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 Automated plant species classification using leaf images holds immense 

potential for advancing agricultural research, biodiversity conservation, and 

ecological monitoring. This study introduces a novel approach leveraging 

deep feature representation to achieve accurate and efficient classification 

based on leaf morphology. Convolutional neural networks (CNNs), 

including VGG16, ResNet50, DenseNet1, Inception, and Xception, are 

employed to extract high-level features from leaf images, capturing intricate 

patterns essential for species differentiation. To manage the extensive feature 

set extracted by these models, optimization techniques such as principal 

component analysis (PCA), variance thresholding, and recursive feature 

elimination (RFE) are applied. These methods streamline the feature set, 

making the classification process more efficient. The optimized features are 

then trained using classifiers like support vector machine (SVM), k-nearest 

neighbors (K-NN), decision trees (DT), and naive Bayes (NB), achieving 

average accuracies of 98.6%, 96.6%, 99.6%, and 99.7%, respectively, across 

various cross-validation methods. Experimental results on benchmark 

datasets demonstrate the effectiveness of this approach, achieving state-of-

the-art performance in plant species classification. This work underscores 

the potential of deep feature representation in automated plant species 

classification, offering valuable insights for applications in agriculture, 

ecology, and environmental science. 
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1. INTRODUCTION 

Detecting plant diseases through image analysis is essential in precision agriculture. Traditionally, 

disease severity has been assessed visually by experts [1]. Although the use of digital cameras and 

advancements in information technology has increased the adoption of expert systems in agriculture, 

enhancing plant production [2], these systems still face significant challenges. 

Various artificial intelligence (AI) techniques, including K-nearest neighbors (K-NN), logistic 

regression, decision trees, support vector machines (SVM) [3], and convolutional neural networks (CNN), are 

extensively used for plant disease detection and classification. These methods often involve image 

preprocessing to enhance feature extraction. K-NN, a supervised algorithm, classifies by comparing 

https://creativecommons.org/licenses/by-sa/4.0/
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similarities between unlabeled and labeled data [4]. Decision trees, structured like a flowchart, make decisions 

based on attributes at each node but can face challenges such as overlapping nodes and overfitting [5].  

Sharif et al. [6] Introduced a technique for detecting diseases in citrus plants using texture features, 

combining principal component analysis with feature statistics for hybrid feature selection. Patil and Kumar [7] 

developed a system to detect diseases in soybean leaves by analyzing color, shape, and texture features using a 

content-based image retrieval approach. Sandika et al. [8] proposed a method for identifying grape leaf diseases 

in complex backgrounds, utilizing features like local binary patterns (LBP) and RGB color statistics, and 

applying machine learning algorithms such as support vector machines (SVM) and random forest. 

The primary research problem addressed in this study is the accurate and efficient classification of 

plant species using leaf images, overcoming the limitations of traditional methods that rely on manual feature 

extraction and conventional machine learning techniques. Our unique approach leverages deep feature 

representation by integrating multiple advanced CNN architectures (VGG16, ResNet50, DenseNet121, 

Inception, and Xception) to capture intricate patterns essential for species differentiation. Additionally, we 

employ sophisticated feature optimization techniques such as principal component analysis (PCA), variance 

thresholding, and recursive feature elimination (RFE) to streamline the feature set, reducing computational 

complexity and improving efficiency. This combination of deep feature extraction and optimization, along 

with the use of diverse classifiers (SVM, K-NN, decision trees, naive Bayes), results in state-of-the-art 

performance with accuracies up to 99.7%.  

 

 

2. RELATED STUDY 

Deep learning architectures have recently shown great effectiveness in tasks like object 

identification, classification, and segmentation, with CNNs being particularly prominent [9]. For example, 

Selvaraj et al. [10] developed a dataset of banana plant samples from Africa and Southern India, covering 17 

diseased classes and one healthy class. Using CNN architectures like ResNet50, InceptionV2, and 

MobileNetV1, they achieved a 90% accuracy rate. Lu et al. [11] explores various classifiers, including SVM, 

KNN, and Random Forest, for classification. The study [12] underscores the adaptability of CNN-based 

feature extraction and the potential of different classifiers in accurately classifying agricultural data. Barbedo 

[13] explores 79 disease detection of 14 different plant species. [14] introduces an optimal feature set for 

achieving higher classification accuracy in agricultural crop species classification. By combining various 

features and datasets, the study aims to further optimize classification accuracy and explore different feature 

combinations to enhance performance. [15] proposes an intelligent system for real-time identification of 

Indian medicinal herbs based on leaf images, utilizing Raspberry Pi. The developed machine learning models 

achieve impressive accuracy rates, demonstrating the feasibility of using low-cost hardware for real-world 

applications in plant identification. 

