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 The Indian power grid is an extensive and mature power system that 

transfers large amounts of electricity between two regions linked by a power 

corridor. The increased reliance on decentralized renewable energy sources 

(RESs), such as solar power, has led to power system instability and voltage 

variations. Power quality and dependability in a smart grid (SG) setting can 

be enhanced by the careful tracking and administration of solar energy 

generated by panels. This study proposes a number of reactive power 

regulation algorithms that take smart grids into account. When developing a 

kernel, debugging is a must in optimal reactive power management. In this 

research, a debugging primitive called physical memory protection (PMP), a 

security feature, is considered. Debugging in the kernel domain requires 

specialized tools, in contrast to the user space where we have kernel 

assistance. This research proposes an optimal reactive power management in 

smart grid using kernel debugging model (ORPM-SG-KDM) for managing 

the reactive power efficiently. This research achieved 98.5% accuracy in 

kernel debugging and 99.2% accuracy in optimal reactive power 

management. Kernel debugging accuracy is increased by 1.8% and 3% of 

reactive power management accuracy is increased. 
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1. INTRODUCTION 

The conventional perception about power and energy systems is shifting from centralized to 

decentralized models [1]. Driven by demand-side management, transactive energy, and demand response, 

smart grids enable the integration of dispersed energy resources and encourage inclusive management 

engaging end-users [2]. Since all decisions are not made in one central location in this new smart grid 

paradigm, ensuring the reliability and quality of the grid's service becomes more challenging. Electrical and 

computer engineers must work together for smart grid implementation to be a success [3]. To lay the 

groundwork for sufficient methods of monitoring, controlling, managing, and operating, electrical engineers 

must guarantee the correct physical operation of the smart grids and their components. When it comes to 

managing and operating the smart grid and its components, computer engineers are crucial in supplying the 

correct computational models and tools, which in turn accurately reflect all the many stakeholders [4]. These 

models need to take into account the unique and shared objectives of each player to lay the groundwork for 

cooperative and competitive interactions that can fulfill everyone's needs while also ensuring the system's 

long-term viability from a technical, environmental, and economic perspective [5].  

Everyone from major corporations to individual households may play an active role in smart grids 

with its distributed architecture, which allows, incentivizes, and greatly benefits end-user participation [6]. 

https://creativecommons.org/licenses/by-sa/4.0/
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The fluctuation of energy demand, which frequently more than doubles during on-peak hours compared to 

off-peak demand, is one of the primary concerns in the development and operation of electric networks [7]. 

In the past, this variance would lead to the building of power plants and substantial investments in network 

connections and substations. The generating side becomes more volatile due to the widespread use of 

renewable energy sources, making it more difficult to achieve a balance between generation and consumption 

[8]. Flexibility on the demand side, ease of system operation, and ability to deal with growing percentage of 

renewable energy can be achieved by smart grid players' active participation made possible by transactive 

energy and demand response [9]. Within the framework of smart grids, smaller grids called microgrids can be 

constructed and managed. Those grids are operated and managed at the local level and are geographically 

limited [10]. They can be thought of as limited geographic regions where the power grid is typically linked to 

the main grid but can also function independently in island mode [11].  

For power systems to function at peak efficiency, reactive power regulation is an essential 

component. Recent global blackouts and voltage collapses have inadequate reactive power as one of their 

main causes [12]. Finding the best possible values for controllable variables in order to minimize an objective 

function is the general goal of reactive power control schemes [13]. Reactive power regulation poses a 

number of challenging restrictions and is hence a nonlinear optimization issue from a computational 

standpoint [14]. Reducing active power losses, minimizing voltage deviations, and improving the voltage 

stability margin are the primary objectives of the reactive power control problem that have been discussed in 

the literature [15]. The active and reactive power management is shown in Figure 1. 

 

 

 
 

Figure 1. Active and reactive power management model 

 

 

The proposed model uses kernel debugging for optimal reactive power management in smart grid. 

