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 Maximum power point tracking (MPPT) enhances the efficiency of solar 

photovoltaic (PV) systems by ensuring optimal power extraction under 

varying conditions. MPPT is implemented in solar charge controllers or 

hybrid inverters connected to PV arrays. The current-voltage (IV) curve, 

influenced by temperature and irradiance fluctuations, becomes more 

complex under partial shading, causing multiple local maxima and reducing 

efficiency. This study proposes an MPPT technique using the Archimedes 

optimization algorithm (AOA), a novel metaheuristic inspired by Archimedes' 

principle. The AOA-based MPPT integrates a DC/DC buck converter 

controlled by an STM32 microcontroller to address challenges in complex 

shading conditions. Comparative analysis demonstrates the AOA's superiority 

in achieving high efficiency and fast convergence. The AOA-based MPPT 

achieved an average efficiency of 93.17% across shading scenarios, 

outperforming PSO (87.04%) and non-MPPT systems (84.56%). It also 

exhibited faster average tracking times of 90.5 ms compared to PSO's  

100.5 ms, ensuring robust and reliable performance. These results confirm the 

effectiveness of the AOA-based method in maximizing energy harvesting in 

real-world PV applications. 
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1. INTRODUCTION  

The global energy landscape is rapidly shifting towards renewable energy sources, with solar 

photovoltaic (PV) systems playing a crucial role in this transition due to their potential for large-scale 

deployment and sustainability [1]. However, the efficiency of PV systems is significantly hampered by partial 

shading conditions, which cause multiple local maxima on the power-voltage (P-V) curve, complicating the 

process of maximum power point tracking (MPPT) and leading to suboptimal energy extraction [2], [3]. The 

development and implementation of advanced MPPT algorithms are therefore essential to ensure that PV 

systems operate at their maximum potential under varying environmental conditions [4]–[6]. 

Traditional MPPT algorithms, such as perturb and observe (P&O) and incremental conductance 

(INC), have been widely adopted due to their simplicity and ease of implementation [7], [8]. Some researchers 

used fuzzy-based optimization for the MPPT implementation [9]–[13]. However, these methods often suffer 

from drawbacks such as oscillations around the maximum power point (MPP) and reduced accuracy under 

rapidly changing environmental conditions, particularly in partial shading conditions [14]–[16]. Moreover, 

https://creativecommons.org/licenses/by-sa/4.0/
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while these techniques perform adequately under uniform irradiation, their effectiveness significantly 

diminishes in non-uniform conditions, leading to increased power losses and inefficiencies in energy harvesting 

[17]–[20].  

To overcome these challenges, recent advancements have seen the introduction of bio-inspired and 

metaheuristic algorithms, such as the cuckoo search (CS) [21], seagull optimizer (SO) [22], and spotted hyena 

optimizer (SHO) [23], squirrel search algorithm (SSA) [24], mutant particle swarm optimization (MPSO) [25], 

modified particle swarm optimization (PSO) [26], fusion firefly algorithm (FFA) [27], an immune firefly 

algorithm (IFA) [28], grey wolf optimization (GWO) [29], Harris hawk optimization (HHO) [30], moth flame 

optimization (MFO) [31], grasshopper optimization (GHO) [32], and ant colony optimization (ACO) [33]. 

These algorithms offer improved tracking performance by more effectively navigating the complex P-V 

landscapes caused by partial shading conditions (PSCs) also Zafar et al. [34] wrote a novel about MPPT control 

techniques for PV systems under partial shading conditions using the metaheuristic algorithm.  

Megantoro et al. [35] conducted research to compare some evolutionary algorithms (EA), such as the 

genetic algorithm (GA), firefly algorithm (FA), fruitfly algorithm (FOA), and PSO, which are also used for 

solving the MPPT problem in partial shading conditions. These algorithms have demonstrated superior 

convergence speed, accuracy, and robustness compared to conventional methods, making them highly 

promising for real-world applications [36]. 

Recent advancements in optimization algorithms have opened new avenues for tackling the challenges 

of partial shading in photovoltaic (PV) systems. The archimedes optimization algorithm (AOA) has emerged 

as a promising metaheuristic method due to its dynamic balance between exploration and exploitation, efficient 

convergence capabilities, and adaptability to complex optimization problems. AOA's versatility has been 

demonstrated in various domains, including optical system design, where it achieved superior optimization 

outcomes in intricate tasks [37]. It has also been successfully applied to optimize variable pitch wind turbine 

control, handling multifaceted engineering challenges [38]. In the renewable energy sector, AOA has shown 

excellent performance in MPPT under partial shading conditions, delivering higher efficiency and faster 

convergence than traditional methods [39]. Additionally, AOA has been utilized in power systems 

optimization, such as PID tuning of a DC-DC buck converter [40] and optimizing power flow in electrical 

systems from optimal electric vehicle charging station placement [41]. These applications underscore AOA's 

robustness and efficiency, justifying its use in this study to address the complex, nonlinear power-voltage 

landscapes of PV systems affected by partial shading. This research aims to build upon these proven strengths 

of AOA to enhance MPPT performance and ensure optimal energy harvesting under challenging environmental 

conditions. 

