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 The ever-changing nature of vulnerabilities and the intricacy of temporal 

connections make the classification of security patch data, both sequential 

and recurrent, a formidable challenge in cybersecurity. The goal of this 

research is to improve the efficacy and precision of security patch 

management by optimizing deep learning models to deal with these issues. 

In order to assess their performance on the PatchDB dataset, four models 

were used: recurrent neural networks (RNN), long short-term memory 

(LSTM), gated recurrent unit (GRU), and bidirectional LSTM (Bi-LSTM). 

Metrics like F1-score, area under the receiver operating characteristic curve 

(AUC-ROC), recall, accuracy, and precision were used to evaluate 

performance. When it came to processing sequential data, the GRU model 

was the most efficient, with the best accuracy (77.39%), recall (65.63%), and 

AUC-ROC score (0.8127). With a 75.17% accuracy rate and an AUC-ROC 

score of 0.7752, the RNN model successfully reduced false negatives. With 

AUC-ROC scores of 0.7792 and 0.8055, respectively, LSTM and Bi-LSTM 

had better specificity but more false negatives. To improve cybersecurity 

operations, decrease mitigation time, and automate the classification of 

security updates, this study presents a methodology. To improve the models' 

practicality, future efforts will center on increasing datasets and testing them 

in real-world settings. 
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1. INTRODUCTION 

The fast development of digital technology and the rising dependence on software infrastructure in 

many sectors have made cybersecurity a paramount concern in the recent decade. By fixing previously 

discovered software vulnerabilities, security patches protect systems from a broad variety of new threats [1]. 

The dangers of cyberattacks which can result in substantial financial losses, reputational harm, and 

interruptions to operations must be mitigated by applying these fixes in a timely and effective manner. But 

there are a lot of obstacles to overcome when analyzing and deploying security patches. This is especially 

true because patch data is sequential and recurring, which makes analysis and prediction more difficult [2]. 

It is necessary to apply updates in a precise sequence to fix vulnerabilities as they occur, and this 

sequential pattern is typically seen in security patch data. The fact that updates are often applied to multiple 

software versions to address the same or similar vulnerabilities further complicates matters [3]. Static 

analysis and rule-based approaches are examples of traditional methods that use heuristics and predefined 

rules to find vulnerabilities. Although these methods work well in static situations, they can't handle data that 

is intrinsically sequential and time-sensitive, which makes it difficult to capture how software vulnerabilities 
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change over time [4]. This shortcoming has prompted research into more sophisticated methods that can 

handle the intricacies of security patch data. 

Because of its capacity to handle massive amounts of complicated data and discover patterns that 

conventional approaches frequently fail to notice, deep learning has arisen as a potential option for evaluating 

sequential and temporal data [5]. Intrusion detection, malware categorization, and vulnerability assessment 

are just a few of the cybersecurity applications where deep learning models have been shown to be effective 

in recent studies [6]. Security patch classification tasks are well-suited for models like recurrent neural 

networks (RNN), long short-term memory (LSTM), gated recurrent units (GRU), and bidirectional LSTM 

(Bi-LSTM) because of their effectiveness in learning long-term dependencies within sequences [7], [8]. 

When it comes to these, Bi-LSTM stands out since it takes into account both the past and the future, which 

improves its prediction abilities in situations where the sequence of events is crucial [7]. 

Examining and contrasting the performance of RNN, LSTM, GRU, and Bi-LSTM models in dealing 

with sequential and recurrent security patch data is the main goal of this research. This work thoroughly 

evaluates these models using the PatchDB dataset. It employs rigorous experimental approaches such as data 

preparation, hyperparameter tuning, training, validation, and testing. To find the best method for security 

patch classification, scientists employ metrics including recall, accuracy, precision, F1-score, and area under 

the receiver operating characteristic curve (AUC-ROC) to evaluate model performance [9]–[11]. 