Introducing a CNN based method called D-Leaf for leaf classification, [16] compares different CNN 

models based on their feature extraction capabilities. The D-Leaf model achieves competitive testing 

accuracy compared to pre-trained CNN models. Chuanlei et al. [17] achieved 97% accuracy in their 

experiments on wheat plants, using a dataset with six diseased classes and one healthy class. Similarly,  

Singh et al. [18] developed a system for detecting tea leaf diseases with a modified deep convolutional neural 

network, achieving an average accuracy of 92%. Chakraborty et al. [19] conducted experiments on 79 

different diseases across 14 plant types using the GoogLeNet architecture, with accuracy scores consistently 

above 75%. Krizhevsky et al. [20] explored various CNN architectures, achieving up to 99% accuracy, with 

VGG reaching 81% across multiple plant types. Geetharamani and Pandian [3] worked with a dataset 

containing 38 classes from 14 plant types, attaining a 96% accuracy rate. Traditional machine learning 

approaches, though effective in plant disease identification, are limited by the sequential nature of image 

segmentation [21], feature extraction [22], and pattern recognition [23]. While basic CNN models like 

AlexNet, VGGNet, GoogLeNet, DenseNet, and ResNet have been extensively utilized for plant disease 

classification, they come with drawbacks such as high parameter demands and slow computation speeds. 

Despite their strength in capturing both high- and low-level features, these models often struggle with 

consistently describing local spatial characteristics [24]. [24] Implemented residual learning framework to 

ease the training mechanism there is 28% relative improvement in COCO object detection dataset. 

 

 

3. METHODOLOGY  

Block schematic of the proposed method is shown in Figure 1. It consists of four stages, namely, 

pre-processing, deep feature extraction, feature optimization and classification. The research focuses on 

classification of plant leaf images, many researchers have worked on identification of leaf diseases rather 

than on identification leaftypes specifically growing in this part of the country and also proved to have rich 
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business value. There exist many varieties of plants; the article proposes 14 plant leaf classification 

methodology using deep features. Datasets of 14 plants are collected from different research work cited in the 

literature survey section. Commonly and widely used CNN are used for deep feature extraction, namely, 

VGG16, Resnet50, InceptionV3, Xception and Densenet121. Models such as VGG16, pre-trained on large 

datasets like ImageNet, offer a transferable set of features that capture rich visual information from images. 

ResNet enables effective gradient flow and facilitates the learning of highly abstract features throughout the 

network layers. InceptionV3 and its variants leverage inception modules, which use multiple convolutions of 

different kernel sizes within the same layer. Xception, inspired by Inception architecture, replaces traditional 

convolutions with depth wise separable convolutions. This modification decouples spatial and channel-wise 

correlations in feature maps, leading to improved feature representation with fewer parameters. 

Figure 2 shows the use of VGG16 model for deep feature extraction and its relevant approximate 

breakdown of the number of features extracted at each layer:  

a. Input layer: this layer doesn't produce features directly, but it accepts input images of size (224, 224, 3). 

b. Convolutional layers: VGG16 has a total of 13 convolutional layers (including pooling layers). 

c. Each convolutional layer typically outputs feature maps of varying sizes, gradually reducing spatial 

dimensions while increasing depth (number of filters). 

d. Fully connected layers: after flattening, VGG16 includes three fully connected layers with decreasing 

numbers of neurons: 4096, 4096, and 1000 (for ImageNet's 1000 classes).25,088 represent the feature 

vector extracted from the last convolutional layer before feeding into fully connected layers or 

classification.Having various CNN models available in the literature, an experiment was conducted to 

analyze the behavior of different CNN models and the number of features they extract. Table 1 provides 

detailed performance metrics for these models both with and without feature optimization.  