This study introduces the AOA as an approach to MPPT in PV systems under partial shading 

conditions, addressing the challenges of complex power-voltage landscapes. Integrating AOA into a real-time 

embedded system with a DC/DC buck converter highlights its practical applicability and scalability for low-

cost PV solutions. The study combines rigorous simulation and real-world validations to establish the 

algorithm's reliability and adaptability. Furthermore, this research lays the foundation for extending AOA to 

broader renewable energy applications, offering a cutting-edge solution for dynamic and nonlinear 

optimization problems. 

 

 

2. METHOD  

This section explains the methods used in the research. The designed MPPT device used a simulated 

model of a PV module in different partial shading conditions that act as the power supply for the whole system. 

At the same time, the MPPT itself is a combination of an SCC DC/DC buck converter controlled with a 

microcontroller injected with the AOA.  

 

2.1.  Partial shading PV simulation model 

Partial shading in PV modules significantly affects the performance and efficiency of solar energy 

systems. When a PV module is partially shaded, the output power of the entire string of PV modules can be 

significantly reduced. Partial shading also creates multiple peaks in the power-voltage (P-V) characteristic 

curve of the PV system, complicating the task of MPPT [42]. Simulation tools like MATLAB and PSIM have 

been used to model and analyze the effects of partial shading to help understand the I-V (current-voltage) and 

P-V characteristics of solar modules under non-uniform irradiation [43], [44]. 

The photovoltaics module in this research simulated four variations of partial shading conditions: full 

irradiance, quarter-shaded, half-shaded, and quarter-irradiance. The simulation was conducted with the help of 

IT-M3622 Bi-Directional Power Supply and SAS1000 Software, both of which are manufactured by ITECH. 

The IT-M3622 supplies physical voltages and current as an actual PV module, paired with SAS1000 that runs 

the PV module specifications, shadow quantities and movement variations, and data acquisition. The ITECH 
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IT-M3622 power supply simulates an 80 Wp PV module in different scenarios of partial shading conditions 

from the shadow mode of SAS1000 software with the shading configuration illustrated in Figure 1. 

 

2.2.  MPPT technique 

MPPT is a crucial technique used in photovoltaic (PV) systems to optimize power extraction from 

solar panels by ensuring they operate at their MPP. Since environmental factors such as solar irradiation and 

temperature continuously fluctuate, the MPP varies. It is requiring dynamic adjustments to maintain maximum 

efficiency. MPPT algorithms continuously track these changes and adjust the operating voltage or current to 

ensure optimal power output.  

The simulated partial shading configuration in Figure 1 consisted of 4 shadow conditions covering 

different areas of the simulated 36 cells' PV module, representing eight small rectangles of 4.5 cells each. In 

Figure 1(a), the PV cells are completely irradiated, while in Figure 1(b), 25% of the upper-left PV cells are 

shaded, and only 27 cells are irradiated. In Figure 1(c), the half-left of the PV cells ware covered, and only  

18 cells were irradiated, and in Figure 1(d), only nine cells in the lower-right are irradiated or 75% shaded. 

 

 

    
(a) (b) (c) (d) 

 

Figure 1. PV module shading configuration; (a) 100% irradiance, (b) 75% irradiance, (c) 50% irradiance,  

and (d) 25% irradiance 

 

 

2.3.  Archimedes optimization algorithm 

The AOA is a novel metaheuristic algorithm inspired by Archimedes' principle [42], [43]. The AOA’s 

agents significantly advance optimization, leveraging physical principles to enhance computational efficiency 

and solution quality [44], [45]. The AOA is classified into six mathematical steps in this research, which are 

explained in the following section. 

The AOA was chosen for this study due to its ability to optimize complex, nonlinear systems 

effectively. Unlike traditional algorithms such as PSO or GA, AOA's dynamic balance between exploration 

and exploitation enables it to converge faster while avoiding local optima. Recent applications of AOA further 

underscore its versatility and efficiency. For instance, AOA has been employed in renewable energy 

optimization and power systems engineering, achieving superior performance metrics [37], [39]–[41],  

[45]–[49]. These merits make AOA a compelling choice for addressing the challenges of MPPT under partial 

shading conditions. 

 

2.3.1. Initialization 

In this step, object positions are initialized using (1). Where 𝑂𝑖  represents the i-th object in a 

population of N. 𝑙𝑏𝑖  and 𝑢𝑏𝑖 denote the lower and upper bounds of the search range, respectively. The 

initialization of volume (vol) and density (den) for each object i follows (2). 

