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 The article examines the influence of Markov processes on computations in 

Bayesian networks (BN), an important area of research within probabilistic 

graphical models. The concept of Bayesian Markov networks (BMN) is 

introduced, an extension of traditional Bayesian networks with the addition 

of a Markov constraint, according to which the probability in a node can 

only depend on the state of neighboring nodes. This constraint makes the 

model more realistic for many practical tasks, as most graphical models that 

reflect real-world processes possess the Markov property. The article also 

discusses that Bayesian networks, in the absence of evidence, actually 

exhibit the Markov property. However, when evidence (additional 

information) is introduced into the model, challenges arise that require more 

complex computational methods. In response, the article proposes 

algorithms adapted for working with Bayesian Markov networks in the 

presence of evidence. These algorithms are aimed at optimizing 

computations and reducing computational complexity. Additionally, a 

comparative analysis of calculations in Bayesian networks without Markov 

constraints and with them is conducted, highlighting the advantages and 

disadvantages of each approach. Special attention is paid to the practical 

applications of the proposed methods and their effectiveness in various 

scenarios. 
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1. INTRODUCTION 

In the theory of Bayesian networks [1]–[3], the ideas of Markov [4]–[6] play a key role, especially 

in developing efficient algorithms for data processing under uncertainty. Markov processes are of particular 

interest to researchers for several reasons. First, they are intuitively understandable and natural for many 

applied tasks, making them attractive for various fields. Second, incorporating Markov ideas into Bayesian 

networks (BNs) [7]–[9] can significantly simplify computational algorithms, thereby speeding up the 

probability calculation process and expanding the possibilities of working with larger networks. Finally, 

Markov processes are well-studied within the framework of Markov chain theory [10]–[12], which allows for 

adapting existing developments to work with Bayesian networks. Intelligent decision support systems  

[13], [14], especially in various types of uncertainties, are often described using Bayesian networks. One of 

the main challenges in working with BNs is the need to perform calculations considering the presence of 

evidence-information that can alter the probability distribution in the network. Standard methods, such as 

https://creativecommons.org/licenses/by-sa/4.0/
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algorithms based on junction trees [15], [16], require complex computational procedures. The most well-

known method for exact inference in BNs is the probability propagation method [17]–[19] in cluster trees 

(PPTC), proposed by Lauritzen [20] and refined by Jensen. This method transforms the belief network into a 

more computation-friendly structure; however, its application can be time-consuming and slow. 

Shayakhmetova et al. [21] discusses critical issues related to using Bayesian networks for solving 

practical problems in which graphical models contain directed cycles. The strict requirement for the 

acyclicity of the directed graph representing a Bayesian network does not allow for the effective solution of 

most tasks that involve directed cycles. Modern Bayesian network theory prohibits the use of directed cycles. 

The requirement for graph acyclicity can significantly simplify the general theory of Bayesian networks and 

simplify the development of algorithms and their implementation in code for computations in Bayesian 

networks. Akhmetova et al. [22] examines the urgent problem of maximizing human survival during a fire 

and their immediate evacuation. Various methods are being proposed worldwide, including intelligent 

devices and wireless systems, concerning this issue. The main goal is to efficiently utilize time, regularly 

inform people, and guide them out of danger zones, thereby reducing the number of casualties. The article 

also describes the concept of an emergency and its causes. Modern methods of detecting people and 

navigation during a fire, as well as the use of wireless equipment and intelligent algorithms, are discussed in 

detail. The system’s architecture, goals, objectives, and solutions are presented. Examples are provided to 

explain the importance and usefulness of this research for people. The article includes information on the use 

of sensors, with tables illustrating their application, interconnections, and wireless communication with the 

central server. As a result, a system was developed that operates based on electronic indicators showing the 

direction to a safe place in the event of an emergency, which receives signals from the central server. 

Alimhan et al. [23] addresses the problem of global practical output tracking for a class of high-order 

nonlinear systems with time delays (using state feedback). Under moderate growth conditions of system 

nonlinearities, including time delays, a state feedback regulator design with an adjustable scaling factor is 

proposed. Using the Lyapunov-Krasovskii functional, this scaling factor is adjusted to dominate the time-

delay nonlinearities, bounded by growth conditions, and to make the tracking error arbitrarily small while all 

states of the closed-loop system remain bounded. A simulation example is provided to illustrate the 

effectiveness of the proposed tracking regulator. 

