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 In this research an analysis between the Welsh-Powell and DSatur 

algorithms for the graph vertex coloring problem was presented. Both 

algorithms were implemented and analyzed as well. The method of the 

experiment was discussed and the 46 test graphs, which were divided into 

two sets, were presented. The results show that for sparse graphs with a 

smaller number of vertices and edges, both algorithms can be used for 

solving the problem. The results show that in 50% of the cases the Welsh-

Powell algorithm found better solutions (23 in total). So, the DSatur 

algorithm found better solutions in only 19.6% of cases (9 in total). In the 

remaining 30.4% of cases, both algorithms found identical solutions. For 

graphs with a larger number of vertices, the usage of the Welsh-Powell 

algorithm is recommended as it finds better solutions. The execution time of 

the DSatur algorithm is greater than the execution time of the Welsh-Powell 

algorithm, reaching up to a minute for graphs with a larger number of 

vertices. For graphs with fewer vertices and edges, the execution times of 

both algorithms are shorter, but the time is still greater for the DSatur 

algorithm. 
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1. INTRODUCTION 

The graph-type structure and the algorithms applied to this structure have been widely and 

thoroughly researched in the areas of discrete mathematics and computer science in the last few decades [1]. 

These structures are used in the modeling of many processes in many different fields of science and practice 

[2]. This makes them useful and often used as a means of analyzing activities, events, and interactions 

between different objects in different domains of the real world [3]. The graph-type structures are used to 

present different complex problems that occur often. Then they are studied and analyzed by specialized 

software applications that execute different algorithms on these structures [4]. Therefore, much research in 

recent years has been aimed at improving and optimizing various algorithmic methods and approaches for 

solving different classes of problems modeled by using graph structures [5]. 

A graph-type structure is a set that has two subsets – a set of vertices (with n elements) and a set of 

edges (with m elements). A vertex set must contain at least one element for the graph itself to make sense. 

Unlike the set of vertices, the set of edges may not have any elements. This case is not typical of a graph-type 

structure, although it is possible since edges represent connections between different pairs of vertices. 

Therefore, the main idea is to use the non-linear data structure, where some objects (vertices) interact (are 

mutually dependent) in a certain way with each other, and accordingly, these interactions are represented by 

https://creativecommons.org/licenses/by-sa/4.0/
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edges [6]. If each edge is assigned a certain numerical value, then the graph-type structure is called weighted 

[7]. 

The problem of coloring vertices in a graph-type structure is an NP-hard problem [8]. However, due 

to the extreme applicability and importance of this problem, it continues to be actively researched [9]. 

Therefore, there are also many different variants (as definitions) of this problem. For example, the vertex 

coloring with communication constraints in synchronous broadcast networks [10], the reconfiguration graph 

for vertex colorings of weakly chordal graphs [11], the facial unique-maximum colorings of plane graphs 

with restriction on big vertices [12], and many others. Separate ways to solve this problem use different 

algorithms [13], different techniques [14], and different approaches [15]. These methods for solving this 

problem have also been used in solving other problems modeled by graph-type structures [16]. A more 

comprehensive presentation of the graph vertex coloring problem is also presented in other scientific works 

[17]–[20]. 

Any graph that is not acyclic, not complete, and does not have a cycle of odd length can be colored 

with several colors that are equal to or less than the largest degree of a vertex in that graph. Proof of this 

statement is presented in [21]. If χ(G) denotes the chromatic number of a given graph, and ∆(G) denotes the 

largest degree of a vertex in this graph, then the above statement can be presented in the following way: χ(G) 

≤ ∆(G). Moreover, if for all vertices in a given graph structure, it is true that the number of edges incident to 

these vertices is greater than 2, i.e. every vertex in this graph structure has degree greater than 2, then the 

number of colors required to color the given graph will be one greater than the largest degree of a vertex in 

the same graph, and only if in that graph there is a clique that contains exactly ∆(G )+1 vertices [21]. Other 

results related to the problem of finding the chromatic number of a given graph, as well as finding lower 

bounds for this number, are presented in [22]. There are many other algorithms (and approaches) for finding 

the chromatic numbers of graphs, which are presented in detail in various scientific publications [23]–[25].  