To make debugging and kernel development easier, certain operating system kernels include a debugger 

called a kernel debugger. When the kernel debugger is launched, all system operations come to a standstill in 

the SG. Unless it is exited, hardware interrupts will not be enabled and no thread will be able to make 

progress on any CPU [16]. So, one can take their time studying a static image of the entire system in kernel 

debugging land (KDL). 

Optimal reactive power management (ORPM) shows up as a difficult nonlinear issue in power 

system engineering. Reduced losses, better voltage profiles, and increased power system efficiency are the 

goals of ORPM. A more responsive and adaptive control strategy that can adapt to different load conditions 

and system configurations is made possible by this approach, which goes beyond traditional rule-based 

methods [17]. Engineers designing power systems can lessen the likelihood of outages and broken machinery 

by shifting reactive power generation [18]. ORPM is a set of procedures and methods for improving power 

system control, monitoring, and compensation. Capacitors, reactors and synchronous condensers are 

examples of reactive power control equipment that could be utilized in ORPM techniques [19]. To control 

voltage levels and offset variations in reactive power demand, these devices can inject or absorb reactive 

power as required [20]. This research proposes an optimal reactive power management in smart grid using 

kernel debugging model (ORPM-SG-KDM) for managing the reactive power efficiently. 

 

 

2. LITERATURE SURVEY 

It is usual practice to link distributed energy resources (DERs). to the grid via inverters, which are 

dc/ac converters. As a result, inverters are being more integrated into distribution systems alongside DERs. 

Revisions to grid requirement criteria for DERs are made based on their level of development and 
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penetration. Ancillary reactive power service can be provided by DERs through the regulation of their output 

reactive power, with the new grid codes. The key contribution of this paper designed by Safavizadeh et al. 

[1] is a practical procedure for reactive power management of inverter-based DERs (IBDER). Home energy 

management (HEM) systems play a crucial role in enhancing consumers' economic benefits due to the 

increasing use of distributed energy resources, energy storage systems (ESS), and electric vehicles (EVs) on 

a domestic scale. In the past, these systems focused on reducing active power use while ignoring reactive 

power. The power factor at the home-to-grid interface can be negatively affected by a large imbalance 

between reactive and active power. In order to maximize the power factor and guarantee that HEM systems 

achieve operational and budgetary objectives, Aldahmashi et al. [2] offered a novel approach to optimizing 

their performance. This method is based on precisely calculating the active and reactive power values for 

both electric vehicles and energy storage systems, as well as carefully controlling the thermostatic load 

according to user preferences.  

Research into networked microgrids (NMGs) resilient reactive power scheduling under harsh 

environments is the focus of this work performed by Shaker et al. [3]. A two-stage paradigm is suggested, 

with the first stage utilizing here-and-now (HAN) judgments and the second stage utilizing wait-and-see 

(WAS) decisions. The whole problem is expressed in mixed-integer linear programming, which is the 

stochastic programming approach that connects the HAN and WAS stages. As electricity distribution 

networks transition from passive to active systems, operators face new issues related to efficiency and 

reliability. Tziovani et al. [4] proposed a system for controlling and managing energy in an active distribution 

grid that includes prosumers. The author developed a multi-objective optimization model that ensures safe 

and dependable grid operation while minimizing the cost of power for prosumers and the cost of grid energy 

losses. This is accomplished by finding the active and reactive power set-points of the grid-integrated 

photovoltaic (PV) and storage systems. Because the resulting optimization model is not convex, a convex 

second-order cone program that produces. The kernel debugging uses in different aspects is represented in 

Table 1. 

 

 

Table 1. Kernel debugging uses in different aspects 
Aspect Existing Works Proposed Model 

Optimization approach Mostly rule-based or traditional machine learning 

techniques with limited adaptability. 

Uses kernel debugging for real-time 

diagnostics and adaptive optimization. 
Fault detection and debugging Relies on surface-level fault detection; lacks deep 

system diagnostics. 