Alimhan et al. [24] discusses the problem of global practical output tracking using state feedback for 

a class of uncertain nonlinear systems with time delays. Under moderate conditions on the system 

nonlinearities, including time delays, a homogeneous state feedback regulator design with an adjustable 

scaling factor is proposed. Through the homogeneous Lyapunov-Krasovskii functional method, this scaling 

factor is adjusted to dominate the time-delay nonlinearities, bounded by homogeneous growth conditions, 

and to make the tracking error arbitrarily small while all states of the closed-loop system remain bounded. 

Alimhan et al. [25] explores the problem of global practical output tracking using state feedback for a class 

of uncertain high-order nonlinear systems with time delays. A homogeneous state feedback regulator with an 

adjustable scaling factor is then developed under moderate conditions on the system nonlinearities, including 

time delays. Through the homogeneous Lyapunov-Krasovskii functional method, this scaling factor is 

adjusted to dominate the time-delay nonlinearities, bounded by homogeneous growth conditions, and to make 

the tracking error arbitrarily small while all states of the closed-loop system remain bounded. 

To address this problem, Markov processes need more efficient use, which allows for simpler and 

faster algorithms. The main idea is that the probability in a node depends only on the state of neighboring 

nodes (parents and children), which is a less stringent requirement than the concept of the Markov blanket. 

This simplification can significantly speed up computations, avoiding the complexities of building junction 

trees. This work proposes a new approach that divides the vertices of a Bayesian network into levels to 

simplify calculations. The vertices that have received evidence form the zero level, while the remaining 

vertices are divided into subsequent levels based on their connections to the previous levels. This approach 

allows for more efficient probability calculations in the network nodes using already known values from 

previous levels. The examples provided illustrate the proposed methods using educational data in the HUGIN 

EXPERT environment, which visually demonstrates the operation of the algorithms. The examples 

considered in the article are educational and do not require the search for real meanings, but they demonstrate 

the main principles and advantages of the proposed approach. 

 

 

2. METHOD  

Considering an arbitrary Bayesian network (BN) [26]–[28], one might question the dependency of a 

selected node on other nodes within the network. The primary computational complexity lies in the fact that 

the selected node generally depends on many other nodes, which becomes particularly challenging in the 

presence of evidence. Various approaches to solving this problem exist [29]–[31], which can be categorized 
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into several groups. First, one method involves breaking down computations in a BN into blocks using the 

concept of d-separation. This approach allows the network to be divided into independent blocks, where 

computations can be performed separately, significantly reducing overall computational complexity. Second, 

the BN can be transformed into another, more simplified network where computations become easier and less 

resource-intensive. After performing the necessary calculations in this simplified network, the results can be 

transferred back to the main Bayesian network. The third approach is the elimination of specific nodes from 

the BN using the theory of potentials. This theory is well-developed both in general terms and specifically for 

Bayesian networks. Although this approach can formalize many computations, it often loses the intuitive 

clarity inherent in the framework of BNs. The fourth method suggests simplifying computations in a BN by 

assuming that calculations in the selected node depend only on its neighboring nodes and that dependencies 

on other nodes are mediated only through these neighboring nodes. While this may lead to a reduction in 

calculation accuracy within the context of Bayesian ideas, this method essentially represents a shift in the 

ideology of Bayesian networks. This work examines a case where computations in the current node depend 

only on its neighboring nodes, possibly not all of them. The main computational challenge arises when 

evidence is present in the network. In the absence of proof, the Markov property is automatically fulfilled, 

and calculations in the node depend only on a subset of neighboring nodes, making them relatively simple. 

The article explores the possibility of extending this ideology to computations in Bayesian networks with 

evidence in some nodes, aiming to simplify calculations and improve their efficiency. Let a graph G = <
V, E > be given, where 𝑉 is the set of vertices of the graph, and E is the set of edges. A directed acyclic graph 

𝐺 is called a Bayesian network if each vertex 𝑣 ∈ 𝑉 is associated with a random variable Xv, and each edge 

= (u, v) ∈ E represents a probabilistic dependence of the random variable Xvon the random variable Xuu. 