In this paper, two approximate (heuristic) algorithms for solving the graph vertex coloring problem 

will be analyzed, respectively – DSatur [26] and Welsh-Powell [27]. These algorithms are approximate and 

do not always find an optimal solution in terms of the number of generations of the chromatic classes. This 

means that the vertices of a given graph divide into independent subsets of vertices. This study aims to decide 

which of the two algorithms will find better solutions for graphs with a predefined number of vertices and 

edges. 

 

 

2. RESEARCH METHOD 

This section presents implementations of the Welsh-Powell and DSatur algorithms. Both algorithms 

are approximate and used to solve the graph vertex coloring problem. A part of global parameters and arrays 

must be pre-declared for both algorithms. They are presented in Figure 1. 

 

 

01 var 

02 │ CountOfVertices: Integer; 

03 │ MinimalColorCount: Integer; 

04 │ VectorOfColors: array of TColor; 

05 │ AdjacencyStucture: array of array of Integer; 

06 │ VertexList: array of Integer; EdgeList: array of Integer; 

 

Figure 1. Pre-declared global parameters and arrays 

 

 

The CountOfVertices parameter (declared on line 2) contains the number of vertices in the graph 

data structure. The MinimalColorCount parameter (declared on line 3) is an additional parameter used by the 

algorithms in the decision process. The VectorOfColors vector (of type TColor), declared on line 3, is used 

by algorithms to store the array of assorted colors. Each item in this vector stores a color with which the 

given vertex of the graph data structure is colored. Each structure of the graph type is represented by an 

adjacency matrix structure (declared on line 5), a vertex list vector, and an edge list vector (declared on line 

6). Each item (s, f) of the AdjacencyStructure indicates whether the vertices with indices s (start) and f (final) 

are adjacent or not. 

The WelshPowellAlgorithm procedure implements the first heuristic algorithm for coloring the 

vertices of a graph. The source code of this procedure is shown in Figure 2. It uses additional (local) 

parameters - ColorCount, ColoredVerticesCount, AcceptDecision, Iteration, and Vertex. The Iteration and 

Vertex parameters are used for iteration variables of the two for loops executed on lines 9 and 14. The 
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ColorCount parameter stores the number of one of the colors used so far. The AcceptDecision parameter (of 

Boolean type) shows whether the given vertex can be colored with one of the available colors or not.  

The parameter ColoredVerticesCount stores the current number of colored vertices in the graph. In 

the WelshPowell algorithm, the parameters MinimalColorCount, ColorCount, ColoredVerticesCount are set 

to 0 (lines 3-5). Accordingly, the AcceptDecision variable is set to False (line 6). 

 

 

01 procedure WelshPowellAlgorithm; 

02 begin 

03 │ MinimalColorCount := 0; 

04 │ var ColorCount := 0; 

05 │ var ColoredVerticesCount := 0; 

06 │ var AcceptDecision := False; 

07 │ repeat  

08 │ │ ColorCount := ColorCount + 1; 

09 │ │ for var Iteration := 1 to CountOfVertices do 

10 │ │ begin 

11 │ │ │ if (VectorOfColors[Iteration] = 0) then 

12 │ │ │ begin  

13 │ │ │ │ AcceptDecision := True; 

14 │ │ │ │ for var Vertex := 1 to CountOfVertices do 

15 │ │ │ │ begin  

16 │ │ │ │ │ if ((AdjacencyStucture[Iteration][Vertex] > 0) and 

17 │ │ │ │ │     (VectorOfColors[Vertex] = ColorCount)) then 

18 │ │ │ │ │ begin 

19 │ │ │ │ │ │ AcceptDecision := False; 

20 │ │ │ │ │ │ Break; 

21 │ │ │ │ │ end; 

22 │ │ │ │ end; 

23 │ │ │ │ if (AcceptDecision = True) then 

24 │ │ │ │ begin  

25 │ │ │ │ │ VectorOfColors[Iteration] := ColorCount; 

26 │ │ │ │ │ if (MinimalColorCount < ColorCount) then 

27 │ │ │ │ │     MinimalColorCount := ColorCount; 

28 │ │ │ │ │ ColoredVerticesCount := ColoredVerticesCount + 1; 

29 │ │ │ │ end;  

30 │ │ │ end;  

31 │ │ end;  

32 │ until (ColoredVerticesCount = CountOfVertices); 

33 end; 

 

Figure 2. Source code of the WelshPowellAlgorithm procedure 

 

 