 

 

 
 

Figure 1. Block schematic of the proposed study 

 

 

3.1.  Principal component analysis (PCA)  

It is a method used for dimensionality reduction, widely applied in fields like image processing, data 

visualization, and machine learning. Mathematically, PCA begins by standardizing the data to ensure 

uniformity across variables. Then, it computes the covariance matrix of the standardized data: 

 

𝑐𝑜𝑣𝑎𝑟𝑖𝑒𝑛𝑐𝑒 =
1

(𝑛−1)
(𝑋𝑇𝑋)  (1) 

 

Here, 𝑋 is the 𝑛 × 𝑝 matrix of the standardized data. 
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PCA then derives the eigenvectors 𝑣1, 𝑣2, … , 𝑣𝑝 and their corresponding eigenvalues λ1, λ2, …, λp 

arranged in descending order. These represent the directions of maximum variance and their magnitudes, 

respectively. 

 

 

 
 

Figure 2. Deep feature extraction methodology 

 

 

Table 1. Number of features extracted from different CNN models considered  
VGG16 RESNET50 INCEPTIONV3 DENSENET121 XCEPTION 

Original number of features 25088 100352 131072 50176 204800 
Reduced number of features after PCA 179 185 183 174 172 

Accuracy after PCA: 0.7857 0.8928 0.8928 0.875 0.9285 

Reduced number of features after variance 
thresholding 

21016 59900 70480 21180 29083 

Accuracy after variance thresholding 0.8928 0.9107 0.8214 0.9285 0.9107 

Number of features after preliminary PCA 100 100 100 100 100 
Reduced number of features after RFE 50 50 50 50 50 

Accuracy after RFE: 0.8928 0.8928 0.8571 0.9107 0.9285 

Accuracy without optimization: 0.9107 0.9464 0.8392 0.8928 0.9285 

 

 

3.1.1. Variance thresholding  

Variance thresholding is employed as a feature selection technique to enhance the performance of 

the random forest classifier by eliminating features with low variance that are deemed less informative for 

classification tasks. The method hinges on the premise that features exhibiting minimal variance across 

samples are less likely to contribute meaningfully to distinguishing between different classes. For each 

feature f in the dataset, the variance 𝜎𝑓
2 is computed as the average squared deviation from the mean:  

 

𝜎𝑓
2 =

1

𝑛
∑ (𝑥𝑖,𝑓

𝑛
𝑖=1 − �̅�𝑓)2 (2) 

 

Here, 𝑥𝑖,𝑓 represents the value of feature 𝑓 in sample 𝑖, (�̅�𝑓) denotes the mean of feature f across all samples, 

and n signifies the total number of samples.  

 

3.1.2. Recursive feature elimination (RFE)  

RFE is a feature selection technique that systematically removes attributes to improve model 

performance and interpretability. In RFE, a machine learning model is trained on the dataset, and features are 

recursively pruned based on their importance until the optimal subset is determined. The process begins by 

fitting a machine learning model (in our case, a random forest classifier) to the dataset with an initial set of 

features, which may be reduced using principal component analysis (PCA) to manage high-dimensional data 

effectively: 

 

𝑋𝑝𝑐𝑎 = 𝑃𝐶𝐴(𝑋𝑡𝑟𝑎𝑖𝑛 , 𝑛𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 = 100) 

 

Here, 𝑋𝑡𝑟𝑎𝑖𝑛 represents the training data, and 𝑋𝑝𝑐𝑎  denotes the PCA-transformed feature set with reduced 

dimensions. 

 

3.2.  Optimized feature selection   

Building upon the mathematical foundation of optimization techniques discussed earlier, this section 

outlines the specific approach used for feature optimization. The chosen methodology is tailored to enhance 
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the selection of relevant features. Each step is designed to ensure improved model performance and 

computational efficiency.  

 

3.3.  Principal component analysis (PCA) 

Principal component analysis (PCA) is employed to reduce the dimensionality of the extracted deep 

features while preserving 95% of their original variance by setting 𝑛𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠  to 0.95. This dimensionality 

reduction plays a key role in addressing the curse of dimensionality, which can negatively impact model 

accuracy and efficiency. Additionally, it significantly decreases computational load, enabling faster 

processing without a notable loss in model implementation. PCA is applied to reduce the dimensionality of 

the extracted deep features while retaining 95% of their variance (𝑛𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 =0.95). This reduction helps 

mitigate the curse of dimensionality and speeds up computation without significantly sacrificing model 

performance. 