The random variable Xj contains several independent states {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛}. A probability characterizes 

each state. The number of states for each random variable may vary. It is assumed that (1) (2). 

 

𝑃(𝑥1) + 𝑃(𝑥2) + 𝑃(𝑥3) + ⋯ + 𝑃(𝑥𝑛) = 1 (1) 

 

𝑃(𝑥1 + 𝑥2) = 𝑃(𝑥1) + 𝑃(𝑥2) (2) 
 

The following basic rules are used when working with Bayesian networks: 

− Multiplication: 𝑃(𝑋, 𝑌 | 𝑍) = 𝑃(𝑋 | 𝑌, 𝑍)  ∗  𝑃(𝑌 | 𝑍) = 𝑃(𝑌 | 𝑋, 𝑍)  ∗  𝑃(𝑋 | 𝑍) 

− Summation: (X | Z) =  ∑ 𝑃(𝑋, 𝑌 = 𝑦 |𝑍)𝑦 =  ∑ 𝑃(𝑋 |𝑌 = 𝑦, 𝑍) ∗ 𝑃(𝑌 = 𝑦|𝑍)𝑦   

− Bayes' theorem: 𝑃(X |Y, Z) =  
P(Y | X,Z) ∗ P(X | Z)

P(Y | Z)
=

𝑃(Y | X,Z) ∗ P(X | Z)

∑ 𝑃(Y |X=x,Z) ∗ P(X=x |Z)𝑥
  

Independence of random variables: 𝑃 (𝑋, 𝑌) = 𝑃(𝑋)  ∗  𝑃(𝑌). Initially, conditional probabilities and 

probabilities for some nodes are set in the Bayesian network. Based on this data, any combination of events 

in the network can be determined. A vertex 𝑢 is a parent of vertex v if edge (u, v)  ∈ E. The set of all parent 

vertices of v is denoted by parents (Xv).To calculate the probability, there is a chain rule for Bayesian 

networks (3): 
 

𝑃(𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛) = ∏ 𝑃(𝑋𝑖 |𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑣))𝑛
𝑖=1  (3) 

 

The chain rule allows for decomposing a joint distribution into a product of conditional distributions. It is 

evident that during the calculation, the Markov principle is observed: a variable depends only on its parent 

variables, regardless of how the parent variables obtained their values. It is also clear that the number of 

parents for a vertex should not be large due to the limitations of computational resources. However, 

theoretically, the number of parents can be arbitrary. It is important to emphasize that specifying the 

conditional probability for parent-child pairs is not enough. This information does not define the relationships 

between the parents. Let the variables X, Y, and Z be represented as independent events, with X and Y being 

the parents of Z (4). 
 

𝑋 = {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 };  𝑌 = {𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑚  };  𝑍 = {𝑧1, 𝑧2, 𝑧3, … , 𝑧𝑟 } (4) 

 

To uniquely determine the probability distribution, the following set of conditional probabilities must be 

specified: P(zi | xj, yk). The primary task of computations in a Bayesian Network (BN) is to calculate the 

probability of independent events when conditional probabilities are specified at each vertex. This process is 

called initial propagation. If the BN is structured as a polytree, propagation algorithms are significantly 

simplified and yield a unique result. This is because, in this case, any two vertices in the BN graph are 

connected by a single path. Consequently, the influence of evidence can also propagate along a single path. If 

the BN graph contains undirected cycles, it has been shown in [3] that a marginal probability distribution can 

be constructed. The main goal (either initial or evidence propagation) is to calculate the distribution over a 
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subset of variables within the Bayesian network. If the distribution is fully specified, it is simply a matter of 

summing this distribution over all possible assignments of the variables not included in the subset for which 

we want to obtain the distribution. However, the size of the problem grows exponentially with the number of 

nodes in the BN, and due to the data volume, these calculations may be practically impossible. The 

probability distribution for an arbitrary node with multiple pieces of evidence can be calculated using 

formula (5): 

 

𝑃(𝑋1𝑋2𝑋3  … 𝑋𝑛) = ∑ 𝑃(𝑋1𝑋2𝑋3  … 𝑋𝑛𝑌1 = 𝑦1𝑌2 = 𝑦2𝑌3 = 𝑦3 … 𝑌𝑚 = 𝑦𝑚)𝑦1,𝑦2,𝑦3,…,𝑦𝑚   (5) 