The algorithm is executed until all vertices in the graph are colored (line 32 - the “until” condition 

for the end of the repeat loop). At the beginning of each iteration of the repeat loop, a new color index 

(number) is selected (line 8). At this step of the algorithm's execution, a traversal of the vertices of the graph 

begins (line 9). If the currently analyzed vertex is not colored (see line 11) and that vertex has no adjacent 

vertices that are colored with that color, then the current vertex is colored with the current color (line 25). If 

among the adjacency vertices of the current vertex is not colored with the current color, then the logical 

variable AcceptDecision will have the value True. Only in this case will the current vertex be colored with 

the current color. The source code of line 26 checks whether the parameter ColorCount is greater than the 

value of the parameter MinimalColorCount. If this is the case, then the value of the ColorCount parameter is 

assigned as the value of the MinimalColorCount parameter. As another vertex has been successfully colored, 

this is recorded by updating the value of the ColoredVerticesCount parameter, which is incremented by 1. 

The computational complexity of this algorithm is quadratic and depends on the number of vertices of the 

graph (the CountOfVertices parameter). A similar implementation of this algorithm is presented in [20]. 

The DSaturAlgorithm procedure implements the second heuristic algorithm for coloring the vertices 

of a graph. The source code of this procedure is shown in Figure 3. It also uses additional parameters – 

ColorCount, ColoredVerticesCount, AcceptDecision, and Vertex. The Vertex parameter stores the number 

(index) of the next vertex that will be colored. The ColorCount parameter stores the number of one of the 

colors used so far. 

The parameter ColoredVerticesCount stores the current number of colored vertices in the graph. In 

the DSatur algorithm, the parameters MinimalColorCount, Vertex, ColorCount, and ColoredVerticesCount 

are set to 0 (lines 3-6). The algorithm is executed until all vertices in the graph are colored (line 7 - the while 
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condition for the beginning of the while loop). At the beginning of each iteration of the while loop, the next 

index (number) of the vertex is selected (line 9).  

The FoundNextVertex function selects the next vertex to be colored. This vertex must fulfill one of 

the following four criteria (in the order in which they are listed). It must have the highest value of the degree 

of saturation characteristic. In the case that there is more than one vertex with such a value, a second 

selection criterion is used. According to it, the vertex must have the largest residual degree in the graph 

induced by the current one after removing the colored vertices. If there are more vertices, a third selection 

criterion is used. According to it, that vertex is selected, which can be colored with a color with a smaller 

number. In the last case, the vertex with the smallest number is selected among all vertices having the same 

values of the above three criteria. At this step, the chosen vertex (indexed by the Vertex parameter) is colored 

with the current color. The value of the ColoredVerticesCount parameter is incremented by one after the 

successful coloring of the vertex (line 13). 

 

 

01 procedure DSaturAlgorithm; 

02 begin 

03 │ MinimalColorCount := 0; 

04 │ var Vertex := 0; 

05 │ var ColorCount := 0; 

06 │ var ColoredVerticesCount := 0; 

07 │ while not (ColoredVerticesCount = CountOfVertices) do 

08 │ begin 

09 │ │ Vertex := FoundNextVertex; 

10 │ │ if (Vertex > 0) then 

11 │ │ begin  

12 │ │ │ VectorOfColors[Vertex] := ColorCount; 

13 │ │ │ ColoredVerticesCount := ColoredVerticesCount + 1; 

14 │ │ │ UpdateParameters(); 

15 │ │ │ UpdateColorCount(ColorCount); 

16 │ │ │ if (MinimalColorCount < ColorCount) then 

17 │ │ │ MinimalColorCount := ColorCount; 

18 │ │ end; 

19 │ end; 

20 end; 

 

Figure 3. Source code of the DSaturAlgorithm procedure 

 

 

The UpdateParameters procedure updates the values of the degree of saturation and residual degree 

parameters (line 14). The UpdateColorCount procedure, which receives an input parameter – ColorCount 

(passed by address), increments the number of available colors if necessary (line 14). The source code of line 

16 checks whether the parameter ColorCount is greater than the value of the parameter MinimalColorCount. 

In this case, the value of the ColorCount parameter is assigned as the value of the MinimalColorCount 

parameter. The computational complexity of this algorithm is also quadratic and depends on the number of 

vertices of the graph (CountOfVertices parameter). 