After PCA transformation (𝑋𝑡𝑟𝑎𝑖𝑛𝑝𝑐𝑎
 and 𝑋𝑡𝑒𝑠𝑡𝑝𝑐𝑎

), a random forest classifier (𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝑝𝑐𝑎) is 

trained and evaluated on the reduced feature set to assess its classification accuracy (𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑝𝑐𝑎). Setting 

PCA (𝑛𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 =0.55) to retain 55% of variance is a strategic choice that balances dimensionality 

reduction with the preservation of essential information. By retaining 55% of the variance, the number of 

features is significantly reduced, which helps alleviate the curse of dimensionality and mitigate over fitting. 

This reduction simplifies the model and decreases computational complexity, while still maintaining enough 

variance to ensure that crucial information is preserved for accurate predictions. This approach effectively 

addresses the trade-off between reducing feature space and retaining significant data characteristics, thus 

optimizing the performance of the model. Also, Table 2 gives the performance of the model for different 

percentage of variance. 

 

3.3.1. Variance thresholding 

Variance thresholding (𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) is used to remove features with low variance. The 

threshold is set dynamically based on the variance of each feature (𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = (0.8 ∗  (1 −  0.8))). This 

technique is beneficial for eliminating features that do not vary much within the dataset, potentially reducing 

noise and improving model robustness. 

The random forest classifier (𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟_𝑣𝑎𝑟) is trained and evaluated on the selected features 

(𝑋_𝑡𝑟𝑎𝑖𝑛_𝑣𝑎𝑟 and 𝑋_𝑡𝑒𝑠𝑡_𝑣𝑎𝑟), and its accuracy (𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦_𝑣𝑎𝑟) is computed to compare with PCA. The 

use of 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = (4 ∗  (1 −  0.8))) with a threshold of 0.8 (or 4×0.2) is designed 

to filter out features with low variance, which are less likely to contribute meaningful information to the 

model. The threshold value of 0.8 is chosen to remove features that have very low variance—specifically, 

those with variance less than 20% of the overall variance. This approach enhances model efficiency by 

focusing on more informative features while discarding those that contribute little to predictive performance. 

Table 3 provides the variation of the model performance for different variance threshold values. 

 

 

Table 2. Performance of the model for different variance during optimization 
Variance 0.95 0.75 0.55 0.45 0.35 

Original number of features: 25088 25088 25088 25088 25088 25088 

Reduced number of features after PCA: 90 179 90 43 27 15 
Accuracy after PCA: 0.8214285714285714 0.78 0.8214 0.85 0.82 0.8 

Reduced number of features after Variance Thresholding: 21016 21016 21016 21016 21016 21016 

Accuracy after Variance Thresholding: 
0.8928571428571429 

0.89 0.8928 0.89 0.892 0.892 

Number of features after preliminary PCA: 100 100 100 100 100 100 

Reduced number of features after RFE: 50 50 50 50 50 50 
Accuracy after RFE: 0.8214285714285714 0.85 0.8214 0.8214 0.8214 0.8214 

 

 

Table 3. Performance of the model for different threshold during optimization 
Threshold 0.8 0.9 1 1.2 2 4 8 16 

Number of images 280 280 280 280 280 280 280 280 
Original number of features 25088 25088 25088 25088 25088 25088 25088 25088 

Reduced number of features after PCA 43 43 43 43 43 43 43 43 

Accuracy after PCA 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 
Redatures after Variance Thresholding 21016 20863 20734 20490 19688 18102 15959 13141 

Accuracy after Variance Thresholding 0.89 0.89 0.83 0.875 0.91 0.91 0.875 0.857 

Number of features after preliminary PCA 200 200 200 200 200 200 200 200 
Reduced number of features after RFE 100 100 100 100 100 100 100 100 

Accuracy after RFE 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 
Accuracy without optimization 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 
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3.3.2. Recursive feature elimination (RFE) 

RFE is applied after an initial PCA reduction (PCA (𝑛_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 = 100)) to further select the 

most informative features (𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑡𝑜_𝑠𝑒𝑙𝑒𝑐𝑡 = 50). RFE iteratively removes less important features 

based on their contribution to model accuracy, using a Random Forest estimator (𝑟𝑓𝑒_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟). In this 

approach, a random forest classifier is employed to rank feature importance due to its capacity to manage 

large feature sets and generate reliable importance scores. The RFE process is configured to select the top 

100 features, systematically removing 5 features at each iteration. Random forest classifiers are used to rank 

feature importance, leveraging its ability to handle large feature sets and provide robust importance scores. 