This study does more than just compare model performance; it also looks into how hyperparameter 

adjustment can improve deep learning models' efficacy [12]. This project seeks to develop a strong 

framework for analyzing security patch data by determining optimal configurations. Because they provide 

useful information about how to use deep learning to automate patch management processes, the results 

should have a major impact on cybersecurity. In the end, this research sets the stage for creating sophisticated 

systems that enhance the dependability and effectiveness of cybersecurity processes, decreasing the need for 

human intervention and lowering the risks linked to software vulnerabilities. 

 

 

2. THE COMPREHENSIVE THEORETICAL BASIS 

Grasping how deep learning architectures address the sequential and repetitive elements intrinsic to 

security patch data is paramount for ensuring accurate patch classification. RNN, LSTM, GRU, and Bi-

LSTM are specifically designed to effectively capture temporal dependencies in sequential datasets. By 

leveraging their distinctive ability to retain historical context and manage data sequences with varying 

complexities, these architectures significantly improve the classification accuracy of security patches. 

 

2.1.  Recurrent and sequential data in cybersecurity 
Patches are typically issued in a sequential fashion to address different software vulnerabilities as 

they are found, because security patch data is naturally recurrent and sequential. Because of this sequential 

character, the data takes on a time dimension; the sequence and timing of patch releases can have a major 

effect on a system's overall security. These temporal dependencies are crucial for good vulnerability 

management, yet traditional approaches to vulnerability detection, such as static analysis methods, generally 

fail to capture them [1]. Research has demonstrated that static analysis methods have their uses, but they 

frequently overlook software vulnerabilities' ever-changing nature, especially when they happen repeatedly 

and sequentially [5]. RNNs and LSTM networks, which are specifically designed for sequential data, provide 

a potential solution to these problems by accurately modelling the temporal relationships in the data, which 

improves the reliability and accuracy of vulnerability detection [2]. 

 

2.2.  Recurrent neural networks (RNN) 

Time series analysis is one area where the sequence of data points is very important, and one of the 

fundamental designs for handling sequential data is the RNN [8]. RNNs learn dependencies over time by 

preserving information from past time steps in a hidden state. The vanishing gradient problem is a well-

known issue with RNNs; it happens when the gradients utilized in backpropagation get too small, preventing 

the network from learning data dependencies over the long term. When working with lengthy sequences, this 

issue can severely impair RNN performance, and it is especially noticeable in deep networks [13]. In spite of 

these obstacles, RNNs have established a foundation for comprehending sequential input, and their design 

has prompted more sophisticated models such as LSTM networks, which overcome some of these 

shortcomings by incorporating techniques to maintain gradients throughout time [8]. 

 

2.3.  Long short-term memory networks (LSTM) 

To overcome the issues with regular RNNs, such as the vanishing gradient problem that prevents 

RNNs from learning long-term dependencies in sequential data, LSTM networks were created [8]. LSTMs 

get around this problem by incorporating memory cells and gating mechanisms that let the network keep and 
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update data for long periods of time, thereby capturing long-term dependencies [14]. Natural language 

processing, time series forecasting, and the analysis of sequential data (such as security patches) are some 

examples of jobs that LSTMs excel at because of these capabilities. With its ability to simulate the temporal 

connections between software updates and improve the speed and accuracy of vulnerability identification 

through the study of system logs, LSTMs have demonstrated great promise in the domain of cybersecurity. 

They also improve the prediction of the effectiveness of security patches. Because of these features, LSTMs 

are an effective tool for protecting software systems from new threats, especially in situations were applying 

security fixes accurately and in a timely manner is critical. 

 

2.4.  Gated recurrent units (GRU) 

To simplify LSTM network architecture while keeping their efficiency in capturing temporal 

dependencies, a relatively recent development in recurrent neural network designs are GRUs [15]. In order to 

reduce computational complexity without sacrificing performance, GRUs merge the input and forget gates 

into one single gate. For situations with constrained computing resources, this makes GRUs superior to 

LSTMs [16]. Because of their advantageous trade-off between computational complexity and performance, 

GRUs have found useful use in real-time vulnerability detection systems within the cybersecurity domain [6]. 

Because of these features, GRUs are ideal for real-time cybersecurity applications because of the solid 

performance they provide while processing sequential input quickly and accurately. 