 

 

3. RESULTS AND DISCUSSION 

The results of the experiment are shown and discussed. For this study, 46 sparse graphs, respectively 

with 800, 1000, 1200, ..., 9600, and 9800 vertices were created. Each graph has a density of 3%. Based on 

this characteristic of the graph exactly 3% of among all vertices, are randomly selected. These graphs are 

presented in Table 1. More information, which includes the results of the execution of the two heuristic 

algorithms, in terms of their execution time and the quality of the generated solutions is shown in Table 2. 

The experimental conditions are: 64-bit Windows 11 and hardware configuration: Processor: Intel (R) Core 

(TM) i5-12450H at 4.40 GHz; RAM: 16 GB, SSD 1000 GB. 

In Tables 1 and 2, the "Graph ID" column shows the number of the test graph. The "Graph file 

name" column shows the name of the file in which the information for the corresponding test graph is stored. 

The "Vertex count" column shows the number of vertices of a graph. The "Max edge count" column shows 

the 100% density of a graph in terms of the number of edges that it would have in the case of the completed 

graph. The "Edge count" column shows the number of edges of the graph. The "Color" columns show the 

required number of colors used in the coloring process. Accordingly, the "Time (ms)" columns show the 

execution time of each of the algorithms. 
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Table 1. The set of graphs 
Graph 

ID 
Graph file 

name 
Vertex 
count 

Max edge 
count 

Edge 
count 

 
Graph 

ID 
Graph file 

name 
Vertex 
count 

Max edge 
count 

Edge 
count 

1 G_800_9588.gff 800 319 600 9 588  24 G_5400_437320.gff 5 400 14 577 300 437 320 

2 G_1000_14986.gff 1 000 499 500 14 986  25 G_5600_470316.gff 5 600 15 677 200 470 316 

3 G_1200_21582.gff 1 200 719 400 21 582  26 G_5800_504514.gff 5 800 16 817 100 504 514 
4 G_1400_29380.gff 1 400 979 300 29 380  27 G_6000_539910.gff 6 000 17 997 000 539 910 

5 G_1600_38376.gff 1 600 1 279 200 38 376  28 G_6200_576508.gff 6 200 19 216 900 576 508 

6 G_1800_48574.gff 1 800 1 619 100 48 574  29 G_6400_614304.gff 6 400 20 476 800 614 304 
7 G_2000_59970.gff 2 000 1 999 000 59 970  30 G_6600_653302.gff 6 600 21 776 700 653 302 

8 G_2200_72568.gff 2 200 2 418 900 72 568  31 G_6800_693498.gff 6 800 23 116 600 693 498 

9 G_2400_86364.gff 2 400 2 878 800 86 364  32 G_7000_734896.gff 7 000 24 496 500 734 896 
10 G_2600_101362.gff 2 600 3 378 700 101 362  33 G_7200_777492.gff 7 200 25 916 400 777 492 

11 G_2800_117558.gff 2 800 3 918 600 117 558  34 G_7400_821290.gff 7 400 27 376 300 821 290 

12 G_3000_134956.gff 3 000 4 498 500 134 956  35 G_7600_866286.gff 7 600 28 876 200 866 286 
13 G_3200_153552.gff 3 200 5 118 400 153 552  36 G_7800_912484.gff 7 800 30 416 100 912 484 

14 G_3400_173350.gff 3 400 5 778 300 173 350  37 G_8000_959880.gff 8 000 31 996 000 959 880 

15 G_3600_194346.gff 3 600 6 478 200 194 346  38 G_8200_1008478.gff 8 200 33 615 900 1 008 478 

16 G_3800_216544.gff 3 800 7 218 100 216 544  39 G_8400_1058274.gff 8 400 35 275 800 1 058 274 

17 G_4000_239940.gff 4 000 7 998 000 239 940  40 G_8600_1109272.gff 8 600 36 975 700 1 109 272 

18 G_4200_264538.gff 4 200 8 817 900 264 538  41 G_8800_1161468.gff 8 800 38 715 600 1 161 468 
19 G_4400_290334.gff 4 400 9 677 800 290 334  42 G_9000_1214866.gff 9 000 40 495 500 1 214 866 