  

𝑂𝑖 =  𝑙𝑏𝑖 + 𝑟𝑎𝑛𝑑 × (𝑢𝑏𝑖 − 𝑙𝑏𝑖); 𝑖 = 1, 2, …, (1) 

 

with rand is a dimensional vector D randomly generating numbers between 0 and 1. The velocity (acc) is 

initialized using (3). In this step, the initial population is evaluated, and the object with the best fitness value is 

chosen and added to 𝑥𝑏𝑒𝑠𝑡  , 𝑑𝑒𝑛𝑏𝑒𝑠𝑡 , 𝑣𝑜𝑙𝑏𝑒𝑠𝑡 , 𝑎𝑐𝑐𝑏𝑒𝑠𝑡 variables. 

 

𝑑𝑒𝑛𝑖 = 𝑟𝑎𝑛𝑑; 𝑣𝑜𝑙𝑖 = 𝑟𝑎𝑛𝑑 (2) 

 

𝑎𝑐𝑐𝑖 =  𝑙𝑏𝑖 + 𝑟𝑎𝑛𝑑 × (𝑢𝑏𝑖 − 𝑙𝑏𝑖) (3) 
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2.3.2. Updating density and volume 

The density and volume of the i-th object for iteration number t + 1 were updated using (4) and (5). 

Where 𝑑𝑒𝑛𝑏𝑒𝑠𝑡  and 𝑣𝑜𝑙𝑏𝑒𝑠𝑡  is the density and volume of the best object found with uniform rand. 

 

𝑑𝑒𝑛𝑖
𝑡+1 = 𝑑𝑒𝑛𝑖

𝑡+1 + 𝑟𝑎𝑛𝑑 × (𝑑𝑒𝑛𝑏𝑒𝑠𝑡 − 𝑑𝑒𝑛𝑖
1) (4) 

 

𝑣𝑜𝑙𝒊
𝒕+𝟏 = 𝑣𝑜𝑙𝒊

𝒕+𝟏 + 𝑟𝑎𝑛𝑑 × (𝑣𝑜𝑙𝑏𝑒𝑠𝑡 − 𝑣𝑜𝑙𝒊
𝟏) (5) 

 

2.3.3. Transfer operator and density factor 

Collisions among objects occur, and over time, these objects attempt to reach an equilibrium point. 

The transfer function (TF) required for transforming the search from exploration to exploitation is defined in 

(6). TF increases with time until reaches 1, while t and 𝑡𝑚𝑎𝑥 is iteration number and maximum iteration. Density 

decreasing factor (d) helps AOA move from global search to local search, which decreases with time according 

to (7). 

 

𝑇𝐹 = exp (
𝑡−𝑡𝑚𝑎𝑥

𝑡𝑚𝑎𝑥
) (6) 

 

𝑑𝑡+1 = exp (
𝑡𝑚𝑎𝑥−𝑡

𝑡𝑚𝑎𝑥
) − (

𝑡

𝑡𝑚𝑎𝑥
) (7) 

 

2.3.4. Exploration and exploitation 

a. Exploration phase (object collisions) 

If TF ≤ 0.5, collisions between objects happen, and random material (mr) is selected, and object 

acceleration is updated using (8). Where 𝑑𝑒𝑛𝒊,  𝑣𝑜𝑙𝒊, and 𝑎𝑐𝑐𝒊 is the density, volume, and velocity of the i-th 

object. While 𝑑𝑒𝑛𝑚𝑟 ,  𝑣𝑜𝑙𝑚𝑟  and 𝑎𝑐𝑐𝑚𝑟  is the density, volume, and velocity of the randomly selected object. 
 

𝑎𝑐𝑐𝑖
𝑡+1 =  

𝑑𝑒𝑛𝑚𝑟+𝑣𝑜𝑙𝑚𝑟×𝑎𝑐𝑐𝑚𝑟

𝑑𝑒𝑛𝑖
𝑡+1×𝑣𝑜𝑙𝑖

𝑡+1  (8) 

 

b. Exploitation phase (no object collisions) 

Suppose TF > 0.5; collisions between objects do not happen. Object velocity at t + 1 is updated 

using (9). Where 𝑎𝑐𝑐𝑏𝑒𝑠𝑡  is the velocity of the best object. 

 

𝑎𝑐𝑐𝑖
𝑡+1 =  

𝑑𝑒𝑛𝑏𝑒𝑠𝑡+𝑣𝑜𝑙𝑏𝑒𝑠𝑡×𝑎𝑐𝑐𝑏𝑒𝑠𝑡

𝑑𝑒𝑛𝑖
𝑡+1×𝑣𝑜𝑙𝑖

𝑡+1  (9) 

 

2.3.5. Normalizing acceleration 

Velocity is normalized to compute percentage change using (10). Where u and l are the normalization 

range set to 0.9 and 0.1, respectively. 𝑎𝑐𝑐𝑖−𝑛𝑜𝑟𝑚
𝑡+1  determines the step percentage change for each agent. Objects 

far from the global optimal value will have higher velocity values, indicating the transition from the exploration 

phase to the exploitation phase. 