The RFE configuration aims to select 100 features, removing 5 features in at each iteration. This approach 

involves training the model on the full feature set, ranking features based on their importance, and then 

eliminating the least significant ones. This process is repeated until the desired number of features is 

reached, ensuring that only the most impactful features are retained for enhanced model efficiency and 

performance. Table 4 provides the variation of the model performance for different estimator to reduced 

features values. 

 

 

Table 4. Performance of the model for different ratios of features to iteration 
Reduced features 150/100 200/100 100/100 

Original number of features: 25088 25088 25088 25088 
Reduced number of features after PCA: 43 43 43 43 

Accuracy after PCA: 0.8571428571428571 0.85 0.85 0.85 

Reduced number of features after Variance Thresholding: 21016 21016 21016 21016 
Accuracy after Variance Thresholding: 0.8928571428571429 0.89 0.89 0.89 

Number of features after preliminary PCA: 150 150 200 100 

Reduced number of features after RFE: 100 100 100 100 
Accuracy after RFE: 0.8571428571428571 0.82 0.85 0.83 

 

 

3.3.3. Classification 

This study evaluates four classifiers: random forest, K-NN, SVM, and naïve Bayes. Random forest, 

an ensemble method, constructs multiple decision trees, offering robustness and high accuracy with complex 

datasets. K-NN classifies data based on the nearest neighbors; it is simple but can be computationally 

intensive with large datasets. SVM is a powerful supervised algorithm that finds the optimal hyperplane for 

class separation in high-dimensional spaces but requires careful tuning. Naïve Bayes, a probabilistic classifier 

based on Bayes' theorem, assumes feature independence and is effective for specific tasks like text 

classification. These classifiers were selected for their unique approaches and strengths, offering a 

comprehensive comparison of their performance. The performance of these models is depicted in Figure 3, 

with corresponding classification metrics for different CNN models provided in Table 5. 

 

 

 
 

Figure 3. Performance of classifiers for different CNN models 
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Table 5. Classification metrics for different CNN models 
CNN Classifier Accuracy Precision Recall F1-Score 

VGG16 RF 95 97 95 95 
SVM 91 95 91 91 

NB 95 96 95 95 

K-NN 91 92 91 91 
RESNET50 RF 95 96 95 95 

SVM 84 91 84 84 

NB 96 97 96 97 
K-NN 86 90 86 85 

INCEPTIONV3 RF 88 90 88 88 

SVM 84 82 84 85 
NB 89 90 89 89 

K-NN 88 91 88 87 

XCEPTION RF 95 97 95 95 
SVM 86 92 86 87 

NB 95 96 95 95 

K-NN 88 91 88 87 

DENSENET121 RF 95 97 95 95 

SVM 91 95 91 91 

NB 95 96 95 95 
K-NN 91 92 91 91 

 

 

4. RESULTS AND DISCUSSION 

The performance evaluation of various CNN models, including VGG16, ResNet50, InceptionV3, 

DenseNet121, and Xception, before and after applying feature optimization techniques, provides valuable 

insights into the effectiveness of these models and the impact of optimization on classification accuracy. 

Initially, models like ResNet50 and Xception performed well even without optimization, indicating their 

inherent capability to capture and represent intricate patterns in leaf images. However, feature optimization 

techniques such as PCA, variance thresholding, and RFE significantly enhanced the models' performance by 

reducing dimensionality, filtering out less informative features, and systematically removing less important 

features. This led to improved computational efficiency and accuracy, with optimized feature sets providing a 

more efficient foundation for future model development. Table 6 provides the details of the hyper parameters 

used to set the classifiers. The comparative performance of the models highlights the importance of feature 

optimization in achieving state-of-the-art results. Although some models achieved high accuracy without 

optimization, the application of PCA, Variance Thresholding, and RFE provided additional benefits in terms 

of efficiency and robustness. Figure 4 shows the confusion matrix and ROC curve for various CNN models 

with selected classifiers, demonstrating strong classification accuracy as detailed in Table 5. The confusion 

matrix and ROC curve analyses further illustrate the models' effectiveness in distinguishing between different 

plant species, with higher AUC values reflecting better class discrimination. This in-depth analysis 

underscores the significance of integrating advanced CNN architectures with feature optimization techniques, 

making the proposed model a valuable tool for precision agriculture, biodiversity conservation, and 

ecological monitoring. 

