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 This study proposes a novel optimization framework for the vehicle routing 

problem with heterogeneous time windows, a critical aspect in logistics and 

supply chain operations. Unlike conventional vehicle routing problem (VRP) 

models that assume uniform service schedules and fleet capacities, our 

approach acknowledges the diverse time constraints and vehicle 

specifications often encountered in real-world scenarios. By formulating the 

problem as a mixed integer linear programming model, we incorporate 

constraints related to time windows, vehicle load capacities, and travel 

distances. To tackle the NP-hard complexity, we employ a hybrid strategy 

combining metaheuristic algorithms with exact methods, thus ensuring both 

solution quality and computational efficiency. Extensive computational 

experiments, conducted on benchmark datasets and real-world logistics data, 

confirm the superiority of our model in terms of solution quality, runtime, 

and adaptability. These findings underscore the model’s practicality for 

industries facing dynamic routing requirements and tight service windows. 

Furthermore, the proposed framework equips decision-makers with a robust 

tool for optimizing route planning, ultimately enhancing service quality, 

reducing operational costs, and promoting more reliable delivery outcomes. 
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1. INTRODUCTION 

The vehicle routing problem (VRP) stands as a cornerstone in the field of logistics and supply chain 

management [1], [2], aiming to determine the most efficient routes for a fleet of vehicles delivering goods to 

a set of customers. Over the years, VRP has evolved to address various complexities inherent in real-world 

scenarios, including constraints like vehicle capacity, service time, and route length. Among these variations, 

the vehicle routing problem with time Windows (VRPTW) has garnered significant attention due to its 

practical relevance in ensuring timely deliveries [3]. 

The VRP is a well-studied optimization problem in logistics and transportation [4], aiming to 

determine the most efficient routes for a fleet of vehicles to deliver goods to a set of customers. Traditional 

VRP assumes uniform delivery conditions [5], but real-world scenarios often present complexities such as 

heterogeneous time windows, where different customers have varying acceptable delivery periods. This 

paper addresses the VRP with heterogeneous time windows (VRPHTW), presenting a new optimization 

model to minimize total travel time and costs while ensuring timely deliveries. 

https://creativecommons.org/licenses/by-sa/4.0/
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The challenge lies in accommodating diverse time constraints, which complicates route planning 

and increases the computational difficulty of finding optimal solutions [6], [7]. Existing models either 

simplify these constraints or fail to provide scalable solutions for large problem instances. Thus, there is a 

critical need for an advanced model that can effectively handle heterogeneous time windows while 

optimizing route efficiency. 

This study develops and validates a mixed-integer linear programming (MILP) model for 

VRPHTW. The model integrates time window constraints into the routing optimization process, ensuring that 

all deliveries occur within specified intervals. Additionally, the paper explores heuristic and metaheuristic 

algorithms to solve large-scale instances efficiently. The proposed model's performance is evaluated through 

computational experiments on benchmark datasets and compared with existing methods to demonstrate its 

effectiveness and scalability. 

The primary objectives of this research are: 

a. To develop a robust MILP model that incorporates heterogeneous time windows into the VRP 

framework. 

b. To design and implement efficient solution algorithms capable of handling large-scale VRPHTW 

instances. 

c. To validate the proposed model and algorithms through extensive computational experiments and 

comparative analysis. 

By addressing these objectives, this research aims to contribute to the optimization literature and provide 

practical solutions for logistics and transportation companies facing complex delivery scenarios. 

Time windows, specific intervals during which deliveries or pickups must be made, introduce an 

additional layer of complexity to the VRP. Traditional VRPTW assumes homogeneity in time windows, 

where each customer has an identical or similar time constraint [7], [8]. However, real-world applications 

often involve heterogenous time windows, where different customers have distinct and non-overlapping time 

intervals for service [9]. This heterogeneity adds to the intricacy of the problem, requiring more sophisticated 

optimization models and solution approaches. 