 

𝑎𝑐𝑐𝑖−𝑛𝑜𝑟𝑚
𝑡+1 =  𝑢 ×

𝑎𝑐𝑐𝑖
𝑡+1−min (𝑎𝑐𝑐)

max(𝑎𝑐𝑐)−min (𝑎𝑐𝑐)
+ 𝑙 (10) 

 

2.3.6. Position update 

In the exploration phase, the position of the i-th object in iteration number t + 1 is updated using (11). 

Where 𝐶1 is a constant equal to 2, in the exploitation phase (TF > 0.5), the object position is updated using (12).  

 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝐶1 × 𝑟𝑎𝑛𝑑 × 𝑎𝑐𝑐𝑖−𝑛𝑜𝑟𝑚
𝑡+1 × 𝑑 × (𝑥𝑟𝑎𝑛𝑑 −  𝑥𝑖

𝑡) (11) 

 

𝑥𝑖
𝑡+1 = 𝑥𝑏𝑒𝑠𝑡

𝑡 + 𝐹 × 𝐶2 × 𝑟𝑎𝑛𝑑 × 𝑎𝑐𝑐𝑖−𝑛𝑜𝑟𝑚
𝑡+1 × 𝑑 × (𝑇 × 𝑥𝑏𝑒𝑠𝑡 −  𝑥𝑖

𝑡) (12) 

 

where 𝐶2 is equal to 6, T increases linearly with time and is proportional with TF and defined with 𝑇 = 𝐶1 × 𝑇𝐹 

with a range of 𝐶3 × 0.3 to 1. Object movement direction changes are represented as F in (13). Where 𝑃 =
2 × 𝑟𝑎𝑛𝑑 − 𝐶4 

 

𝐹 = {
+1 𝑖𝑓 𝑃 ≤ 0.5
−1 𝑖𝑓 𝑃 > 0.5

 (13) 
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2.3.7. Objective function 

The objective function of the proposed system aims to optimize the duty cycle (D), representing the 

population (X) in AOA, to maximize the power output (Pout). Each candidate duty cycle corresponds to a PWM 

value controlling the DC/DC buck converter, and the AOA iteratively adjusts these values to find the global 

MPP under partial shading. The objective function is represented by (14). 

 

𝐹(𝑋) = 𝑉𝑜𝑢𝑡 ∙ 𝐼𝑜𝑢𝑡 (14) 

 

where X=D (duty cycle), Vout is the MPPT output voltage, and I is the MPPT output current. By dynamically 

evaluating and refining the duty cycle, the AOA ensures the PV system operates efficiently, adapting to 

complex and changing environmental conditions. 

 

2.3.8. AOA parameters 

The performance of the AOA in MPPT applications depends heavily on adequately tuning its 

parameters. These parameters govern the algorithm's ability to balance exploration and exploitation, ensuring 

efficient and accurate convergence to the global MPP for MPPT in photovoltaic PV systems, the parameters 

have been tuned to suit dynamic and partial shading conditions, as detailed in Table 1. By setting these 

parameters appropriately, the AOA can dynamically adapt to changes in irradiance and shading conditions, 

ensuring robust MPPT performance. The chosen values balance computational efficiency and optimization 

precision, making the AOA suitable for real-time embedded applications in PV systems. 

 

 

Table 1. AOA tuning parameters 
Parameter Value 

Population Size (N) 20 
Maximum Iterations (Tmax) 50–100 

Initial Density (deninit) 0.1–0.9 

Initial Volume (Volinit) 0.1–0.9 
Transfer Function (TF) 0 to 1 

Acceleration Coefficients (C1, C2) C1=2.0, C2=1.0 

Normalization Range (u, l) u=0.9, l=0.1 

 

 

2.4.  SCC DC/DC buck converter 

The design and implementation of solar charge controller (SCC) utilizing DC/DC buck converters 

play a crucial role in efficient management and storage of solar energy. The configuration of the DC/DC buck 

converter includes; MOSFETs, diodes, inductors, and capacitors. The configuration of the components allow 

efficient energy conversion by reducing the higher and fluctuating input voltages to lower and stable output 

voltage suited for charging batteries or powering loads [50]. 

 

 

3. IMPLEMENTATION 

The methodology described in the previous subsection was implemented on a hardware platform to 

validate its practical feasibility. This implementation includes the design of a SCC to enhance power conversion 

efficiency. The implementation conducted along with the integration of a MPPT algorithm capable of handling 

partial shading conditions. Additionally, the approach for embedding the AOA into the MPPT hardware is 

discussed in the following subsection. It is ensuring real-time adaptability and efficient power extraction. 