Kernel debugging enables real-time fault 

diagnosis at the system level. 

Cybersecurity measures Focuses on encryption and network security but lacks 
low-level intrusion detection. 

Monitors system processes for anomalies, 
preventing cyber threats proactively. 

Scalability Limited scalability in large-scale smart grids with 

increased DERs. 

Supports distributed control and edge 

computing for scalable operations. 
Real-time response Slower response due to reliance on centralized 

processing. 

Faster real-time decision-making through 

optimized data handling. 

Interoperability Compatibility issues due to lack of standardized 
communication frameworks. 

Ensures seamless integration with existing 
and emerging smart grid systems. 

Computational efficiency High computational overhead due to centralized 
processing and lack of low-level optimization. 

Uses kernel-level diagnostics to optimize 
system resource allocation. 

 

 

3. PROPOSED MODEL 

To improve grid stability and efficiency, the reviewed literature on reactive power management in 

smart grids enabled by the internet of things has mostly concentrated on optimization methods [21], real-time 

monitoring, and cybersecurity measures [22]. While some research focuses on cybersecurity and fault 

detection without doing thorough system-level diagnostics, the majority of studies use static or conventional 

machine learning models that cannot adapt to changing grid conditions [23]. Also, most of the research 

focuses on centralized control systems, which have problems with scalability and responding quickly enough 

in large-scale grids that use DERs [24]. The optimized reactive power management system that has been 

developed, on the other hand, makes use of kernel debugging to give comprehensive insights into the system 

as a whole, which in turn allows for the optimization of resource allocation, the detection of anomalies, and 

the detection of faults in real time. Some operating system kernels come with a built-in debugger called a 

kernel debugger [25]. This makes it easier for developers to debug and build kernels. Kernel debuggers can 

take one of two forms: either a command line that can be used directly on the machine being debugged, or a 

stub that implements low-level operations [26]. Installing a system of sensors all across the power 

distribution grid to track different metrics in real-time [27]. This may contain essential information such as 

voltage, current, temperature, and more [28]. By bringing computer capabilities to the edge, data may be 

processed closer to its source, resulting in reduced latency and faster answers [29]. This is of the utmost 
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importance for applications that rely on time, including fault detection and reaction [30]. The proposed model 

framework is shown in Figure 2. 

 

 

 
 

Figure 2. Proposed model framework 

 

 

A program that is integrated into the kernel and uses data structures provided by the kernel is called 

a kernel program. When it comes to debugging the kernel, system administrators may also encounter a 

process hanging or stop operating in power distribution, change in kernel parameters affecting reactive power 

management and SG crashes or link breaks. This research proposes an ORPM-SG-KDM for managing 

reactive power efficiently.  

 

Algorithm 1. ORPM-SG-KDM 

{Input: SG Nodes List {SGNset} 

Output: Power Schedule {Pschd} 

Step-1: The nodes information is processed and maintained at the network authority. This SG nodes 

information is helpful for communicating with the other nodes securely. The node information is also used 

for power distribution to the other nodes and maintaining that information also. The node information 

processing is performed as (1), 

 

𝑁𝑖𝑛𝑓𝑜[𝑀] = ∑ 𝑔𝑒𝑡𝑎𝑑𝑑𝑟(𝑛) + 𝜔(𝑛) + 𝜆(𝑛, 𝑛 + 1) + 𝛿(𝑛) + 𝑇ℎ𝑀
𝑛=1  (1) 

 

Here node address is used to consider the address of node in smart grid, ω is the model for considering the 

transmission range of node and λ is the model that considers the adjacent node with minimum distance, δ is 

the model considering the energy utilization levels. Th is the threshold value initiated to 100. 