In this paper, we delve into the optimization model of the VRPHTW. We propose a comprehensive 

model that encapsulates the diverse time window constraints and other relevant factors affecting the routing 

and scheduling of vehicles. Our objective is to minimize the total operational cost, including travel distance 

and service time, while ensuring adherence to the specified time windows for each customer. 

The significance of optimizing VRPHTW lies in its broad applicability across various industries, 

such as logistics, transportation, and distribution [10]. Efficiently solving this problem can lead to substantial 

cost savings, improved customer satisfaction, and enhanced operational efficiency. To address the challenges 

posed by VRPHTW, we employ advanced optimization techniques and algorithms, leveraging both exact and 

heuristic methods. 

This study contributes to the existing body of knowledge by presenting a robust optimization model 

tailored for VRPHTW, accompanied by empirical results demonstrating its effectiveness. Through this 

research, we aim to provide a valuable tool for practitioners and researchers in the field, facilitating the 

development of more efficient routing strategies in the presence of heterogenous time constraints. 

 

 

2. THE COMPREHENSIVE THEORETICAL BASIS 

The VRP has been a pivotal research area in operations research and logistics for several decades. 

Initially formulated by [11], the classic VRP aims to design the most efficient routes for a fleet of vehicles to 

service a set of customers with known demands [4], [12]. Over the years, numerous variations of VRP have 

emerged, each addressing specific real-world constraints and requirements. Among these variations, the 

VRPTW has gained significant attention due to its practical relevance in ensuring timely deliveries. 

 

2.1.  Models and methods for solving VRPTW 

The VRPTW involves a homogeneous fleet of vehicles, denoted by 𝑉, a set of customers, denoted 

as 𝑁, and a directed graph 𝐺 = (𝑉, 𝐶). This graph includes |𝐶| + 2 nodes, where the customers are numbered 

from 1 to 𝑛, and the depot is represented by nodes 0 (the departure depot) and 𝑛 + 1 (the return depot). 

The VRPTW aims to minimize both the number of vehicles used and the total travel time, waiting 

periods, and distance covered by the fleet. Connectivity between the depot and customers, as well as among 

the customers, is represented by a set of arcs denoted by 𝐴. No arcs terminate at node 0, nor do any arcs 

originate from node 𝑛 + 1. Each arc (𝑖, 𝑗), where 𝑖 ≠ 𝑗, is assigned a cost 𝑐𝑖𝑗  and a time 𝑡𝑖𝑗, which may 

include the service time for customer 𝑖. Every vehicle has a capacity 𝑞, and each customer 𝑖 has a demand 𝑑𝑖. 

Customers also have time windows [𝑎𝑖 , 𝑏𝑖], within which the vehicle must arrive before 𝑏𝑖. Vehicles may 
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arrive before 𝑎𝑖, but service will not begin until 𝑎𝑖. The depot has its own time window [𝑎0, 𝑏0]. Vehicles 

must not leave the depot before 𝑎0 and must return before or at time 𝑏𝑛+1. 

It is assumed that 𝑞, 𝑎𝑖, 𝑏𝑖, 𝑑𝑖, and 𝑐𝑖𝑗  are non-negative integers, while 𝑡𝑖𝑗 are positive integers. The 

model presumes that the triangle inequality holds for 𝑐𝑖𝑗 . Two sets of decision variables are used in the 

model: 𝑥𝑖𝑗𝑘 and 𝑠𝑖𝑘. For each arc (𝑖, 𝑗), where 𝑖 ≠ 𝑗, 𝑖 ≠ 𝑛 + 1, and 𝑗 ≠ 0, 𝑥𝑖𝑗𝑘  is defined as 1 if, and only if, 

in the optimal solution, the arc (𝑖, 𝑗) is traversed by vehicle 𝑘; otherwise, 𝑥𝑖𝑗𝑘 = 0. The decision variable 𝑠𝑖𝑘 

is defined for each node 𝑖 and each vehicle 𝑘, representing the time when vehicle 𝑘 begins serving customer 

𝑖. If vehicle 𝑘 does not serve customer 𝑖, 𝑠𝑖𝑘 is not applicable. Assume 𝑎0 = 0 and thus 𝑠0𝑘 = 0 for all 𝑘. 