 

3.1.  MPPT in partial shading 

Detecting partial shading occurrences accurately is essential for initiating the appropriate MPPT 

response. The system integrates the selected MPPT algorithm (in this case, AOA), and their performance is tested 

under controlled partial shading scenarios. Data from the experiments are analyzed to verify the simulation 

outcomes, ensuring that the MPPT strategies are effective in real-world applications. PV output under partial 

shading condition simulations is represented in a set of P-V and I-V curves illustrated in Figures 2(a) to 2(d). 

The I-V and P-V curves for the simulated PV module under different shading conditions in Figure 2 

demonstrate the challenges and importance of MPPT in partial shading scenarios. As shading increases (from 

100% to 25% irradiation) in Figure 2(a) shows the PV response in uniform insolation, Figure 2(b) shows the 

PV response at 75 % shading, Figure 2(c) shows the PV response at 50 % shading, and Figure 2(d) shows the 

PV response at 25 % shading. The curves show a reduction in both current and power output, with the 

introduction of multiple local maxima. This complexity requires advanced MPPT algorithms to accurately 

distinguish and track the true MPP among these local peaks, ensuring optimal energy harvesting. 
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(a) (b) 

  

  
(c) (d) 

 

Figure 2. I-V and P-V curves of simulated PV module output under different shading conditions. (a) 100% 

irradiance, (b) 75% irradiance, (c) 50% irradiance, and (d) 25% irradiance 

 

 

3.2.  MPPT-AOA approach 

In the flowchart in Figure 3, voltage and current from the PV panels are measured and fed into the 

MPPT algorithm. The AOA was implemented to perform a maximum of 50 iterations, generating four materials 

within a search range of 0 to 100, with acceleration coefficients C3=2 and C4=1, and follows the flowchart in 

Figure 3. The AOA optimizes the converter's duty cycle, generating a PWM signal. This PWM signal is then 

used to evaluate the MPP. If the optimal MPP is achieved, the process outputs it; otherwise, it loops back to 

optimize the tracking further.  

The material generation process was evaluated, and Figure 4(a) shows significant changes in material 

generations from initialization to the 50th iteration, indicating AOA's dynamic and nonlinear behavior. This 

behavior leads to variations in material properties as AOA explores different regions of the parameter space. 

Following material generation, AOA updated the best material at each iteration, with the results shown in 

Figure 4(a) indicating convergence marked by stable PWM values. The updated material indices were input 

into the objective function to facilitate MPP detection, as shown in Figure 4(b). Each objective value increased 

until stabilizing, signifying optimal objective values achieved in the main loop. The convergence process, 

illustrated in Figure 4(c), shows the AOA function test results, with the algorithm achieving convergence by 

the 19th iteration using the specified parameters. The steps demonstrated in Figures 3 and 4 show the MPPT-

AOA function's effectiveness in tracking the MPP in the solar power system, confirming AOA's capability in 

optimizing PV module performance under varying conditions. 

 

 

 
 

Figure 3. MPPT implementation flowchart 
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(a) (b) 

 

 
(c) 

 

Figure 4. AOA progression of generating the best solution for each iteration. (a) material (PWM) generation, 

(b) objective value (MPP), and (c) AOA convergence curve 

 

 

4. RESULT AND DISCUSSION 

4.1.  Devising the MPPT-AOA 

The development of the system requires a comprehensive approach that integrates both hardware and 

firmware to achieve optimal performance and efficiency. The hardware design focuses on implementing key 

components such as power converters and control circuits. Simultaneously, the firmware design involves 

developing algorithms for MPPT using the AOA to enhance it with real-time adaptability and precision. The 

following subsections provide a detailed explanation of the methodologies used in designing both hardware 

and firmware. 

 

4.1.1. Hardware design 

The hardware design, as shown in Figure 5, revolves around a Nucleo-F446RE microcontroller that 

interfaces with essential components such as a voltage sensor (WCS1800 Module), an LCD screen (HD44780), 

and a power management circuit using an MP1584 buck converter. This design facilitates real-time data 

acquisition, allowing the microcontroller to adjust the PWM signal for optimal power output. The system also 

includes protection circuits to prevent overcurrent and overvoltage, ensuring reliable operation. 

 

4.1.2. Firmware design 

The firmware design of the device is illustrated in the flowchart in Figure 6. The process showed in 

Figure 6 starts with the configuration of peripherals, followed by obtaining the PV parameters. The system 

then sets the PWM based on the initial conditions and calculates AOA. If convergence to the MPP is not 

achieved, the object is regenerated, and the process loops until convergence is reached. Once the MPP is 

attained, the PWM is adjusted to maintain the system at this optimal point. 
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Figure 5. Hardware schematic 

 

 

 
 

Figure 6. Flowchart of the designed firmware 

 

 

4.2.  MPPT-AOA performance analysis 

This section presents a detailed analysis of the MPPT using the AOA under different shading conditions 

to assess its adaptability and efficiency. The study examines key performance aspects, including the algorithm’s 

convergence speed, tracking accuracy, and power harvesting efficiency. The analysis aims to evaluate the 

robustness of MPPT-AOA in maintaining optimal PV power output despite in partial shading effects. 