 

2.5.  Bidirectional LSTM (Bi-LSTM) 
By combining the best features of forward and backward processing, bidirectional LSTM networks 

improve upon traditional LSTMs and enable models to detect dependencies that would otherwise go 

unnoticed. With this two-way approach, Bi-LSTMs can think about the past and the future at the same time, 

which helps them understand the data's temporal linkages better. Using its capacity to analyze sequences 

more deeply, Bi-LSTMs have been successfully used to improve the detection of vulnerabilities in security 

patches. This has led to deeper insight into potential security threats and better prediction accuracy in 

cybersecurity applications [7]. 

 

2.6. Summary and application of deep learning in vulnerability detection 

A number of recent studies have concentrated on the use of RNN, LSTM, GRU, and Bi-LSTM deep 

learning models in cybersecurity, namely in the areas of vulnerability tracking and patch administration. 

Security patch data presents unique issues, but each model has its own benefits when it comes to handling 

sequential data. Researchers hope to strengthen software systems' security by making better use of these 

models to discover vulnerabilities more quickly and accurately. 

 

 

3. METHOD  

3.1. Overview of methodology 

In order to classify security patches effectively, this study's technique takes into account the 

PatchDB dataset's recurrent and sequential features. This section gives a detailed explanation of the dataset, 

including its statistics and its unique features including the deployment of patches sequentially throughout 

time. In order to deal with the time-sensitive data, we offer comprehensive preparation procedures, such as 

tokenization and normalization. By visualizing and uncovering distributions and patterns within the dataset 

across time, exploratory data analysis (EDA) provides useful insights for developing models. Additionally, 

the technique provides an explanation for why specific deep learning models were chosen, including RNN, 

LSTM, GRU, and Bi-LSTM, all of which excel at capturing dependencies in sequential datasets. We also go 

over the assessment measures used, including accuracy, precision, recall, and AUC-ROC, with an emphasis 

on how they pertain to sequential data processing, and how to optimize the model's performance through 

hyperparameter tuning and advanced training procedures. The difficulties of security patch categorization can 

be properly addressed with the help of this organized method. 

 

3.2. Research stages 

As presented in Figure 1, the proposed study employs a structured, multi-phased methodology to 

classify security patches using deep learning models. The process begins with data acquisition and 

preliminary analysis, which aim to explore the dataset’s characteristics thoroughly. Next, essential 

preprocessing steps are performed: commit messages are combined with the associated code differences, and 

text data are transformed using term frequency-inverse document frequency (TF-IDF) tokenization. Once the 

textual data has been prepared, the dataset is divided into training and testing subsets to ensure a reliable 

assessment of model performance. 
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Following data preparation, various deep learning architectures namely RNN, LSTM, GRU, and 

Bi-LSTM are developed and fine-tuned through hyperparameter optimization to achieve superior accuracy. 

After identifying the optimal configurations, each model is trained and evaluated using appropriate metrics to 

gauge its predictive capabilities. The evaluation phase highlights the strengths and weaknesses of every 

model, shedding light on their respective effectiveness in handling sequential and repetitive patch data. This 

comprehensive approach ultimately enhances software security management by enabling swift and precise 

detection of security patches. 

 

 

 
 

Figure 1. The proposed multi-stage research framework for security patch classification 

 

 

3.3. Data collection 
In this part, the dataset that was utilized for training and assessing deep learning models for 

sequential security patch categorization is described, with an emphasis on its importance. The SunLab-

created "PatchDB: A large-scale security patch dataset" [17], contains both security and non-security patches 

culled from well-known GitHub projects and the National Vulnerability Database (NVD). A perfect fit for 

sequential and temporal data analysis, it collects commit and diff attributes together with multi-labels 

("Security" and "Non-security"). To start gathering data, we crawled the NVD and common vulnerabilities 

and exposures (CVE) databases for documented security patches, making sure to include only validated 

patches. By adding real-world patches to GitHub commits and using oversampling techniques to balance the 

quantity of security and non-security changes, we were able to address class imbalance and promote 

diversity. A balanced, diversified, and high-quality dataset that is well-suited for deep learning applications 

was achieved using this all-encompassing methodology. In order to achieve reliable and precise security 

patch categorization, the study makes use of PatchDB and the capabilities of deep learning models including 

RNN, LSTM, GRU, and Bi-LSTM. These models excel at detecting patterns and dependencies in sequential 

data over the long term. 