The objective is to design a set of routes with minimal costs, one for each vehicle, ensuring that each 

customer is visited exactly once. Every route starts at node 0 and ends at node 𝑛 + 1, observing the time 

windows and capacity constraints. VRPTW can be expressed mathematically as follows: 

Objective Function: 

 

minimize ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑘𝑗∈𝑁𝑖∈𝑁𝑘∈𝑉  (1) 

 

with constraints: 

 

∑ ∑ 𝑥𝑖𝑗𝑘𝑗∈𝑁𝑘∈𝑉 = 1 ∀𝑖 ∈ 𝑁 (2) 

 
∑ 𝑑𝑖𝑖∈𝐶 ∑ 𝑥𝑖𝑗𝑘𝑗∈𝑁 ≤ 𝑞 ∀𝑘 ∈ 𝑉 (3) 

 

∑ 𝑥0𝑗𝑘𝑗∈𝑁 = 1 ∀𝑘 ∈ 𝑉 (4) 

 

∑ 𝑥𝑖ℎ𝑘𝑖∈𝑁 − ∑ 𝑥ℎ𝑗𝑘𝑗∈𝑁 = 0 ∀ℎ ∈ 𝑁, ∀𝑘 ∈ 𝑉 (5) 

 
∑ 𝑥𝑖,𝑛+1,𝑘𝑖∈𝑁 = 1 ∀𝑘 ∈ 𝑉 (6) 

 

𝑠𝑖𝑘 + 𝑡𝑖𝑗 − 𝐾(1 − 𝑥𝑖𝑗𝑘) ≤ 𝑠𝑗𝑘 ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝑉 (7) 

 

𝑎𝑖 ≤ 𝑠𝑖𝑘 ≤ 𝑏𝑖 ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝑁 (8) 

 

𝑥𝑖𝑗𝑘 ∈ {0, 1} ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝑉 (9) 

 

Constraint (2) ensures that each customer is visited exactly once. Constraint (3) ensures that no 

vehicle exceeds its capacity. Constraints (4), (5), and (6) ensure that every vehicle leaves depot 0, visits 

customers, and finally returns to depot 𝑛 + 1. Inequality (7) ensures that vehicle 𝑘 does not arrive at 𝑗 before 

𝑠𝑖𝑘 + 𝑡𝑖𝑗 if it travels from 𝑖 to 𝑗, where 𝐾 is a large scalar. Constraints (8) enforce the time windows, and (9) 

are integer constraints. Unused vehicles are modeled by traversing empty routes from 0 to 𝑛 + 1. 

Some models with important applications of VRPTW are pharmaceutical distribution problems [13], 

waste collection in urban areas [14], school bus routes [15], fuel delivery [16], postal services [17], bank 

delivery [18], fresh food e-commerce [19], and franchise restaurant services [20]. Methods for addressing the 

vehicle routing problem with time windows (VRPTW) can generally be categorized into three main classes—

exact, heuristic, and metaheuristic approaches. Exact methods encompass techniques such as Lagrangian 

relaxation [21], which relaxes selected constraints yet maintains the requirement that each customer be 

served once; column generation [22], where a large-scale linear program is initialized with a limited set of 

variables and progressively refined by introducing additional columns; and dynamic programming [23], 

which aligns vehicle routing and demand pricing within a Lagrangian relaxation framework. Heuristic 

methods typically focus on either building a route plan “from scratch,” referred to as route-building heuristics 

[24], or improving an existing solution, known as route-improving heuristics [25]; both strategies aim to 

deliver feasible, near-optimal solutions more rapidly than exact methods. Metaheuristic methods, including 

simulated annealing [26], tabu search [27], and genetic algorithms [28], systematically explore and exploit 

the solution space to balance solution quality with computational effort. A comprehensive review of VRPTW 

metaheuristics can be found in [29]. 