 

The specified method defines local distributions. Based on these local distributions, conditional probabilities 

can be calculated (6):  

 

𝑃(𝑋1 … 𝑋𝑛|𝑍1 = 𝑎1 … 𝑍𝑚 = 𝑎𝑚) =
∑ 𝑃(𝑋1…𝑋𝑛𝑌1=𝑦1…𝑌𝑚=𝑦𝑚𝑍1=𝑎1…𝑍𝑚=𝑎𝑚)𝑦1,…,𝑦𝑚 

∑ 𝑃(𝑋1…𝑋𝑛𝑌1=𝑦1…𝑌𝑚=𝑦𝑚𝑍1=𝑧1…𝑍𝑚=𝑧𝑚)𝑦1,…,𝑦𝑚𝑧1,…,𝑧𝑚 
  (6) 

 

where the variables Zk – are the variables that have received evidence. When evidence is present, the above 

formula no longer works. It is necessary to use more general formulas (7)-(10): 

 

𝑃(𝑋 | 𝑌) =  
𝑃(𝑋𝑌)

𝑃(𝑌)
 (7) 

 

𝑃(𝑋 | 𝑌) =  
𝑃(𝑌 |𝑋)𝑃(𝑋)

𝑃(𝑌)
 (8) 

 
∑ 𝑃(𝑋 = 𝑎| 𝑌)𝑎 =  1 (9) 

 

𝑃(𝑋 = 𝑎 | 𝑌 = 𝑏) =  
𝑃(𝑌=𝑏 |𝑋=𝑎)𝑃(𝑋=𝑎)

∑ 𝑃(𝑌=𝑏 |𝑋=𝑎𝑗)𝑃(𝑋=𝑎𝑗)𝑎𝑗

 (10) 

 

 

3. RESULTS AND DISCUSSION  

Let's consider the educational example ASIA in Figure 1, widely known in the literature on 

Bayesian networks, which analyzes various scenarios of setting evidence and compares two approaches to 

algorithm construction considering Markov properties. In this example, the vertex 𝐴 represents the fact of the 

subject's visit to Asia in Figure 2(a), the vertex 𝑆 represents the fact of smoking in Figure 2(b), the vertex 𝑇 

represents the presence of tuberculosis, which significantly depends on the visit to Asia in Figure 2(c), and 

the vertex 𝐿 indicates the presence of lung cancer in Figure 2(d). The vertex 𝐵 represents the presence of 

bronchitis in Figure 2(e), the vertex 𝐸 reflects the fact of either lung cancer or tuberculosis, the vertex 𝑋 

corresponds to the results of an X-ray, and the vertex 𝐷 indicates the presence of dyspnea in the subject. 

In this analysis, a comparison of solutions and methods for algorithm construction is conducted, 

taking into account the Markov property, which helps identify the differences and advantages of each 

approach in the context of this example. A visit to Asia triggers the risk of contracting tuberculosis. Smoking 

can contribute to developing lung cancer (L), bronchitis (B), or both simultaneously. The result of a chest  

X-ray (X) may indicate the presence of lung cancer or tuberculosis with a certain probability, but it cannot 

distinguish between these diseases. Lung cancer, tuberculosis, and bronchitis can cause dyspnea with a 

certain probability. Figure 2 shows a Bayesian network describing the relationships between five variables 

involved in diagnosing lung diseases. Figure 2(a) shows the probability of a subject traveling to Asia (A), 

where diseases such as tuberculosis can be contracted. The probability that the subject has visited Asia is 

0.01 for “yes” and 0.99 for “no.” Figure 2(c) shows the probability of a subject having tuberculosis (T), 

depending on whether the subject has visited Asia. If the subject has visited Asia, the probability of having 

tuberculosis is 0.05 for “yes” and 0.95 for “no.” If the subject has not visited Asia, the probability of having 

the disease is 0.01 for “yes” and 0.99 for “no.” Figure 2(b) shows the probability that the subject is a smoker 