 

3.4. Preprocessing data 

Data quality, consistency, and suitability for sequential deep learning models were guaranteed 

through a thorough sequence of preparation processes that were performed on the dataset to get it ready for 

modelling. This process began with exploratory data analysis (EDA) to identify distributions, trends, and 

potential anomalies in the patch dataset. The EDA included class imbalance inspection, token frequency 

distribution, and sequence length analysis to ensure compatibility with sequential models. Subsequently, data 
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cleaning and preparation steps such as handling missing values and formatting data structures were applied to 

ensure the dataset met the input requirements for time-series deep learning algorithms. 

 

3.4.1. Exploratory data analysis (EDA) 

The EDA of the dataset reveals a substantial class imbalance between security and non-security 

patches, which was addressed by oversampling during data preprocessing. Specifically, the number of non-

security patches significantly outnumbered the security patches, which could lead to model bias if left 

unhandled. This imbalance can be seen clearly in Figure 2, where the bar chart highlights the differing counts 

between these two patch types. 

Figure 2 also includes a pie chart that illustrates how 88.6% of the patches are considered wild, 

while 11.4% come from the common vulnerabilities and exposures database. These visual representations not 

only showcase the dataset's diversity but also underscore the importance of balancing strategies for improved 

classification performance. By recognizing and correcting the dominance of wild patches at this early stage, 

the subsequent steps of data preparation and deep learning model development were better positioned to 

achieve robust and accurate security patch classification. 

 

 

  
 

Figure 2. Part of the EDA, with a pie chart showing the patch type spread and a bar chart comparing security 

and non-security patches 

 

 

3.4.2. Data cleaning  

A thorough data cleaning process was carried out to preserve the dataset's consistency, reliability, 

and integrity, making it appropriate for deep learning models. To eliminate unnecessary repetition, we 

eliminated duplicate entries and combined text fields like commit messages and code diffs into one standard 

style [4]. up order to fill up any gaps or missing data, we checked with other resources, such as the NVD and 

GitHub [17]. A high-quality dataset that reduced biases and enhanced the models' reliability during training 

and evaluation was produced by meticulously reviewing each item to guarantee uniqueness and 

completeness. 

 

3.4.3. Label encoding 

It was critical to transform the categorical labels into a numerical format that the algorithms could 

interpret successfully in order to prepare the dataset for deep learning models. "Security" and "Non-security" 

are examples of textual labels that were converted into numerical values (e.g., 1 and 0) by label encoding [4]. 

Because of this change, the models were able to train appropriately on the categories, which allowed them to 

discover useful links and patterns in the data. Achieving reliable predictions and a smooth dataset integration 

with deep learning frameworks relied heavily on the label encoding process. 

 

3.4.4. Tokenization and vectorization 

The transformation of raw text into numerical representations was crucial for the deep learning 

models to efficiently process textual data. Term frequency-inverse document frequency (TF-IDF) 

vectorization and tokenization allowed us to achieve this. First, the combined text fields, including code diffs 
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and commit messages, were tokenized to make them easier to work with [4]. To make them usable as input to 

the model, these tokens were converted into numerical vectors with a predetermined amount of features. 

Tokenization and vectorization preserved the relevance of terms based on their frequency and uniqueness 

within the dataset, improving the text data format for deep learning applications. This allowed the models to 

train and predict well [18]. 

 

3.4.5. Data Splitting 

Separating the dataset into subsets for training, validation, and testing was crucial to provide a 

strong and impartial assessment of the models. Stratified sampling was used to ensure that the "Security" and 

"Non-security" categories were evenly distributed throughout all subsets of the dataset, which was then 

divided into three parts: 70% for training, 15% for validation, and 15% for testing [3]. This method prevented 

overfitting during training while still providing the models with enough data for learning. A separate metric 

for the model's efficacy was supplied by the test set, which allowed for hyperparameter tuning and 

performance monitoring in the validation set. The evaluation process consistently evaluated the models' 

capacity to generalize to unknown data by utilizing this structured splitting strategy [12]. 