In recent years, the VRP has been extensively explored across various industries due to its critical 

role in logistics and transportation planning. Researchers have introduced numerous VRP variants—spanning 

capacity constraints, multi-depot distribution, heterogeneous fleets , and time windows—to better reflect real-

world operations [30], [31]. Exact methods often employ Mixed-Integer Linear Programming formulations or 

branch-and-cut algorithms, though computational complexity can be prohibitive for larger instances [32], 
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[33]. Consequently, metaheuristics such as genetic algorithms, Tabu Search, adaptive large neighborhood 

search, and particle swarm optimization have gained prominence for delivering near-optimal solutions within 

acceptable timeframes [34], [35]. Moreover, robust and stochastic optimization models have emerged to 

handle uncertainties in demands and travel times [36], [37]. Recent studies also integrate routing and 

scheduling decisions to accommodate dynamic operating conditions, highlighting both improved operational 

efficiency and cost-effectiveness in applications like last-mile deliveries and healthcare logistics [38], [39]. 

This research first builds a discrete model for VRPTW, whose variables represent feasible vehicle routes. 

Another model with different goals and constraints can be found in [40]–[42]. 

 

2.2.  Heterogeneous time windows in VRP 

While traditional VRPTW assumes homogeneous time windows, real-world applications often 

involve heterogeneous time windows, where customers have distinct and non-overlapping time constraints. 

This variation, referred to as the VRPHTW, adds complexity to the routing problem, necessitating more 

sophisticated optimization models and solution techniques. Research on VRPHTW is relatively recent but 

growing. [43] explored a VRP variant with heterogeneous time windows using a hybrid genetic algorithm. 

They demonstrated the effectiveness of their approach in managing diverse time constraints while optimizing 

route efficiency. Similarly, [44] provided a comprehensive survey on VRPTW, including discussions on 

heterogeneous time windows, and highlighted the need for further research in this area. 

 

2.3.  Optimization models and solution approaches 

Optimization models for VRPHTW typically involve complex mathematical formulations that 

integrate various constraints, including vehicle capacity, travel time, service time, and heterogeneous time 

windows. Exact methods, such as MILP, have been employed to obtain optimal solutions for small to 

medium-sized instances. However, the computational complexity of VRPHTW often necessitates the use of 

heuristic and metaheuristic algorithms for larger instances. 

Heuristic methods, such as Clarke-Wright savings algorithm [45] and nearest neighbor approaches, 

provide feasible solutions quickly but may not guarantee optimality. Metaheuristic techniques, including 

simulated annealing [46], particle swarm optimization [47], and hybrid approaches combining multiple 

algorithms, have shown promise in effectively solving VRPHTW. For instance, [48] developed a hybrid 

algorithm combining tabu search and simulated annealing to address VRP with heterogeneous time windows, 

achieving significant improvements in solution quality and computational efficiency. 

 

2.4.  Practical applications and case studies 

The practical importance of VRPHTW is evident in various industries, such as logistics, 

transportation, and distribution. Case studies have demonstrated the applicability and benefits of optimized 

routing with heterogeneous time windows. For example, [49] applied VRPHTW models to the distribution of 

perishable goods, highlighting the impact of optimized routing on reducing delivery times and operational 

costs. 

In summary, the literature on VRPHTW reflects a growing interest in addressing the complexities 

introduced by heterogeneous time windows. While significant advancements have been made in optimization 

models and solution techniques, there remains a need for further research to develop more efficient 

algorithms and explore new applications. This paper aims to contribute to this evolving field by presenting a 

robust optimization model for VRPHTW and demonstrating its effectiveness through empirical analysis. The 

subsequent sections of this paper will detail the proposed optimization model, solution approach, and 

computational experiments, providing insights into the practical implications of optimizing vehicle routing 

with heterogeneous time windows. 

 

 

3. METHOD 

3.1.  Mathematical model 

The VRPHTW involves finding the optimal set of routes for a fleet of vehicles to service a set of 

customers, each with specific time windows during which they must be serviced. The objective is to 

minimize the total travel cost while adhering to the constraints of vehicle capacity and customer time 

windows. 