(S), which is equally divided: 0.5 for “yes” and 0.5 for “no.” Figure 2(d) illustrates the probability of a 

subject having lung cancer (L), depending on whether the subject smokes. If the subject smokes, the 

probability of lung cancer is 0.1 for “yes” and 0.9 for “no.” If the subject does not smoke, the probability of 

cancer decreases to 0.01 for “yes” and 0.99 for “no.” Figure 2(e) shows the probability that the subject will 

have bronchitis (B), also dependent on smoking. For smokers, the probability of bronchitis is 0.6 for “yes” 

and 0.4 for “no,” whereas for nonsmokers, these values are 0.3 for “yes” and 0.7 for “no.” Thus, each figure 

in this model shows the relationships between the variables that affect the subject's health. 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Markov processes in Bayesian network computation (Assem Shayakhmetova) 

2185 

We perform the triangulation of the graph in Figure 3. According to the theory, during triangulation, 

we first eliminate vertices with one neighbor, 𝐴 and 𝑋. Then, we eliminate vertices with two neighbors, 𝑇 and 

D. These vertices are part of cliques, so there is no need to add edges. The remaining subgraph consists of the 

vertices 𝑆, 𝐿, 𝐸, 𝐵, and the edges {SL, LE, EB, BS}, forming a cycle of length 4. 

 

 

 
 

Figure 1. Educational example ASIA 

 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 
(e) 

 

Figure 2. The fact of the subjects' visits to Asia 

 

 

 
 

Figure 3. Graph triangulation 
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For the graph in Figure 1, we construct the moral graph. Here, the directions of the edges are 

removed, and two edges are added to connect the nodes 𝑇 and 𝐿, as well as the nodes 𝐸 and 𝐵. An edge 𝐿 LB 

(or edge 𝑆𝐸) must be added to complete the triangulation. The triangulated graph is shown in Figure 4. To 

construct the secondary graph, we select two minimal cliques 𝐴𝑇 and 𝑋𝐸 from the graph in Figure 4. The 

neighboring clique to these cliques will be the clique 𝑇𝐿𝐸. The neighboring clique to 𝑇𝐿𝐸 will be the clique 

𝐸𝐿𝐵. The neighboring cliques to 𝐸𝐿𝐵 will be 𝐿𝑆𝐵 and 𝐸𝐵𝐷. 

 

 

 
 

Figure 4. The join tree corresponding to the Bayesian network (BN) 

 

 

The analysis of the ASIA educational example shows that, despite significant opportunities for 

simplifying calculations, the computational load for large Bayesian networks (BNs) can be very substantial, 

and transformations into a secondary graph can be complex and not always transparent to researchers. This 

raises the question: how can we reduce and simplify computations, making them more transparent? To 

achieve these goals, it is important to ensure that the accuracy of the calculations remains within reasonable 

limits and that the theoretical foundation of the new approach is based on previously developed theories and 

methods. It is necessary for the algorithms, their software implementation, and the speed of calculations to be 

significantly simpler and faster, allowing for the efficient processing of any reasonable BN topologies. A key 

aspect is also the ability to identify certain subgraphs of the BN for integrated computations, which will help 

optimize the process. At the same time, potential errors that may arise during the simplification of 

computations should be considered, and their impact on the final results should be assessed. As part of the 

development of a new approach to computations in Bayesian networks, it was decided to refer to a well-

known paradigm from the theory of Markov chains, according to which information in the node under study 

depends only on the information in neighboring nodes, regardless of how that information was obtained. This 

work assumes that the information in the node under study in a Bayesian network depends only on specific 

neighboring nodes, including parents and children. Various implementations of this approach are possible: in 

one, the information in the node depends only on the parents, children, and other parents of the children, 

which corresponds to the concept of the node's Markov blanket Figure 5. In another variant, the information 

in the node depends on neighboring nodes, designated as set 𝐴, with the addition of all neighboring nodes for 

each node in set 𝐴. 