 

3.4.6. Define model (RNN, LSTM, GRU, BI-LSTM) 
We developed and deployed four deep learning architectures RNN, LSTM, GRU, and Bi-LSTM to 

efficiently handle and categorize sequential security patch data. In order to capture the semantic links 

between words, each model design started with an embedding layer that turned input tokens into dense 

vectors [18]. Adapted to the specifics of each model, the following recurrent layers were built upon these 

embeddings. To handle long-term dependencies, the LSTM model made use of its gating mechanisms, 

whereas the RNN model learnt sequential dependencies using a SimpleRNN layer [8]. A GRU layer was 

used by the computationally efficient GRU model [15], while a Bidirectional LSTM layer was used by the 

bidirectionally efficient Bi-LSTM model [7] to process data in both directions. Probability scores for binary 

classification were generated using a dense output layer using a sigmoid activation function. For accurate 

predictions and efficient learning, all models were fine-tuned with the Adam optimizer and built with the 

binary cross-entropy loss function. The models were able to accurately classify security patch data because of 

the architectural design's emphasis on sequential and temporal patterns. 

 

3.5. Hyperparameter tuning 

To maximize the efficiency of a deep learning model, hyperparameter tuning is an essential process 

for determining the best possible parameter settings. Using an Optuna-based approach a state-of-the-art 

optimization framework, we methodically investigated several hyperparameter combinations in this study. 

Optuna finds the best settings by intelligently sampling setups, as opposed to grid search, which evaluates 

every potential parameter value exhaustively [12]. The study's critical hyperparameters were the following: 

learning rate, batch size, epochs, number of layers, number of units in recurrent layers, and number of layers 

overall. Model accuracy, recall, precision, F1-score, and AUC-ROC were all maximized using this 

procedure. Research has shown that hyperparameter tweaking has a major effect on the accuracy and 

computational efficiency of models, among other things [19], [20]. To determine the efficacy of each 

collection of hyperparameters, models were tested with a validation subset. Consistent and very accurate 

model classification of sequential security patch data was achieved as a consequence of this rigorous tuning 

procedure. 

 

3.6. Training models 

In deep learning applications with sequential data, proper model training is crucial for achieving 

optimal performance while minimizing overfitting. Here, we optimized RNN, LSTM, GRU, and Bi-LSTM 

models using state-of-the-art training methods. Because of its capacity to dynamically adjust learning rates 

and expedite convergence, the Adam optimizer is well-known for its efficiency in deep learning tasks, and it 

was used to train all of the models [21]. Throughout the training process, the model's performance was 

constantly tracked on a validation set using a defined number of epochs. Early stopping was used to end 

training when validation performance did not show any additional improvement; this was done to further 

improve generalizability and prevent overfitting [22]. By using this approach, we could be certain that our 

models would reliably detect important patterns in our training data and continue to perform admirably when 

presented with new, unknown test data [23]. Our models for categorizing security patch data have proven to 

be reliable and effective by using these training procedures. 

 

3.7. Evaluation metrics 

To properly evaluate deep learning models' success in identifying security fixes, it is crucial to 

choose appropriate assessment measures. This study thoroughly evaluated the efficacy of the model by using 
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a combination of generally recognized categorization measures. Precision measures the dependability of 

positive predictions, recall evaluates the ability to identify true positives, F1-score strikes a balance between 

recall and precision, and AUC-ROC measures the model's capacity to distinguish between classes across 

different thresholds [24]. Accuracy is used for general performance assessment. All of these measures 

worked together to provide a thorough assessment, showing how effectively each model dealt with sequential 

security patch data and where it fell short. 