 

4.2.1. Convergence analysis 

Convergence analysis is critical in determining how quickly and accurately the MPPT-AOA can reach 

the MPP under different shading conditions. Figure 7 illustrates the convergence behavior at different shading 

levels: 0%, 25%, 50%, and 75%. Under 0% shading, as shown in Figure 7(a), the algorithm exhibits a smooth 

and rapid convergence to the MPP, indicative of its ability to track the optimal power point in ideal conditions 

efficiently. When shading is introduced at 25%, as shown in Figure 7(b), the convergence process shows minor 

fluctuations but still manages to stabilize quickly, demonstrating the algorithm's adaptability to changes in 
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irradiation. As shading increases to 50% in Figure 7(c), the convergence process encounters more pronounced 

oscillations before stabilizing, reflecting the algorithm's challenge in navigating through multiple local maxima 

introduced by partial shading. Under 75% shading in Figure 7(d), the convergence becomes slower and more 

erratic, with more significant fluctuations, yet the algorithm eventually stabilizes, albeit with reduced speed 

and efficiency. This analysis highlights the MPPT-AOA's capability to adapt across varying shading scenarios, 

though with a trade-off in convergence speed and stability as shading becomes more intense. 
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(c) (d) 

 

Figure 7. Convergence under different shading. (a) 0% shading, (b) 25% shading, (c) 50% shading,  

and (d) 75% shading 

 

 

4.2.2 Tracking analysis 

Tracking analysis is crucial to ensure the MPPT-AOA consistently operates close to the maximum 

power point. The tracking performance, as shown in Figure 8, reveals how the algorithm behaves under 

different shading conditions. With no shading, as shown in Figure 8(a), the MPPT-AOA maintains a stable 

operation near the MPP, with minimal deviations, indicating excellent tracking accuracy under optimal 

conditions. When shading is introduced at 25%, as shown in Figure 8(b), the system's tracking remains robust, 

with only slight deviations that are quickly corrected, minimizing potential power loss. However, as shading 

increases to 50% in Figure 8(c).  

The tracking accuracy begins to suffer, with more erratic behavior due to the complex power curve. 

Despite these challenges, the algorithm keeps the power output within a reasonable range. In Figure 8(d), under 

severe shading at 75%, tracking performance declines further, with more frequent and significant deviations 

from the MPP. Nonetheless, the system recovers and tracks the MPP reasonably, showcasing the algorithm's 

resilience even under harsh conditions. This analysis suggests that while the MPPT-AOA is highly effective in 

maintaining optimal operation under low to moderate shading, its tracking accuracy diminishes as shading 

severity increases, though it performs sufficiently well. 
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Figure 8. Tracking under different shading. (a) 0% shading, (b) 25% shading, (c) 50% shading, and (d) 75% 

shading 
 

 

4.2.3. Efficiency analysis 

Efficiency analysis is critical for assessing the MPPT-AOA's ability to effectively convert available 

solar energy into electrical power. As illustrated in Figure 9, the system's efficiency reflects its performance 

across varying shading conditions. It showed by Figures 9(a) to 9(d), under 0% shading, the system achieves 

near-optimal energy conversion with an average efficiency of 93.92%. As shading increases to 25%, there is a 

slight decrease in efficiency to 93.48%, which is expected as partial shading begins to impact the system's 

power output. At 50% shading, the efficiency drops to 92.46%, indicating the algorithm's increasing difficulty 

in maintaining optimal energy conversion, as shading creates more variability in the power curve. Surprisingly, 

even under 75% shading, the system maintains an efficiency of 92.83%, demonstrating the MPPT-AOA's 

effectiveness and robustness even under significant adverse conditions. The system performance also described 

in Table 2. 
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Figure 9. Efficiency under different shading. (a) 0% shading, (b) 25% shading, (c) 50% shading,  

and (d) 75% shading 
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Table 2. AOA-MPPT performance under different shading 
Component 0% shading 25% shading 50% shading 75% shading 

MPP (W) 56.03 29.21 23.67 11.30 
P. Avg. (W) 34.56 23.29 16.64 9.01 

Eff. Avg. (%) 93.92 93.48 92.46 92.83 

Duty. Avg. (%) 18.02 37.8 38.52 39.95 
MPP Obj. Val. 988535 9100575 6776146 5775146 

Tracking (ms) 90.50 90.50 90.47 90.47 

 

 

The consistent tracking speed across different shading levels, as indicated in Table 2, further reinforces 

the algorithm's reliability. The efficiency analysis shows that while the MPPT-AOA experiences minor efficiency 

and power output losses as shading increases, it remains a highly reliable and effective solution for maximizing 

energy capture in diverse environmental conditions. The system's ability to maintain high efficiency and 

consistent tracking performance under varying levels of shading underscores its robustness and adaptability, 

making it suitable for real-world applications where environmental conditions are often unpredictable. 