Step-2: When it comes to running electrical power systems efficiently, one of the biggest concerns is finding 

the appropriate schedule for reactive power. Optimal control variable settings for reactive power generators 

to optimize a certain objective function while satisfying all technological restrictions is the goal of this mixed 

integer and nonlinear problem. When it comes to the efficiency and security of the power system, voltage is a 

key performance indicator. It is a measure of the power system's reactive power balancing and distribution 

performance. The reactive power scheduling is performed as (2) and (3), 

 

𝑅𝑝𝑜𝑤[𝑀] = ∏
𝛾(𝑛,𝑛+1)

𝑀−𝑛
+ lim

𝑛→𝑀
(𝑚𝑖𝑛⁡(𝜆(𝑛, 𝑛 + 1)) +

µ(𝑛)

𝑀
)
𝑇

𝑀
𝑛=1  (2) 

 

𝑅𝑝𝑜𝑤𝑠𝑐ℎ𝑒𝑑[𝑀] = ∑ max(𝜔(𝑛, 𝑛 + 1)) +
𝑅𝑝(𝛼(𝑛))+φ(Ninfo(n))

𝑀

𝑀
𝑛=1  (3) 

 

Here γ is the model that considers the generated power, µ is the model that considers the nodes to distribute 

the power in the SG, α is the model that calculates the reactive power Rp maintained at a node n and φ is the 

model that calculates the total reactive power allocates to a node n and T is the voltage considered 

Step-3: Processing of topologies and state estimates are the main components. The topology processing unit 

converts the network model into a matrix-ready node branch representation by making use of the current state 

of the switches, which include isolators and breakers.  

Reactive power (Q) refers to the amount of energy that can be stored and released by AC circuit components 

that are inductive and capacitive.  
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Multiplying the current (𝑖(𝑡)) and voltage (𝑣(𝑡)) at any given time yields the instantaneous power (𝑝(𝑡)) in 

an alternating current (AC) circuit. 

 

𝑣(𝑡) = 𝑉𝑚𝑠𝑖𝑛(𝜔𝑡) (4) 

 

𝑖(𝑡) = 𝐼𝑚sin⁡(𝜔𝑡 + 𝜃) (5) 

 

Here 𝑉𝑚 and 𝐼𝑚 are the peak ranges of voltage and current and ω is the angular frequency. Θ is the phase 

difference between the voltage and the current waveforms. 

The instantaneous power is calculated as 

 

𝑃(𝑡) = 𝑣(𝑡) ∗ 𝑖(𝑡) (6) 

 

𝑝(𝑡) = 𝑉𝑚 sin(𝜔𝑡) ∗ 𝐼𝑚sin⁡(𝜔𝑡 + 𝜃) (7) 

 

The trigonometry identity of the sines product is obtained as 

 

𝑝(𝑡) =
𝑉𝑚𝐼𝑚

2
cos(𝜃) −

𝑉𝑚𝐼𝑚

2
cos(2𝜔𝑡 + 𝜃) (8) 

 

The average power is the average value of instantaneous power over once cycle is calculated as (9), 

 

𝑃 = 𝑉𝐼 ∗ 𝑐𝑜𝑠(𝜃) (9) 

 

The relationship function among V and I is calculated as (10), 

 

𝑃 = √(𝑣 ∗ 𝑖)2 − (𝑣 ∗ 𝑖 ∗ 𝑐𝑜𝑠(𝜃))2 (10) 

 

The reactive power management is performed as (11), 

 

𝑃 = (𝑣 ∗ 𝑖) ∗ √1 − 𝑐𝑜𝑠2(𝜃) (11) 

 

𝑂𝑅𝑝[𝑀] = ∑
max(P(α(n))) ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑤ℎ𝑒𝑟𝑒⁡α(n) > 𝑇ℎ

min(P(α(n)))𝑤ℎ𝑒𝑟𝑒⁡𝑤ℎ𝑒𝑟𝑒⁡α(n) < 𝑇ℎ
𝑀
𝑛=1  (12) 

 

𝑂𝑅𝑝𝑑𝑖𝑠[𝑀] = ∏ max(𝑂𝑅𝑝(𝑛)) − min(𝑂𝑅𝑝(𝑛)) + 𝑅𝑝𝑜𝑤𝑠𝑐ℎ𝑒𝑑(𝑛, 𝑛 + 1) {
𝑂𝑅𝑝(𝑛) < α(M)

𝑂𝑅𝑝(𝑛) > α(M)

𝑛𝑢𝑙𝑙⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

𝑀
𝑛=1  (13) 

 

Here 𝑇ℎ is the threshold value considered for reactive power generated range. 