 

3.7.1. Confusion matrix  

Classification model performance can be better understood with the help of tools that reveal their 

predictions in great detail. For example, the confusion matrix classifies forecasts as either true positive (TP), 

true negative (TN), false positive (FP), or false negative (FN). The model's predicted accuracy can be 

thoroughly evaluated thanks to this breakdown [9]. The confusion matrix is a useful tool for identifying the 

model's strengths and weaknesses, such as its positive and negative instance classification accuracy and the 

extent to which it misclassifies data [10]. An overview of the confusion matrix structure is provided in 

Table 1, which shows how the model's performance is evaluated by comparing predictions with actual 

outcomes.  

 

 

Table 1. Confusion matrix 
 Predicted positive Predicted negative 

Actual positive True positive (TP) False negative (FN) 
Actual negative False positive (FP) True negative (TN) 

 

 

3.7.2. Accuracy 

A popular metric, accuracy shows how many instances out of the total number of instances in the 

dataset were properly predicted. An easy-to-understand overview of the model's performance is provided by 

it [16]. But it might be deceiving in datasets where there is a large disparity across classes [25]. Accuracy 

risks giving an exaggerated picture of the model's efficacy when one class is substantially more numerous 

than the other [26]. Equation (1) shows the formula for calculating accuracy, where TP and TN are the 

number of correctly categorized instances and total instances are the total data size: 

 

Accuracy =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

Total Instances
 (1) 

 

3.7.3. Precision 

An important measure for assessing the accuracy of a model is its precision, which is defined as the 

percentage of correct predictions relative to the total number of correct predictions. In contexts where false 

positives have substantial implications, like medical diagnosis or fraud detection, a high precision represents 

a low false positive rate, which is especially crucial [27]. In unbalanced datasets, where the false positive cost 

could exceed the false negative cost, this statistic becomes even more important [10]. Preciseness guarantees 

meaningful and dependable model predictions, especially in high-stakes applications, by focusing on 

reducing the number of false positives. The formula for calculating precision is given by (2), which divides 

the total number of true positives (TP) by the sum of all true positives and false positives (FP):  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
  (2) 

 

3.7.4. Recall 

The sensitivity or recall of a model is defined as the percentage of correct predictions relative to the 

total number of correct predictions. If the model has a high recall, it means it successfully identifies a large 

percentage of true positives. This is especially important in medical screening and security applications 

where false positives can have serious implications [28]. In illness diagnosis, for instance, a high recall rate 

guarantees the detection of the majority of cases, notwithstanding the possibility of some false positives [11]. 

Recall, which shows how well the model identifies the minority class which is frequently more important is a 

crucial parameter to consider when working with extremely imbalanced datasets [26]. To find the recall, we 

divide the total number of true positives (TP) by the total number of true negatives (FN) using the formula 

given in (3):  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
  (3) 
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3.7.5. F1-score  

An important metric for balancing recall and precision is the F1-score, which is the harmonic mean 

of the two. It offers a single metric that captures the accuracy of positive predictions (precision) and the 

completeness of the model’s positive detections (recall) two important metrics in a dataset with an uneven 

class distribution [29]. In cases when one group is grossly under-represented, this statistic becomes crucial in 

preventing an overemphasis on either recall or precision [30]. For a thorough evaluation of the model's 

performance, the F1-score is widely employed in classification and information retrieval tasks to measure the 

trade-off between recall and precision. Using a combination of recall and precision, the F1-score is calculated 

according to (4): 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙
  (4) 

 

3.7.6. Area under the ROC curve (AUC-ROC) 

One important measure for assessing a model's class discrimination capabilities is the AUC-ROC. 

The ROC curve gives a complete picture of the model's performance across all classification thresholds by 

plotting the true positive rate (TPR) versus the false positive rate (FPR) at different threshold settings [9]. By 

reflecting the probability that the model rates a randomly selected positive instance higher than a randomly 

chosen negative one, a bigger area under the curve (AUC) signifies better performance, which is a measure 

of separability [31]. In cases where the dataset is not evenly distributed, this statistic becomes invaluable, as 

accuracy alone can distort the picture of how well a model is doing [32]. 

 

 

4. RESULTS AND DISCUSSION 

Our study's findings break down each model's training and validation procedures in great detail. 

Along with hyperparameter adjustment and performance graphs, we also provide discussion and comparative 

analysis using evaluation measures. Furthermore, we present a case study that illustrates how the tested 

models were applied in practical situations and go over the results. 