 

4.1.  Comparison with existing methods 

The dataset under consideration consists of 20,357 images representing fourteen classes of plant 

leaves. A comparative analysis, highlights the performance differences between handcrafted and deep 

features. While deep features exhibit superior performance, they also present challenges, such as the need for 

substantial datasets and significant computational resources. Furthermore, Table 6 illustrates that this work 

surpasses conventional research methodologies, particularly in handling a larger number of classes. 

 

 

Table 6. Comparison with related work  
Sl no Reference no Method No of classes Accuracy 

1 [25] VGG16 4 90.40 

2 [20] M-SVM 4 97.20 

3 [21] DWT, COLOR HISTOGRAM 3 98.63 
4 [22] SHUFFLENETV1 4 97.79 

5 [23] DEEP FEATURE + LBP 4 98.80 

6 Proposed Deep features 14 99.7 
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VGG16 model with RF classifier 

 

 
DenseNet model with NB classifier 

 

 
InceptionV3 model with NB classifier 

 

Figure 4. Confusion matrix and ROC curve of CNN models 

 

 

5. CONCLUSION 

The study demonstrates the efficacy of deep feature representation in the automated classification of 

plant species using leaf images. By employing CNN models such as VGG16, ResNet50, DenseNet121, 

Inception, and Xception, we successfully captured high-level, discriminative features essential for accurate 

species differentiation. The application of optimization techniques like PCA, Variance Thresholding, and 

RFE further enhanced the efficiency of the feature set, leading to high classification accuracies when 

combined with classifiers such as SVM, K-NN, DT, and NB. The achieved results, with accuracies reaching 

up to 99.7%, underscore the potential of this approach in advancing agricultural research, biodiversity 

conservation, and ecological monitoring. Future work will focus on expanding the dataset and exploring 

additional optimization strategies to further refine the classification process.  



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Deep feature representation for automated plant species classification from leaf images (Nikhil Inamdar) 

3767 

FUNDING INFORMATION 

This research did not receive any specific grant from funding agencies in the public, commercial, or 

not-for-profit sectors. 

 

 

AUTHOR CONTRIBUTIONS STATEMENT 

Nikhil Inamdar conceived the study, designed the methodology, and performed the experiments. 

Manjunath Manguli contributed to data analysis, interpretation, and technical validation. Uttam Patil assisted 

with manuscript drafting, critical revisions, and final approval of the version to be published. All authors 

have read and agreed to the published version of the manuscript. 

 

Name of Author C M So Va Fo I R D O E Vi Su P Fu 

Nikhil Inamdar  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓   ✓  

Manjunath Managuli          ✓  ✓   

Uttam Patil          ✓  ✓   

 

C :  Conceptualization 

M :  Methodology 

So :  Software 

Va :  Validation 

Fo :  Formal analysis 

I :  Investigation 

R :  Resources 

D : Data Curation 

O : Writing - Original Draft 

E : Writing - Review & Editing 

Vi :  Visualization 

Su :  Supervision 

P :  Project administration 

Fu :  Funding acquisition 

 

 

 

CONFLICT OF INTEREST STATEMENT 

Authors declare that there is no conflict of interest 

 

 

DATA AVAILABILITY  

The data used in this study are publicly available and can be accessed from open sources as cited 

within the manuscript or can be contacted to author  

 

 

REFERENCES 
[1] A. A. Bharate and M. S. Shirdhonkar, “A review on plant disease detection using image processing,” in 2017 International 

Conference on Intelligent Sustainable Systems (ICISS), Dec. 2017, pp. 103–109. doi: 10.1109/iss1.2017.8389326. 

[2] P. Zhao, G. Liu, M. Li, and D. Li, “Management information system for apple diseases and insect pests based on GIS,” Nongye 

Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, vol. 22, no. 12, pp. 150–154, 2006, doi: 
10.3969/j.issn.1002-6819.2006.12.029. 

