller input sizes 

can yield better performance and vice versa. This is because each dataset may have an optimal input size that 

yields the best results, and accuracy can even decrease if image size exceeds a certain threshold [27]. In terms 

of training time, larger input sizes tend to increase training duration. This is observable across several 

architectures, where models trained on 224×224 inputs required more time than those trained on 192×192. 

This finding was consistent with [28], which notes that larger input sizes invariably lead to longer training 

times. 

 

 

Table 4. Model performance results for each input size 
Input size Scheme Val accuracy Training time (second) 

1 2 3 4 5 6 7 1 2 3 4 5 6 7 

192×192 1 0.88 0.79 0.92 0.75 0.58 0.58 0.88 561 560 550 546 543 561 561 

3 0.88 0.83 0.83 0.75 0.58 0.63 0.96 547 553 544 545 549 553 550 

5 0.96 0.92 0.88 0.88 0.58 0.58 0.88 547 549 549 550 548 554 554 
7 0.92 0.79 0.79 0.88 0.58 0.58 0.92 557 558 555 547 546 557 552 

224×224 2 1.00 0.88 0.92 0.79 0.58 0.63 0.96 548 569 553 534 543 551 546 

4 0.92 0.88 0.96 0.79 0.58 0.63 0.88 568 568 567 562 561 567 558 
6 0.96 0.88 0.92 0.71 0.58 0.63 0.96 563 568 568 562 559 560 571 

8 1.00 0.79 0.67 0.79 0.58 0.58 0.96 556 560 546 539 526 542 541 
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3.2.3. Optimizer 

In this study, two types of optimizers were employed: Adam and RMSprop. Both are widely used in 

deep learning model training due to their adaptive learning rate capabilities. The impact of each optimizer on 

validation accuracy across different CNN architectures was examined to assess the consistency and 

optimization effectiveness during training. The performance results based on the optimizer used are presented 

in Table 5. 

According to Table 5, RMSProp generally provided higher validation accuracy across several 

models, most notably MobileNetV2 and InceptionV3. For instance, MobileNetV2 reached a perfect accuracy 

of 1.0 under RMSProp in one training scheme, while it only reached up to 0.92 under Adam. InceptionV3 

also performed consistently well with both optimizers, often achieving validation accuracy as high as 0.96. 

On the other hand, other architectures such as ResNet50 and AlexNet delivered lower performance, with 

validation accuracy typically ranging between 0.58 and 0.63, indicating their limitations in handling the 

complex textures and features present in burned field imagery. 

In addition to accuracy, training time was also analyzed. Both optimizers showed comparable 

training durations, though RMSProp occasionally offered slightly shorter training times in models like 

ResNet50 and InceptionV3. Despite the small differences, these time savings could be beneficial when 

scaling up to large datasets or deploying models in resource-constrained environments. Among all schemes, 

the combination of RMSProp and MobileNetV2 proved to be the most effective, achieving perfect 

classification accuracy in just 556 seconds of training, suggesting an ideal balance of performance and 

efficiency. This aligns with findings from study [29] which highlights RMSProp as one of the best default 

optimizers due to its use of decay and momentum variables to optimize image classification accuracy. 

 

 

Table 5. Model performance results for each optimizer 
Optimzer Scheme Val accuracy Training time (second) 

1 2 3 4 5 6 7 1 2 3 4 5 6 7 

Adam 1 0.88 0.79 0.92 0.75 0.58 0.58 0.88 561 560 550 546 543 561 561 

2 1.00 0.88 0.92 0.79 0.58 0.63 0.96 548 569 553 534 543 551 546 

3 0.88 0.83 0.83 0.75 0.58 0.63 0.96 547 553 544 545 549 553 550 
4 0.92 0.88 0.96 0.79 0.58 0.63 0.88 568 568 567 562 561 567 558 

RMS 

Prop 

5 0.96 0.92 0.88 0.88 0.58 0.58 0.88 547 549 549 550 548 554 554 

6 0.96 0.88 0.92 0.71 0.58 0.63 0.96 563 568 568 562 559 560 571 
7 0.92 0.79 0.79 0.88 0.58 0.58 0.92 557 558 555 547 546 557 552 

8 1.00 0.79 0.67 0.79 0.58 0.58 0.96 556 560 546 539 526 542 541 

 

 

3.3.  Discussion 

The findings highlight that lightweight CNNs can be highly effective for image classification in 

constrained environments, such as post-fire field settings. Unlike satellite imagery, field images captured 

with mobile devices are flexible and cost-effective, yet remain underutilized in wildfire damage assessment. 

This study demonstrates that, with proper preprocessing and model selection, CNNs can achieve competitive 

results even with such ground-level data. Notably, our best models rivaled or exceeded reported 

performances from previous drone-based studies. For instance, VGG19’s performance (96%) is comparable 

to VGG16 in [4], which used drone imagery with similar tasks. More importantly, MobileNetV2 model 

achieved 96% val accuracy—significantly outperforming the 77.7% reported in [8], which also used 

MobileNetV2 on field imagery from Jambi Province. This improvement may be attributed to the use of 

enhanced preprocessing, optimized hyperparameters, and more systematic training schemes. These findings 

reinforce the practical value of using mobile imagery for post-fire classification and demonstrate that careful 

model tuning can yield competitive, even superior, results compared to prior approaches using the same 

model architecture.  

 

 

4. CONCLUSION  

This study compared seven CNN architectures for classifying post-forest fire areas using mobile-

captured field imagery and found that MobileNetV2, VGG16, and VGG19 achieved the best performance, 

with MobileNetV2 offering the best balance between accuracy, training time, and model size. The results 

highlight the potential of field imagery as a low-cost and flexible alternative to satellite or drone data for 

wildfire damage assessment. The study’s novelty lies in its focus on mobile imagery and systematic 

evaluation of hyperparameters across multiple architectures. These findings support the development of 

lightweight, real-time tools for post-fire assessment and suggest future research should explore larger 

datasets, more hyperparameter tuning, and on-device deployment to enhance practical applications. 
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