 

4.1. Hyperparameter tuning result 

Table 2 shows the outcomes of hyperparameter tuning for our RNN, LSTM, GRU, and Bi-LSTM 

deep learning models assessed across several configurations. During the model creation process, the chosen 

hyperparameters, such as embedding size, number of units, and learning rate, are displayed in each row. 

These settings will be used to achieve optimal performance. The LSTM model attained a score of 0.6694 

with an embedding size of 125, 246 units, and a learning rate of 0.00243600, in contrast to the RNN model's 

0.6307, which was produced by an embedding size of 146, 74 units and a learning rate of 0.00015730. With 

120 embeddings, 75 units, and a learning rate of 0.00282000, the GRU model achieved an impressive score 

of 0.6762, surpassing all of its competitors. With 289,254 units of embedding size and 0.00018620 units of 

learning rate, the Bi-LSTM model achieved a score of 0.6697. These results highlight the need of 

customizing the hyperparameter settings for every model to get the best outcomes. Hyperparameter 

combinations including embedding size and learning rate can dramatically affect the efficacy and precision of 

deep learning models, as demonstrated by the GRU model's outperformance. For tasks involving the 

classification of security patches in sequential and recurrent data, it is particularly important to tune and 

carefully implement these parameters during the model-building process. 

 

 

Table 2. Hyperparameter tuning best result 
Model Trial Embedding Units Learning rate Value (Score) 

RNN 6 146 74 0.00015730 0.6307 
LSTM 2 125 246 0.00243600 0.6694 

GRU 15 120 75 0.00282000 0.6762 

Bi-LSTM 8 289 254 0.00018620 0.6697 

 

 

4.2. Evaluation metrics 

Table 3 demonstrates that while other models have lower false negative rates, the RNN model 

(Default) has a more even performance. With the help of adjustment, the RNN model becomes more 

efficient, leading to fewer false negatives. While the LSTM model (Default) produces more false positives 

overall, it maintains a reasonable ratio of false negatives to true positives. The tuned LSTM model 

demonstrates an improvement in recall by marginally reducing the amount of false negatives. The modified 

version of the GRU model significantly reduces false negatives, making it one of the more balanced models, 
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and the model as a whole shows great performance. As a result of balancing specificity and sensitivity, the 

Bi-LSTM model (Default) produces the most false positives. Although the Bi-LSTM model has improved 

accuracy after tuning, it still produces a significant amount of false negatives. 

 

 

Table 3. Model performance metrics 
Model True positive False positive True negative False negative Accuracy Recall Precision F1-score 

RNN (Default) 892 620 2959 902 0.716732 0.497213 0.589947 0.539625 

RNN (Tuned) 1090 630 2949 704 0.751722 0.607581 0.633721 0.620376 
LSTM (Default) 1104 696 2883 690 0.742044 0.615385 0.613333 0.614357 

LSTM (Tuned) 1116 662 2917 678 0.750605 0.622074 0.627672 0.62486 

GRU (Default) 1129 577 3002 665 0.768844 0.62932 0.661782 0.645143 
GRU (Tuned) 1181 602 2977 613 0.773869 0.658305 0.662367 0.66033 

Bi-LSTM (Default) 1149 718 2861 645 0.746324 0.640468 0.615426 0.627697 

Bi-LSTM (Tuned) 1093 541 3038 701 0.768844 0.609253 0.668911 0.63769 

 

 

Looking at it analytically, the RNN model may miss real security concerns because to its default 

configuration's increased frequency of false negatives, which makes it less successful in situations where 

recall is critical. When it is crucial to minimize both false positives and false negatives, the LSTM and GRU 

models especially in their tuned versions strike a superior balance between recall and precision. Although the 

Bi-LSTM model's specificity is enhanced after tuning, it may not be able to detect all positive cases because 

to its relatively high false negative rate. If reducing false negatives is more important than minimizing false 

positives, as is the case with the Bi-LSTM, then the best model to use would be the one that best suits the 

application's demands. To make sure all possible threats are identified and handled properly, for example, it 

may be more important to minimize false negatives in software security. 