20 G_4600_317332.gff 4 600 10 577 700 317 332  43 G_9200_1269462.gff 9 200 42 315 400 1 269 462 
21 G_4800_345528.gff 4 800 11 517 600 345 528  44 G_9400_1325260.gff 9 400 44 175 300 1 325 260 

22 G_5000_374926.gff 5 000 12 497 500 374 926  45 G_9600_1382256.gff 9 600 46 075 200 1 382 256 

23 G_5200_405522.gff 5 200 13 517 400 405 522  46 G_9800_1440454.gff 9 800 48 015 100 1 440 454 

 

 

Table 2. Results of the heuristic algorithms for all graphs 
Graph Vertex Edge Welsh-Powell DSatur  Graph Vertex Edge Welsh-Powell DSatur 

ID count count Colors Time (ms) Colors Time (ms)  ID count count Colors Time (ms) Colors Time (ms) 

1 800 9 588 10 31 9 250  24 5 400 437 320 32 1360 32 16 172 

2 1 000 14 986 12 32 11 375  25 5 600 470 316 32 1531 34 17 781 
3 1 200 21 582 13 47 12 563  26 5 800 504 514 33 1672 34 19 390 

4 1 400 29 380 14 79 12 765  27 6 000 539 910 35 1828 35 21 156 

5 1 600 38 376 15 93 13 1 078  28 6 200 576 508 35 1969 35 23 250 
6 1 800 48 574 16 125 14 1 375  29 6 400 614 304 36 2187 36 25 515 

7 2 000 59 970 16 141 16 1 672  30 6 600 653 302 37 2344 37 27 312 

8 2 200 72 568 18 172 17 2 078  31 6 800 693 498 38 2562 38 29 250 
9 2 400 86 364 19 203 18 2 641  32 7 000 734 896 39 2719 38 31 875 

10 2 600 101 362 20 266 18 2 937  33 7 200 777 492 40 2859 39 35 219 

11 2 800 117 558 21 297 20 3 531  34 7 400 821 290 40 3140 39 36 953 
12 3 000 134 956 21 360 21 4 000  35 7 600 866 286 40 3312 41 40 828 

13 3 200 153 552 23 406 22 4 797  36 7 800 912 484 41 3578 42 42 547 

14 3 400 173 350 23 468 22 5 406  37 8 000 959 880 42 3765 43 45 844 
15 3 600 194 346 25 516 24 6 187  38 8 200 1 008 478 43 3937 44 48 312 

16 3 800 216 544 26 594 24 7 156  39 8 400 1 058 274 43 4359 44 51 250 
17 4 000 239 940 26 640 25 8 125  40 8 600 1 109 272 45 4609 45 54 313 

18 4 200 264 538 27 750 27 9 032  41 8 800 1 161 468 44 4985 45 58 969 

19 4 400 290 334 28 813 27 10 000  42 9 000 1 214 866 47 5188 46 62 328 
20 4 600 317 332 29 922 28 11 031  43 9 200 1 269 462 47 5516 47 66 157 

21 4 800 345 528 30 1000 30 12 265  44 9 400 1 325 260 48 6094 47 69 938 

22 5 000 374 926 30 1172 30 13 578  45 9 600 1 382 256 48 6125 48 76 610 

23 5 200 405 522 32 1281 31 15 063  46 9 800 1 440 454 49 6547 50 79 172 

 

 

Table 2 and the charts in Figures 4, 5, and 6 show the results of the two heuristic algorithms for the 

graphs presented in Table 1. The results in the columns "Color" and "Time (ms)" (for both Welsh-Powell and 

DSatur algorithms) show the number of colors needed (more precisely, the number of chromatic classes) to 

color the corresponding graph, as well as the time to find an acceptable solution. The results show that in the 

first half of the set of graphs (1 – 23) in only five out of a total of 23 cases (for graphs 7, 12, 18, 21, and 22) 

the Welsh-Powell algorithm found the same solutions as the DSatur algorithm. 

Table 2 and the charts in Figures 4 and 5 show that for the complete set of graphs in only 14 cases, 

both algorithms found identical solutions. However, the Welsh-Powell algorithm found better solutions in 23 

cases. In comparison, the DSatur algorithm found better solutions in only nine cases, but for graphs with a 

larger number of vertices and edges (in the second half of the graph set).  