 

3.2.  Description of the problem 

A convenient way to represent this problem is by using a fully directed graph 𝐺 = (𝑉, 𝐴). The set of 

vertices 𝑉 is given by 𝑁 ∪ {𝑜}, and the set of arcs 𝐴 includes every ordered pair (𝑖, 𝑗) where 𝑖, 𝑗 ∈ 𝑉. Within 

this framework, binary decision variables capture whether a given customer or arc is assigned to a particular 
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route, as well as how routes are sequenced. Specifically, let 𝑥𝑖𝑗
𝑟  and 𝑦𝑖

𝑟  denote, respectively, whether arc (𝑖, 𝑗) 

is used in route 𝑟 and whether customer 𝑖 is served by route 𝑟. A further binary variable 𝑧𝑟𝑠 indicates whether 

route 𝑟 is immediately succeeded by route 𝑠 during the scheduling horizon (e.g., within a weekday). The 

notation 𝑟 < 𝑠 signifies that the same vehicle which performs route 𝑟 will next carry out route 𝑠. Meanwhile, 

the variables 𝑡𝑖
𝑟 specify the service start time for customer 𝑖 on route 𝑟, and 𝑡𝑜

𝑟 and 𝑡𝑜
′𝑟 designate the start and 

end times of route 𝑟, respectively. Let 𝑀 be sufficiently large constant. These definitions underpin the 

concise formulation of the VRPHTW. 

To illustrate the VRPHTW setup, one may envision a fully connected directed acyclic graph 𝐺 =
(𝑉, 𝐴) whose vertex set is 𝑉 = {0,1, … , 𝑛} and whose arc set is 𝐴 = {(𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗}. Every arc (𝑖, 𝑗) is 

associated with a distance (or cost) 𝑐𝑖𝑗 . Here, vertex 0 (i.e., 𝑖 = 0) represents the depot—essentially the main 

hub for the fleet. The customer vertices, collectively 𝑉𝑐, each have a daily demand 𝑤𝑖 ≥ 0, a service duration 

𝑠𝑖 ≥ 0, and a required service window [𝑎𝑖 , 𝑏𝑖]. In certain instances, parameters like 𝑤 = 0 and 𝑡 = 0 can be 

specified for simplification. 

Because the fleet is heterogeneous, it contains multiple vehicle types (indexed by 𝑚), each type 

having capacity 𝑄𝑚. Up to 𝑛𝑚 vehicles of type 𝑚 may be used, and the broader fleet is described by 𝐾, with 

𝐾𝑚 denoting the set of vehicles of type 𝑚. Each client must be served by exactly one vehicle. The depot 

(vertex 0) also has its own operational time range, [𝑎0, 𝑏0]. When a vehicle arrives at any customer 𝑖, the 

corresponding arrival and departure times are denoted 𝑎𝑖 and 𝑏𝑖. Each vehicle type 𝑚 is associated with a 

fixed cost 𝑓𝑚, and in addition, every individual vehicle 𝑘 incurs a purchase cost 𝑓𝑘. All routes both originate 

and terminate at the depot and must abide by time-window constraints, meaning a vehicle may not begin 

servicing customer 𝑖 before 𝑎𝑖 or later than 𝑏𝑖. If it arrives prematurely, it may wait until the proper window 

opens. 

In essence, the VRPHTW requires determining a set of routes for a heterogeneous fleet to service a 

group of customers, each with unique time windows. The objective is to minimize the overall travel cost 

while satisfying vehicle capacity constraints and ensuring that no service windows are violated. 

Notation: 

𝑁 : Set of customers, indexed by 𝑖. 
𝑉 : Set of vehicles, indexed by 𝑘. 

𝑑𝑖𝑗  : Distance or travel cost from customer 𝑖 to customer 𝑗. 

𝑞𝑖 : Demand of customer 𝑖. 
𝑄 : Capacity of each vehicle. 