When considering options, we will consider the d-separation of nodes in the Bayesian network 

(BN). Next, we will consider the choice of the Bayesian blanket. Without evidence, computations in the BN 

do not present difficulties. Let's systematize the order of computations in the absence of proof. We will 

divide the vertices of the BN into several levels. We will include vertices where no computations are required 

at the zero level. These are nodes without parents—𝐴 and 𝑆. A and S are at the zero level. T, L, and B are at 

the first level, with parents belonging only to the zero level. E is at the second level, with parents belonging 

only to the first level. X and D are at the third level, with parents belonging only to the first and second 

levels. A and S are at the zero level. T, L, and B are at the first level, with parents belonging only to the zero 

level. E is at the second level, with parents belonging only to the first level. X and D are at the third level, 

with parents belonging only to the first and second levels. X is at the zero level, and the vertex with evidence 

does not need to be calculated. E is at the first level, with vertex X connected only to vertex E. T, L, and D 
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are at the second level; these vertices are not d-separated from vertex X through vertex E, and thus, they are 

influenced by vertex X through vertex E. A and S are at the third level; these vertices are not d-separated 

from vertex X and are therefore influenced by vertex X through vertices E, T, and L. B is at the fourth level; 

this vertex is not d-separated from vertex X. Vertex B is influenced by vertex S at the third level; however, 

vertices E and B are independent concerning the converging connection at vertex D. Thus, all vertices in the 

BN end up depending on vertex 𝑋. The following order of calculating the vertices in the BN can be proposed 

(11): 

 

𝑋 −>  𝐸 −>  𝑇 −>  𝐿 −>  𝐷 −>  𝐴 −>  𝑆 −>  𝐵 (11) 

 

 

 
 

Figure 5. Moral graph 

 

 

Bayes' theorem and the prior probabilities of specific vertices may be used in the calculations. The 

vertices involved in the calculations are determined by the Markov Bayesian blanket of the vertex being 

calculated or by neighboring vertices. The Bayesian blankets for the vertices will be as follows: the blanket 

for vertex E will be {T, L, X, D, B}; the blanket for vertex T will be {A, E, L}; the blanket for vertex L will 

be {S, E, T}; the blanket for vertex D will be {B, E}; the blanket for vertex A will be {T}; the blanket for 

vertex S will be {L, B}; and the blanket for vertex B will be {S, D, E}. We considered a relatively simple 

example. Evidence in the single vertex X influences all the remaining vertices. Vertex X is not separated 

from any of the other vertices. Let's complicate the task a bit. Suppose the evidence is in vertex A. Vertex E 

contains a converging connection. This means that vertices A and T will be independent (d-separated) from 

vertices L and S. Similarly, vertices E and B are independent concerning the converging connection at vertex 

D. The partitioning of vertices by levels in this case will be as follows: A and S are at the zero level, with 

vertex A containing evidence and vertex S being d-separated from vertex A, meaning they are independent. 

T, L, and B are at the first level, with vertex T depending only on vertex A, and vertices L and B depending 

only on vertex S. E is at the second level, depending on vertices T and L. X and D are at the third level. The 

vertices involved in the calculations are determined either by the Markov Bayesian blanket of the calculated 

vertex or by neighboring vertices. The Bayesian blankets for the vertices will be as follows: the blanket for 

vertex T will be {A, E, L}; the blanket for vertex L will be {S, E, T}; the blanket for vertex B will be {S, D, 

E}; the blanket for vertex E will be {T, L, X, D, B}; the blanket for vertex X will be {E}; and the blanket for 

vertex D will be {B, E}. 

In the calculations, we will use the probabilities of the nodes calculated in the previous step. In the 

initial step, we calculate the nodes without evidence. The data obtained is then used in the calculations for the 

subsequent steps. In the first step, we estimate the probabilities of one of the neighboring nodes of the first 

piece of evidence. If there are more pieces of evidence, we estimate the probabilities of one of the 

neighboring nodes of the second piece of evidence, and so on. After processing all the evidence, we replace 

the proof with the nodes that we have just processed. We then construct their Markov blankets. In the second 

step, we calculate the probabilities of the new nodes. This BN example is too simple to provide examples 

with multiple pieces of evidence. Let's consider an example of a second BN. Figure 6 shows a network 

containing 20 vertices. 
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Figure 6. Level partitioning considering d-separation 

 

 

Of particular interest are vertices E1 and E2, which possess a converging connection, determining 

the existence of d-separation in certain cases. When considering a scenario where vertices A4 and C3 have 

received evidence, the level partitioning will be as follows: At the zero level are vertices A4, C3, and B4, 

where the first two vertices have received evidence, and B4 is not connected to the vertices generated by 

vertices A4 and C3 through converging connections in E1 and E2. The first level includes vertices A3, C4, 

C2, and B3. The second level consists of vertices A2, C1, and B2. The third level includes vertices A1 and 