Step-4: The kernel is an operating system software that typically has full authority over the whole system. 

The kernel is likewise in charge of avoiding or reducing the severity of process disputes. It is common 

practice for systems engineers to debug kernel programs they write. A program that is integrated into the 

kernel and uses data structures provided by the kernel is called a kernel program. The kernel setting and 

kernel debugging is performed as (14) and (15), 

 

𝐾𝑒𝑟𝑆𝑒𝑡[𝑀] = ∑ lim
𝑛→𝑀

(𝑂𝑅𝑝𝑑𝑖𝑠(𝑛) +
α(ORpdis(n))+α(OPpdis(n+1))

𝑂𝑅𝑝(𝑛)
)
𝑇

𝑀
𝑛=1  (14) 

 

𝐾𝑒𝑟𝐷𝑒𝑏𝑢𝑔[𝑀] = ∑
𝐾𝑒𝑟𝑆𝑒𝑡(𝑛)

𝑀
+max⁡(𝑠𝑖𝑚𝑚(α(ORpdis(n, n + 1)) + ω(KerSet(n))𝑀

𝑛=1  (15) 

 

Step-5: There is typically more than one best solution in the search space for optimization issues in the real 

world because the variables interact in complicated and non-linear ways. The efficiency with which classical 

algorithms handle optimization problems can vary depending on the nature of the problem at hand. An 

essential aspect of the operation of the power system is reactive power scheduling and management, a mixed-

integer programming problem that is both nonlinear and complex. All of the equality and inequality criteria 

are satisfied while it optimizes a given objective function. The optimal reactive power management is applied 

and schedule is generated as (16) and (17), 
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𝑂𝑅𝑃𝑀[𝑀] = ∑ min⁡(𝑠𝑖𝑚𝑚(𝐾𝑒𝑟𝐷𝑒𝑏𝑢𝑔(𝑛, 𝑛 + 1)) + max⁡(ω(KerSet(n)) +𝑀
𝑛=1

max⁡(𝑅𝑝𝑜𝑤𝑠𝑐ℎ𝑒𝑑(𝑛))   (16) 

 

𝑃𝑠𝑐ℎ𝑑[𝑀] = ∑ 𝑂𝑅𝑝𝑑𝑖𝑠(𝑛) + max(𝐾𝑒𝑟𝑆𝑒𝑡(𝑛)) + 𝜆(𝑛) + max⁡(𝑅𝑝𝑜𝑤𝑠𝑐ℎ𝑒𝑑(𝑛, 𝑛 + 1)𝑀
𝑛=1   (17) 

} 

 

 

4. RESULTS 

It is critical for power systems to have a systematic way of handling reactive power. Power systems 

have been divided into three main groups as part of the electrical sector's reform initiatives: generation, 

transmission, and distribution. An independent system operator oversees each of these entities. The 

autonomous grid operator is responsible for creating an environment where energy contracts may be executed 

throughout the transmission infrastructure, and active power is the most traded commodity in the electrical 

market. Among the many ancillary services needed in a competitive market, providing enough reactive 

power to maintain grid safety and voltage stability is of utmost importance. The lack of sufficient reactive 

power in the grid is a major obstacle to the fulfillment of energy contracts since it endangers the grid's 

operational safety and voltage balance. If the active power market consistently produces the same results, 

then the reactive power load can be optimally distributed. Generators are provided with ongoing 

remuneration under this conceptual framework for providing the reactive power necessary to sustain their 

active energy production activities. This research proposes an ORPM-SG-KDM for managing reactive power 

efficiently. The proposed model is compared with the traditional voltage variation mitigation using reactive 

power management of distributed energy resources in a smart distribution system (IBDER) and real-time 

energy management in smart homes through deep reinforcement learning (RTEMSH-DRL). The proposed 

model optimized power management is very efficient when contrasted with the traditional methods. 