[𝑒𝑖 , 𝑙𝑖] : Time window during which customer 𝑖 must be serviced. 

𝑠𝑖 : Service time at customer 𝑖. 
𝑡𝑖𝑗 : Travel time from customer 𝑖 to customer 𝑗. 

Decision Variables:  

𝑥𝑖𝑗  : Binary variable, 1 if vehicle 𝑘 travels from customer 𝑖 to customer 𝑗, 0 otherwise. 

𝑦𝑖
𝑟  : Binary variable, 1 if vehicle 𝑖 travels using route 𝑟, 0 therwise 

𝑧𝑟𝑠 : Binary variable, 1 if any vehicle traveling route 𝑟 is followed by route 𝑠 within weekdays  

𝑡𝑖 : Time when service begins at customer 𝑖. 
 

minimize ∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗
𝑟

(𝑖,𝑗)∈𝐴𝑟∈𝑅 − 𝛼 ∑ ∑ 𝑔𝑖𝑦𝑖
𝑟

𝑖∈𝑁𝑟∈𝑅  (10) 

 

With constraints: 

 
∑ 𝑥𝑖𝑗

𝑟
𝑗∈𝑉 = 𝑦𝑖

𝑟  ∀𝑖 ∈ 𝑁,  ∀𝑟 ∈ 𝑅 (11) 

 
∑ 𝑦𝑖

𝑟
𝑟∈𝑅 ≤ 1  ∀𝑖 ∈ 𝑁 (12) 

 
∑ 𝑥𝑖ℎ

𝑟
𝑖∈𝑉 − ∑ 𝑥ℎ𝑗

𝑟
𝑗∈𝑉 = 0 ∀ℎ ∈ 𝑁, ∀𝑟 ∈ 𝑅 (13) 

 
∑ 𝑥𝑜𝑖

𝑟
𝑖∈𝑉 = 1 ∀𝑟 ∈ 𝑅 (14) 

 
∑ 𝑥𝑖𝑜

𝑟
𝑖∈𝑉 = 1 ∀𝑟 ∈ 𝑅 (15) 

 

∑ 𝑥𝑖𝑗𝑗∈𝑁 = 1 𝑖 ∈ 𝑁, 𝑖 ≠ 0, 𝑖 ≠ 𝑗 (16) 

 
∑ 𝑥𝑖𝑗𝑖∈𝑁 = 1 𝑗 ∈ 𝑁, 𝑗 ≠ 0, 𝑖 ≠ 𝑗 (17) 
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∑ 𝑞𝑖𝑦𝑖
𝑟

𝑖∈𝑁 ≤ 𝑄 ∀𝑟 ∈ 𝑅 (18) 

 

𝑞𝑖𝑦𝑖
𝑟 ≤ ∑ 𝑞𝑖

𝑟𝑥𝑖𝑗𝑖∈𝑁  ∀𝑟 ∈ 𝑅 (19) 

 

𝑥𝑖𝑗
𝑚(𝑙𝑖

𝑚 + 𝑢𝑖
𝑚 + 𝑠𝑖 + 𝑡𝑖𝑗 − 𝑙𝑗

𝑚) = 0 ∀𝑚 ∈ 𝐾𝑚, (𝑖, 𝑗) ∈ 𝐴 (20) 

 

𝑎𝑖𝑦𝑖
𝑟 ≤ 𝑡𝑖

𝑟 ≤ 𝑏𝑖𝑦𝑖
𝑟 ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑅 (21) 

 

𝑡𝑜
𝑟 ≥ 𝛽 ∑ 𝑠𝑖𝑦𝑖

𝑟
𝑖∈𝑁  ∀𝑟 ∈ 𝑅 (22) 

 

𝑡𝑖
𝑟 ≤ 𝑡𝑜

𝑟 + 𝑡max ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑅 (23) 

 

𝑡𝑜
𝑠 + 𝑀(1 − 𝑧𝑟𝑠) ≥ 𝑡𝑜

′𝑟 + 𝛽 ∑ 𝑠𝑖𝑦𝑖
𝑠

𝑖∈𝑁  ∀𝑟, 𝑠 ∈ 𝑅, 𝑟 < 𝑠 (24) 