[3] G. Geetharamani and J. A. Pandian, “Identification of plant leaf diseases using a nine-layer deep convolutional neural network,” 

Computers & Electrical Engineering, vol. 76, pp. 323–338, Jun. 2019, doi: 10.1016/j.compeleceng.2019.04.011. 
[4] E. M. F. El Houby, “A survey on applying machine learning techniques for management of diseases,” Journal of Applied 

Biomedicine, vol. 16, no. 3, pp. 165–174, Aug. 2018, doi: 10.1016/j.jab.2018.01.002. 
[5] C.-C. Yang et al., “Application of decision tree technology for image classification using remote sensing data,” Agricultural 

Systems, vol. 76, no. 3, pp. 1101–1117, Jun. 2003, doi: 10.1016/s0308-521x(02)00051-3. 

[6] M. Sharif, M. A. Khan, Z. Iqbal, M. F. Azam, M. I. U. Lali, and M. Y. Javed, “Detection and classification of citrus diseases in 
agriculture based on optimized weighted segmentation and feature selection,” Computers and Electronics in Agriculture, vol. 150, 

pp. 220–234, Jul. 2018, doi: 10.1016/j.compag.2018.04.023. 

[7] J. K. Patil and R. Kumar, “Analysis of content based image retrieval for plant leaf diseases using color, shape and texture 
features,” Engineering in Agriculture, Environment and Food, vol. 10, no. 2, pp. 69–78, Apr. 2017, doi: 

10.1016/j.eaef.2016.11.004. 

[8] B. Sandika, S. Avil, S. Sanat, and P. Srinivasu, “Random forest based classification of diseases in grapes from images captured in 
uncontrolled environments,” in 2016 IEEE 13th International Conference on Signal Processing (ICSP), Nov. 2016,  

pp. 1775–1780. doi: 10.1109/icsp.2016.7878133. 

[9] S. Uğuz and N. Uysal, “Classification of olive leaf diseases using deep convolutional neural networks,” Neural Computing and 
Applications, vol. 33, no. 9, pp. 4133–4149, Aug. 2020, doi: 10.1007/s00521-020-05235-5. 

[10] M. G. Selvaraj et al., “AI-powered banana diseases and pest detection,” Plant Methods, vol. 15, no. 1, Aug. 2019, doi: 

10.1186/s13007-019-0475-z. 
[11] J. Lu, J. Hu, G. Zhao, F. Mei, and C. Zhang, “An in-field automatic wheat disease diagnosis system,” Computers and Electronics 

in Agriculture, vol. 142, pp. 369–379, Nov. 2017, doi: 10.1016/j.compag.2017.09.012. 

[12] G. Hu, X. Yang, Y. Zhang, and M. Wan, “Identification of tea leaf diseases by using an improved deep convolutional neural 
network,” Sustainable Computing: Informatics and Systems, vol. 24, p. 100353, Dec. 2019, doi: 10.1016/j.suscom.2019.100353. 

[13] J. G. Arnal Barbedo, “Plant disease identification from individual lesions and spots using deep learning,” Biosystems Engineering, 

vol. 180, pp. 96–107, Apr. 2019, doi: 10.1016/j.biosystemseng.2019.02.002. 
[14] E. C. Too, L. Yujian, S. Njuki, and L. Yingchun, “A comparative study of fine-tuning deep learning models for plant disease 

identification,” Computers and Electronics in Agriculture, vol. 161, pp. 272–279, Jun. 2019, doi: 10.1016/j.compag.2018.03.032. 

[15] K. P. Ferentinos, “Deep learning models for plant disease detection and diagnosis,” Computers and Electronics in Agriculture, 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 4, August 2025: 3759-3768 

3768 

vol. 145, pp. 311–318, Feb. 2018, doi: 10.1016/j.compag.2018.01.009. 

[16] B. Liu, Y. Zhang, D. He, and Y. Li, “Identification of Apple leaf diseases based on deep convolutional neural networks,” 
Symmetry, vol. 10, no. 1, p. 11, Dec. 2017, doi: 10.3390/sym10010011. 

[17] Z. Chuanlei, Z. Shanwen, Y. Jucheng, S. Yancui, and C. Jia, “Apple leaf disease identification using genetic algorithm and 

correlation-based feature selection method,” International Journal of Agricultural and Biological Engineering, vol. 10, no. 2, pp. 
74–83, 2017, doi: 10.3965/j.ijabe.20171002.2166. 