For all other cases (for this set of graphs), both algorithms found identical solutions. In the second 

half of the set of graphs (24 – 46) this trend changes. For these graphs, in only five of the cases (graphs 32, 

33, 34, 42, and 44) the DSatur algorithm found better solutions than the Welsh-Powell algorithm.  
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Figure 4. Best solutions found by both algorithms 

 

 

 
 

Figure 5. Difference in colors between the DSatur algorithm and the Welsh-Powell algorithm 

 

 

 
 

Figure 6. Comparison of the execution times of both algorithms 

 

 

In contrast, the Welsh-Powell algorithm found better solutions in nine other cases (for graphs 25, 26, 

35, 36, 37, 38, 39, 41, and 46). In the remaining nine cases from the second half of the set of graphs, both 

algorithms found identical solutions (for graphs 24, 27, 28, 29, 30, 31, 40, 43, and 45). From the chart in 

Figure 5, when the number of vertices in the graph increases, respectively, when the number of edges in the 
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graph increases, so do the times when the Welsh-Powell algorithm finds better solutions. This trend can be 

seen from the chart in Figure 5, which shows the difference in solutions found (as the needed number of 

colors) between both DSatur and Welsh-Powell algorithms. Positive values show better solutions found by 

the Welsh-Powell algorithm. So, negative values show better solutions found by the DSatur algorithm. 

The chart in Figure 6 shows the effect of increasing the size of the graphs (i.e., increasing the 

number of vertices and the number of edges) on the execution time of both algorithms. The execution time of 

the DSatur algorithm is greater than the execution time of the Welsh-Powell algorithm, reaching up to a 

minute for graphs with a larger number of vertices. For example, for graph 46, the execution time of the 

DSatur algorithm is 79 seconds, and the execution time of the Welsh-Powell algorithm is only 6.5 seconds. 

The difference between these values is approximately 12 times. For graphs with fewer vertices and edges 

(from the first half of the graph set), the execution times of both algorithms are smaller, but the difference is 

again many times larger for the DSatur algorithm. 

 

 

4. CONCLUSION 

In this research, an analysis between two algorithms Welsh-Powell and DSatur, used for coloring 

sparse graphs, was presented. Some earlier work in the field of graph theory, related to solving this problem, 

was also discussed. Two approximate algorithms - the Welsh-Powell algorithm and the DSatur algorithm, 

were implemented and analyzed. The global declarations of different parameters used by both algorithms 

(variables and arrays) were shown. The source code of the approximate algorithms was presented and 

analyzed. Due to the multitasking work of the operating system, the run time of both algorithms was re-

calculated as the average of five starts for each of the 46 analyzed graphs. 

The results show that in the first half of the set of graphs (1–23) in only five out of a total 

of 23 cases, the Welsh-Powell algorithm found the same solutions as the DSatur algorithm. For all other 

cases, both algorithms found identical solutions. This trend changed for the second half of the graphs set  

(24–46). In only five cases of the graphs studied, the DSatur algorithm found better solutions than the Welsh-

Powell algorithm. In contrast, the Welsh-Powell algorithm found better solutions in nine other cases. 

Both algorithms found identical solutions in the remaining nine cases from the second half of the graphs 

set. 

In summary, both algorithms found identical solutions for the complete set of graphs in only  

14 cases. However, the Welsh-Powell algorithm found better solutions in 23 other cases. In comparison, the 

DSatur algorithm found better solutions in only nine cases, but for graphs with a larger number of vertices 

and edges. When the number of vertices (respectively, the number of edges) in the graph increases, the 

Welsh-Powell algorithm starts to find better solutions more often than the DSatur algorithm. About the 

quality of the solutions generated (by both algorithms), the Welsh-Powell algorithm found better solutions in 

50% of the cases (23 in total). So, the DSatur algorithm found better solutions in only 19.6% of cases (9 in 

total). In the remaining 30.4% of cases, both algorithms found identical solutions. The results show the effect 

of increasing the size of the graphs on the execution time of both algorithms. The execution time of the 

DSatur algorithm is greater than the execution time of the Welsh-Powell algorithm, reaching up to a minute 

for graphs with a larger number of vertices. For graphs with fewer vertices and edges (from the first half of 

the graph set), the execution times of both algorithms are shorter, but the difference is again many times 

larger for the DSatur algorithm. The study can be continued by performing a comparative analysis of the 

performance of both algorithms if the analyzed graphs are represented by other data structures, such as 

adjacency lists. 
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