B1. Vertices D1 and E1 represent the fourth level, the fifth level by vertices D2 and E2, the sixth level 

includes D3 and E3, and the seventh level consists of vertices D4 and E4. The following order of calculating 

the vertices in the BN can be proposed: A3 -> C4 -> C2 -> B3 -> A2 -> C1 -> B2 -> A1 -> B1 -> D1 -> E1  

-> D2 -> E2 -> D3 -> E3 -> D4 -> E4. The Bayesian blankets for the vertices will be as follows: the blanket 

for vertex A3 will be {A4, A2}; the blanket for vertex C4 will be {C3}; the blanket for vertex C2 will be 

{C3, C1}; the blanket for vertex B3 will be {B4, B2}; the blanket for vertex A2 will be {A3, A1}; the 

blanket for vertex C1 will be {C2, A1}; the blanket for vertex B2 will be {B3, B1, E2, E1}; the blanket for 

vertex A1 will be {A2, C1, D1, E1, B1}; the blanket for vertex B1 will be {B2, E1, A1}; the blanket for 

vertex D1 will be {A1, D2}; the blanket for vertex E1 will be {A1, B1, E2, B2}; the blanket for vertex D2 

will be {D1, D3}; the blanket for vertex E2 will be {B2, E1, E3}; the blanket for vertex D3 will be {D2, 

D4}; the blanket for vertex E3 will be {E2, E4}; the blanket for vertex D4 will be {D3}; and the blanket for 

vertex E4 will be {E3}. The article explores the possibilities of using the Markov property to simplify 

computations in Bayesian networks, which introduces new challenges while solving a number of existing 

problems. Specifically, it requires justification for applying the Markov property, adaptation of existing 

probability tables despite their inconvenient structures, and proper justification for using Bayes' theorem. It is 

essential to prove that in the presence of multiple pieces of evidence and changes in the direction of some 

edges, cycles do not arise and to investigate potential contradictions in Bayesian networks that may occur due 
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to incorrect or incompatible receipt of multiple pieces of evidence, offering solutions to these issues. Despite 

the challenges, the approach under consideration appears to be quite promising and warrants further 

investigation. The effectiveness of using Bayesian networks largely depends on selecting the correct concept 

for querying the network and efficient propagation methods, especially in the presence of multiple pieces of 

evidence. The complex and extensive topology of Bayesian networks can significantly increase computation 

time, and many existing algorithms currently use an approach based on representing the original network as a 

junction tree. This method has several advantages, such as universality, obtaining accurate probability values, 

and high-speed implementation of algorithms in code. However, this approach also has limitations, including 

difficulties in computations for specific topologies and complexity in understanding and developing 

algorithms. As a result, many developers are seeking ways to simplify algorithms and improve their 

efficiency, highlighting the need for new, correct paradigms for working with Bayesian networks. One such 

direction is a return to the idea of Markov chains, where the information in a node depends only on the state 

of neighboring nodes, which simplifies algorithms and increases their speed. It is essential to consider the 

order of node computations and the need for iterations in the presence of evidence. Controlling the d-

separation of nodes and using the Markov blanket also play a crucial role in improving the accuracy of 

calculations, although they may complicate the process. Thus, the proposed approach to developing 

algorithms for Bayesian networks requires further investigation and practical testing to assess its 

effectiveness in real-world conditions. 

 

 

4. CONCLUSION 

This article examines the potential of using Markov processes to simplify Bayesian networks (BNs) 

computations. Despite the obvious advantages, such as speeding up calculations and simplifying algorithms, 

introducing the Markov property into Bayesian networks also introduces several new challenges. These 

include the need to justify the application of Markov properties, adapt existing probability tables to new 

structures, and correctly apply Bayes' theorem. Additionally, it is important to prove that no cycles arise in 

the presence of multiple pieces of evidence and changes in the direction of certain edges and to investigate 

possible contradictions that may occur when multiple pieces of evidence are received incompatible. 

Nevertheless, the approach under consideration is promising and requires further research, 

especially in complex and large BN topologies. The practical application of these methods could significantly 

improve the efficiency of working with Bayesian networks, particularly in processing data with multiple 

uncertainties. The proposed algorithms and approaches need detailed testing and optimization for use in real-

world conditions, which will allow their total practical value to be realized. 
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