 

4.3.  MPPT-AOA actual condition test 

This section presents the results of real-world experiments conducted to evaluate the performance of the 

MPPT-AOA under different environmental conditions. The study compares MPPT-AOA with the PSO 

algorithm and a non-MPPT system. The tests are conducted to analyze their efficiency across different daily 

insolation cycles and partial shading scenarios. Performance metrics such as tracking speed, power extraction 

efficiency, and stability are examined to assess the practical viability of MPPT-AOA. 

 

4.3.1. Daily insolation test 

The daily insolation test evaluates the performance of the MPPT-AOA, PSO, and non-MPPT systems 

over different daily cycles, as shown in Figure 10. The test focuses on key metrics such as maximum power (P 

Max), average power (P Avg), and average efficiency (Eff. Avg). Showed in Figure 10(a) to (c), the output 

power of the AOA-MPPT is represented by the blue lines (PMPPT), while PSO and non-MPPT systems are 

defined by orange lines (PPSO) and green lines (non-MPPT), respectively. In Cycle 1, the MPPT-AOA in 

Figure 10(a) outperforms both PSO in Figure 10(b) and non-MPPT in Figure 10(c). Achieving a maximum 

power of 55.31 W, compared to 53.02 W for PSO and 50.40 W for non-MPPT. The average power output for 

MPPT-AOA is 39.92 W, significantly higher than the 37.90 W and 36.02 W recorded by PSO and non-MPPT, 

respectively. The efficiency of the MPPT-AOA is also superior, with an average of 95.68%, compared to 

90.12% for PSO and 85.67% for non-MPPT. This trend continues in Cycles 2 and 3, where MPPT-AOA 

consistently delivers higher power and efficiency, demonstrating its robustness and adaptability across different 

insolation conditions. 

 

 

  
(a) (b) 

  

 
(c) 

 

Figure 10. MPPT-AOA output power compared to other tested methods under different daily cycles:  

(a) AOA, (b) PSO, and (c) non-MPPT 
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The results in Table 3 further validate these observations, showing that the MPPT-AOA consistently 

achieves higher power and efficiency than its counterparts. In Cycle 2, the MPPT-AOA maintains a maximum 

power of 39.66 W and an average efficiency of 95.06%, whereas PSO and non-MPPT trail behind with lower 

values. Similarly, in Cycle 3, MPPT-AOA outperforms the other systems with a maximum power of 36.77 W 

and an efficiency of 95.62%. These findings underscore the MPPT-AOA’s ability to maximize energy capture 

and maintain high efficiency throughout varying daily insolation cycles, making it a superior choice for real-

world applications. 
 
 

Table 3. AOA vs. PSO vs. Non-MPPT performance under different daily cycles 
 AOA PSO Non-MPPT AOA PSO Non-MPPT AOA PSO Non-MPPT 

Cycle 1 Cycle 2 Cycle 3 

P Max. (W) 55.31 53.02 50.40 39.66 38.34 36.65 36.77 36.19 34.4 

P Avg. (W) 39.92 37.90 36.02 29.62 28.29 27.04 27.27 26.06 24.76 
Eff. Avg. (%) 95.68 90.12 85.67 95.06 90.11 86.14 95.62 90.12 85.64 

 

 

4.3.2. Partial insolation test 

The partial insolation test compares the tracking performance of MPPT-AOA, PSO, and non-MPPT 

systems under different shading conditions, as depicted in Figure 11. This test is crucial for understanding how 

well each system can adapt to partial shading, a common challenge in photovoltaic installations. Showed in 

Figure 11(a), the MPPT-AOA demonstrates excellent tracking accuracy under 100% irradiance, maintaining 

proximity to the MPP with minimal deviations. The results show that MPPT-AOA achieves an MPP of  

56.03 W, with an average power output of 34.56 W and an accuracy of 93.93%. Compared, PSO and  

non-MPPT systems deliver lower MPPs of 52.34 W and 51.80 W, respectively, with corresponding accuracies 

of 87.66% and 86.75%. As shading increases to 25%, 50%, and 75%, the MPPT-AOA continues to outperform 

PSO and non-MPPT systems, although the gap narrows slightly. For instance, under 75% shading in  

Figure 11(b), the MPPT-AOA still achieves an MPP of 11.30 W, compared to 10.56 W for PSO and 10.06 W 

for non-MPPT. The MPPT-AOA’s average power output and accuracy remain higher than those of the other 

systems across all shading levels. As shown in Figures 11(c) and 11(d). 

 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 11. AOA vs. PSO vs. Non-MPPT tracking under different shading. (a) 0% shading, (b) 25% shading, 

(c) 50% shading, and (d) 75% shading 
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Table 4 provides a detailed comparison of the performance metrics under different shading conditions. 