[18] S. Singh, S. Gupta, A. Tanta, and R. Gupta, “Extraction of multiple diseases in apple leaf using machine learning,” International 

Journal of Image and Graphics, vol. 22, no. 03, Feb. 2021, doi: 10.1142/s021946782140009x. 
[19] S. Chakraborty, S. Paul, and M. Rahat-uz-Zaman, “Prediction of Apple leaf diseases using multiclass support vector machine,” in 

2021 2nd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), Jan. 2021, pp. 147–151. 

doi: 10.1109/icrest51555.2021.9331132. 
[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” 

Communications of the ACM, vol. 60, no. 6, pp. 84–90, May 2017, doi: 10.1145/3065386. 

[21] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv:1409.1556, Sep. 
2014. 

[22] C. Szegedy et al., “Going deeper with convolutions,” in 2015 IEEE Conference on Computer Vision and Pattern Recognition 

(CVPR), Jun. 2015, pp. 1–9. doi: 10.1109/cvpr.2015.7298594. 
[23] F. N. Iandola, M. W. Moskewicz, S. Karayev, R. Girshick, T. Darrell, and K. Keutzer, “DenseNet: Implementing efficient 

convnet descriptor pyramids,” arXiv preprint arXiv:1404.1869, 2014. 

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” Proceedings of the IEEE Computer Society 
Conference on Computer Vision and Pattern Recognition, pp. 770–778, 2016, doi: 10.1109/CVPR.2016.90. 

[25] L. Cai, J. Zhu, H. Zeng, J. Chen, C. Cai, and K.-K. Ma, “HOG-assisted deep feature learning for pedestrian gender recognition,” 

Journal of the Franklin Institute, vol. 355, no. 4, pp. 1991–2008, Mar. 2018, doi: 10.1016/j.jfranklin.2017.09.003. 

 

 

BIOGRAPHIES OF AUTHORS 

 

 

Nikhil Inamdar     assistant professor at KLS Gogte Institute of Technology, 

which is affiliated with Visvesvaraya Technological University, located in Belagavi, India. 

Holds a Master's degree (M.Tech.) in Industrial Electronics from Visvesvaraya University, 

Belagavi, showcasing his expertise in the field. Currently pursuing a Ph.D., demonstrating 

his commitment to furthering his knowledge and contributing to academia. In his academic 

journey, he has a keen interest in areas such as artificial intelligence (AI), machine learning 

(ML), deep learning (DL), and embedded systems. These areas of interest reflect passion for 

cutting-edge technologies and their application in various fields. As an educator and 

researcher, strives to bridge the gap between theory and practice, aiming to make significant 

contributions to the advancement of these fields. He can be contacted at email: 

nikhil0870@gmail.com and njinamdar@git.edu. 

  

 

Manjunath Managuli     is an accomplished associate professor with a decade of 

dedicated service in academia. Currently affiliated with the esteemed KLS Gogte Institute of 

Technology, Dr. Managuli has established himself as a dynamic educator and a committed 

researcher. With a passion for teaching, Dr. Managuli has been actively involved in shaping 

the academic journey of students, imparting knowledge in [mention the specific field or 

subject]. His engaging teaching methods and ability to connect with students have garnered 

admiration and respect within the academic community. He can be contacted at 

email:manjunathm@git.edu. 

  

 

Uttam Patil     is an accomplished professor and HOD Computer Science 

Department with a more than decade of dedicated service in academia. Currently affiliated 

with the esteemed Jain College of Engineering, Dr. Uttam Patil has established himself as a 

dynamic educator and a committed researcher. With a passion for teaching, Dr. Uttam Patil 

has been actively involved in shaping the academic journey of students, imparting 

knowledge. His engaging teaching methods and ability to connect with students have 

garnered admiration and respect within the academic community He can be contacted at 

email: uttampatil@jainbgm.in. 

 

mailto:nikhil0870@gmail.com
mailto:njinamdar@git.edu
mailto:manjunathm@git.edu
mailto:uttampatil@jainbgm.in
https://orcid.org/0000-0001-7963-9023
https://scholar.google.com/citations?user=UK7-t3QAAAAJ&hl=en
https://www.scopus.com/freelookup/form/author.uri?zone=TopNavBar&origin=NO%20ORIGIN%20DEFINED
https://orcid.org/0000-0002-8638-2139
https://scholar.google.co.in/citations?user=XRSk1KMAAAAJ&hl=en
https://orcid.org/0000-0003-4013-7995
https://scholar.google.co.in/citations?hl=en&user=c7B9QKoAAAAJ