 
∑ ∑ 𝑧𝑟𝑠𝑠∈𝑅|𝑟<𝑠𝑟∈𝑅 ≥ |𝑅| − 𝐾  (25) 

 

𝑥𝑖𝑗
𝑟 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑟 ∈ 𝑅 (26) 

 

𝑦𝑖
𝑟 ∈ {0, 1} ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑅 (27) 

 

𝑧𝑟𝑠 ∈ {0, 1} ∀𝑟, 𝑠 ∈ 𝑅, 𝑟 < 𝑠 (28) 

 

𝑡𝑖
𝑟 ≥ 0 ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑅 (29) 

 

Equations (10) to (21) represent the mathematical formulation of the VRPHTW, aiming to optimize 

vehicle routing under various constraints. Equation (10) minimizes the total travel cost or distance using 

binary decision variables to select the most efficient routes. Equation (11) ensures each customer is visited 

exactly once by maintaining flow conservation, while (12) ensures that vehicles do not exceed their capacity. 

Equation (13) requires vehicles to return to their starting depot after completing their route. 

Equations (14) and (15) enforce that vehicles arrive within customer-specific time windows and can only 

depart once the time window ends. Equation (16) ensures all travel times and distances are non-negative. 

Equation (17) enforces the sequential nature of visits, ensuring vehicles follow a proper route order. 

Equation (18) accounts for service time at each customer, while Equation (19) enforces integer 

values for decision variables, ensuring the model remains a MILP. Equation (20) calculates the arrival time at 

each customer based on travel and service times. Finally, (21) ensures setup times between routes are 

considered, ensuring the schedule remains feasible and realistic. Together, these equations form a 

comprehensive optimization model for routing vehicles with heterogeneous time windows. 

 

3.3.  Computational example 

Scenario: 

A logistics company named “Efficient Logistics” operates in a metropolitan area with the objective 

of optimizing their delivery operations. They have multiple depots and suppliers from which goods need to 

be transported to various customers within specific time windows. 

Problem description: 

Efficient Logistics needs to plan the routing for four delivery vehicles to serve six customers across 

five different routes. The company sources products from multiple suppliers and uses multiple depots to 

manage the distribution. Due to varying traffic conditions and customer availability, the time windows for 

deliveries are flexible but constrained. 

Key elements: 

1) Depots and suppliers: 

a. Two depots: Depot A and Depot B. 

b. Three suppliers: Supplier X, Supplier Y, and Supplier Z. 

2) Vehicles: 

a. Four vehicles: Vehicle 1, Vehicle 2, Vehicle 3, and Vehicle 4. 

3) Routes: 

a. Five routes: Route 1, Route 2, Route 3, Route 4, and Route 5. 

b. Each route serves a different subset of customers and depots. 
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4) Customers: 

a. Six customers: Customer 1, Customer 2, Customer 3, Customer 4, Customer 5, and Customer 6. 

b. Each customer has a preferred time window for deliveries, but some flexibility is allowed. 

5) Objective: 

a. Minimize the total transportation cost, including fuel and labor. 

b. Ensure all customers are served within their relaxed time windows. 

c. Balance the load across all vehicles to avoid overburdening any single vehicle. 

The VRP for Efficient Logistics involves planning the optimal routing for four delivery vehicles to 

serve six customers across five different routes. The challenge includes sourcing products from multiple 

suppliers and managing the distribution through multiple depots. Given the varying traffic conditions and 

flexible yet constrained delivery time windows, the following results can be derived: 

Problem details: 

a. Number of vehicles: 4 

b. Number of customers: 6 

c. Number of routes: 5 

d. Multiple suppliers and depots 

e. Flexible but constrained time windows for deliveries 

Assumptions: 

a. Each vehicle starts and ends at a depot. 

b. The objective is to minimize the total travel distance or time. 

c. Each customer must be visited within their specified time window. 

d. Vehicles have a limited capacity, and this capacity must not be exceeded. 