The data shows that the MPPT-AOA consistently delivers higher MPP and average power, faster tracking times 

and greater accuracy than PSO and non-MPPT systems. In Table 4, even under the most challenging condition 

of 75% shading, the MPPT-AOA achieves an efficiency of 96.26%, far surpassing the efficiencies of 89.92% 

and 85.65% for PSO and non-MPPT, respectively. This superior performance is attributed to the adaptive 

nature of the AOA, which allows it to adjust to varying environmental conditions and maintain optimal 

performance dynamically. 

 

 

Table 4. AOA vs. PSO vs. Non-MPPT performance under different shading 
 MPP (W) P. Avg (W) Tracking (ms) Acc. (%) 

0% shading 

AOA 56.032 34.56 90.50 93.928 

PSO 52.341 32.28 100.50 87.659 
NON-MPPT 51.799 32.01 - 86.751 

25% shading 

AOA 29.212 23.281 90.50 93.748 
PSO 27.287 21.747 100.50 87.573 

NON-MPPT 26.34 21.08 - 84.56 

50% shading 
AOA 23.76 16.64 90.53 93.742 

PSO 22.11 15.54 100.53 87.568 

NON-MPPT 21.31 15.15 - 84.408 
75% shading 

AOA 11.301 9.016 90.42 96.260 

PSO 10.556 8.422 100.42 89.920 
NON-MPPT 10.056 8.226 - 85.65 

 

 

4.3.2. Comparison with existing study 

The proposed AOA is evaluated against PSO, grasshopper optimization algorithm (GOA), GWO, and 

the Jaya algorithm to assess its performance in terms of efficiency and tracking time. Table 5 provides the 

results of this comparative study. The performance comparison in Table 5 reveals distinct strengths and 

weaknesses among the tested algorithms. The proposed AOA achieves a strong balance between high 

efficiency (93.1%) and fast-tracking time (0.95 seconds), making it an excellent choice for real-world 

photovoltaic (PV) systems requiring rapid adaptability and reliable energy extraction under partial shading 

conditions. While GOA (98.4%) and Jaya (98.5%) slightly outperform AOA in efficiency, their tracking times 

are longer (4.5 seconds for GOA and 2.4 seconds for Jaya), which could hinder responsiveness in dynamic 

environments. In contrast, PSO achieves moderate efficiency (87.5%) and a tracking time of 1.5 seconds, but 

it is outperformed by AOA in both metrics. 

GWO and P&O present significant limitations. GWO, with an efficiency of 85.6% and a tracking time 

of 21.5 seconds, struggles to compete due to its slow response and lower energy extraction capability. Meanwhile, 

P&O, though the fastest algorithm (0.07 seconds), P&O has inferior efficiency (31.5%), making it unsuitable for 

practical applications. Based on the analysis, AOA offers the most balanced performance, excelling in efficiency 

and tracking speed, making it a robust and versatile solution for real-world MPPT challenges. 

 

 

Table 5. Comparison of MPPT-AOA with existing study 
Algorithm Eff. (%) Tracking (s) 

AOA (Proposed) 93.1 0.95 

PSO (Tested on the same hardware as AOA) 87.5 1.5 
GOA [51] 98.4 4.5 

GWO [51] 85.6 21.5 

Jaya [52] 98.5 2.4 
Marine predator algorithm (MPA) [53] 99.8 0.07 

OBRL-BOA [54] 95 5.3 

 

 

5. CONCLUSION  

The AOA has emerged as a powerful method for achieving MPPT in PV systems, especially under 

challenging conditions like partial shading. Partial shading occurs when some parts of a solar panel are blocked 

by obstacles such as trees or buildings, leading to uneven energy production. AOA addresses this issue by 

efficiently finding the maximum power output point, ensuring optimal performance of the PV system. The 

algorithm demonstrates a remarkable efficiency rate of 93.1% and a swift tracking time of just 0.95 seconds. 
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Compared to other methods, such as PSO and systems without MPPT capabilities, AOA achieves significantly 

better results, showcasing its superior ability to adapt and perform reliably. Although algorithms like GOA and 

Jaya slightly surpass AOA in efficiency, AOA's faster response time makes it particularly advantageous in 

dynamic environments where conditions change rapidly, such as fluctuating sunlight or variable shading. 

Recent benchmarking studies have further compared AOA with newer methods, such as the artificial 

ecosystem-based optimization (AEO) and tunicate swarm algorithm (TSA), which offer high efficiency and 

robustness. However, AOA maintains a competitive edge due to its simplicity, lower computational 

requirements, and superior tracking speed, making it a practical choice for real-time applications. These 

findings highlight AOA as a robust, scalable, and practical solution for optimizing energy output in PV systems. 

Moreover, its potential extends beyond solar energy, with possibilities for broader applications in the field of 

renewable energy optimization, where efficiency and adaptability are crucial. 
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