Among the most difficult and intricate issues in the operation of contemporary power systems is the 

optimal scheduling of reactive power. The advent of liberalization or deregulation in the electricity business, 

where reactive power is exchanged as an additional service, has recently sparked great scrutiny from 

scientists and researchers worldwide. In order to minimize system costs while simultaneously minimizing 

losses, the optimal reactive power scheduling issue must adhere to a number of inequality and equality-based 

restrictions. Figure 3 represents the reactive power scheduling accuracy levels. 

It is critical to specify the particle-specific variable vector in order to handle the appropriate reactive 

power distribution during operation. There is a grand total of 90 entries for the variable vector of each 

particle in the SG that is being considered, which includes 39 buses and 12 transformers that include tap 

changers. A power system's performance indices can be optimized by reactive power distribution 

optimization by modifying the generator voltage, transformer ratio, and output force of the reactive power 

compensation device in response to the active power flow that is already known. The optimal reactive power 

distribution accuracy levels are shown in Figure 4. 

 

 

 
 

Figure 3. Reactive power scheduling accuracy levels 
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Figure 4. Optimal reactive power distribution accuracy levels 

 

 

To make debugging and kernel development easier, certain operating system kernels include a 

debugger called a kernel debugger. Another machine, running a full-blown debugger like GNU Debugger, 

can send commands to the kernel debugger stub over a serial line or via a network connection, or the 

debugger can provide a set of commands that can be used immediately on the system being debugged. A 

kernel debugger can also be a stub that implements low-level operations. The Kernel debugging accuracy 

levels is represented in Figure 5. 

 

 

 
 

Figure 5. Kernel debugging accuracy levels 

 

 

Regulating voltages, improving system efficiency, enhancing power transfer capability, achieving 

cost savings, managing congestion, and facilitating the integration of renewable energy sources are all vital 

functions of optimal reactive power management. A power system's performance indices can be optimized by 

reactive power management optimization by modifying the generator voltage, transformer ratio, and output 

force of the reactive power compensation device in response to the active power flow that is already known. 

The optimal reactive power management accuracy levels are depicted in Figure 6. 
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Figure 6. Optimal reactive power management accuracy levels 

 

 

5. CONCLUSION  

To guarantee the efficiency and dependability of the energy supply required to sustain smart cities, it 

is essential to evaluate energy and power quality indicators in a smart grid that supplies power to smart 

homes. A collection of inexpensive smart meters with IoT capabilities are used to monitor energy data in this 

research. The use of smart meters can provide valuable information on the measurement of energy production 

and consumption. Homeowners and utility companies alike can use this information to better manage energy 

use, cut down on waste, and adjust generation to meet current demand. This model makes use of the voltage 

stability margin to guarantee the attainment of maximum active power contracts in the market and to protect 

operational safety. This model also includes reactive power provision as a service. This research proposes a 

ORPM-SG-KDM for managing reactive power efficiently. By including additional variables, such as the 

voltage stability index, into the optimization cost function, the suggested method can be made more effective 

in the realm of perspective works. As a result, the network's voltage dynamic stability might be enhanced, 

protecting the weakest buses against voltage collapses. This research achieved 98.5% accuracy in kernel 

debugging and 99.2% accuracy in optimal reactive power management. Kernel Debugging Accuracy is 

increased by 1.8% and 3% of reactive power management accuracy is increased. In future, meta heuristic 

optimization techniques can be applied to the proposed model for better quality of service levels in SG. 
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