 

4.3. ROC – AUC result 
Tuning clearly improves each model's AUC-ROC performance, as seen in Figure 3. In the case of 

sequential security patch data, the GRU model consistently earns the greatest AUC-ROC scores, whether in 

its default or customized version. This suggests that it is very capable of efficiently distinguishing between 

classes. The RNN model's performance is greatly improved by tuning, showcasing its improved capacity to 

detect important patterns in the data and decrease classification mistakes. Tuning also improves AUC-ROC 

for LSTM and Bi-LSTM models, though to a lesser extent than for GRU and RNN. Especially for 

complicated tasks with recurrent and sequential data, these findings show that hyperparameter adjustment is 

crucial for improving model performance. Tuning yields varying results for different models, highlighting the 

need for a dataset-specific, individualized strategy. 

 

 

 
 

Figure 3. Bar chart of ROC-AUC result 
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4.4. Discussion 

With hyperparameter adjustment in particular, the experimental findings show that the GRU model 

attained the best accuracy and showed balanced performance across all evaluation measures, including 

F1-score, precision, recall, and accuracy. This indicates that GRU model is well suited for this classification 

job since it is very good at capturing the patterns and temporal dependencies that are inherent in sequential 

and recurrent security patch data. To ensure that major security vulnerabilities are discovered immediately, 

GRUs accurately detect trends across many patches deployed over time by modelling such temporal linkages. 

It is critical to not miss any security risks, particularly recurrent ones, and the tuned RNN model shown 

considerable improvement in this area, particularly in lowering false negatives. On the other side, the LSTM 

and Bi-LSTM models produced more false negatives despite keeping specificity high. This suggests that they 

are more cautious and may overlook some security updates, especially those that are part of a consecutive 

release. This compromise emphasizes the significance of selecting a model according to the unique properties 

of the security patch data and the requirements of the application. A model like as the tweaked GRU, which 

provides a balanced way to capture both short-term and long-term data dependencies, could be better in 

situations where the repercussions of missing a possible danger are high. The results show that tweaking 

hyperparameters is crucial for improving model performance, especially with recurrent and sequential data, 

because all models improved significantly. There are a lot of real-world applications for these fine-tuned 

models when it comes to identifying security patches. One area where they could be useful is in software 

systems, where the release order and timing of patches are very important for vulnerability management. 

 

 

5. CONCLUSION  

Finally, this work set out to use deep learning techniques to investigate and resolve issues related to 

sequential and recurrent security patch data. The research successfully found the best suited deep learning 

models for this complicated task by executing a series of carefully prepared experiments. These trials 

included detailed hyperparameter tuning and model evaluation. In terms of capturing complex temporal 

correlations within security patch data and maintaining balanced performance across important metrics 

including accuracy, precision, recall, and F1-score, the GRU model proved to be the most effective among 

those that were evaluated. Because it guarantees both high sensitivity and specificity two qualities that are 

critical for correctly detecting and categorizing security patches the GRU model is especially useful in 

handling sequential and recurrent data due to its balanced performance. The trade-off between minimizing 

false positives and avoiding the omission of actual threats was highlighted by models like LSTM and Bi-

LSTM, which showed higher specificity but produced more false negatives, even though they could process 

extensive temporal sequences. Because various scenarios may place a premium on different aspects of 

performance, our results highlight the need of application-specific model selection and hyperparameter 

adjustment. This study sheds light on deep learning's potential in cybersecurity by solving the fundamental 

problem of categorizing complicated, sequential security patch data. Deploying well-optimized deep learning 

models can greatly improve software system security by making vulnerability identification and patch 

management processes more efficient and less requiring human interaction. This has far-reaching practical 

ramifications. Adding more types of data to the dataset, putting these models through their paces in real-

world scenarios, and exploring hybrid models that draw from different deep learning architectures should all 

be goals of future studies. In addition, by utilizing external data sources or incorporating contextual 

information, advanced feature engineering techniques can enhance these models' performance and 

adaptability. This means they can be applied to a wider range of cybersecurity challenges. 
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