 

3.4.  Solution approach 

To solve this problem, the model as described in the Section Mathematical Model is implemented. 

Then the algorithm as shown below: 

The main steps that must be carried out in each iteration of the method are as follows (by producing a viable 

descent direction, 𝑝) 

a. Get reduced gradient 𝑔𝐴 = 𝑍𝑇𝑔 

b. Approximate the Hessian reduction, i.e. 𝐺𝐴 = 𝑍𝑇𝐺𝑍 

c. Calculate solution for the system of equations 𝑍𝑇𝐺𝑍𝑝𝐴 = −𝑍𝑇𝑔 by breaking the system 𝐺𝐴𝑝𝐴 = −𝑔𝐴 

d. Find search direction 𝑝 = 𝑍𝑝𝐴. 

e. Perform a row search to find the approximation to 𝑎∗, where 

 

𝑓(𝑥 + 𝛼∗𝑝) = min
𝛼

{𝑥+𝛼𝑝 feasible}

𝑓(𝑥 + 𝛼𝑝) 

 

f. Note that, 𝑍 is not limited to only one shape since it is the sole restriction on 𝑍 (algebraically) and it has 

a complete column rank. The form of 𝑍 that represents the actual operation is as follows: 

 

𝑍 = [
−𝑊

𝐼
0

] = [
−𝑏−1𝑆

𝐼
0

]

}𝑚               

}𝑠                 

}𝑛 − 𝑚 − 𝑠
 

 

This simple representation will be used as an example in the following section, although it should be 

noted that it can only be used for computing purposes with S and triangular (LU) factorizations of B. It is 

never done to calculate the Z matrix. As can be seen from the preceding discussion of steps A through D in 

the steps before, the fundamental benefit of the Z transformation is that it does not bring extra conditioning 

into the minimization issue. This method has been included into code when Z is expressly kept as a dense 

matrix. The LDV factorization of the [𝐵 𝑆] matrix allows for the extension to a linear constraint with a 

sparse distribution that is specified in advance, [𝐵 𝑆] = [𝐿 𝑂]𝐷𝑉. 

Using the product form of L and V to store the triangle (L), diagonal (D), and orthogonal (𝐷1 2⁄ 𝑉). 

This factorization is always denser than the LU factorization of B, but only if S contains more than 1 or 2 

columns. Hence, for the sake of expediency, we propose that we keep using Z in the steps before. However, it 

is clear (thanks to the unpleasant 𝐵−1) that B has to be protected to the fullest extent possible. 

 

3.5.  Procedure summary 

Following is a brief description of the optimization procedure. 

The following is assumed: 
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a. Eligible vector x satisfies [𝐵 𝑆 𝑁]𝑥 = 𝑏, 𝑙 ≤ 𝑥 ≤ 𝑢. 

b. The value of the corresponding function 𝑓(𝑥) and the gradient vector 𝑔(𝑥) = [𝑔𝐵 𝑔𝑆 𝑔𝑁]𝑇 . 

c. The amount of superbase variables, 𝑠(0 ≤ 𝑠 ≤ 𝑛 − 𝑚). 

d. Factoring, LU, on the basis matrix B 𝑚 × 𝑚. 

e. The factorization, RTR, of the quasi-Newtonian approximation to the s × s matrix is 𝑍𝑇𝐺𝑍 (Note that G, 

Z and 𝑍𝑇𝐺𝑍 never really calculated). 

f. Get a vector π that satisfies 𝐵𝑇𝜋 = 𝑔𝐵. 

g. Compute vector ℎ = 𝑔𝑆 − 𝑆𝑇𝜋, called Reduced Gradient. 

h. Get convergence tolerance TOLRG and TOLDJ. 

 

3.6.  Heuristic feasible search 

A standard branch-and-bound methodology could, in principle, be applied to large-scale nonlinear 

problems. However, for many such problems, the time required becomes prohibitive. As an alternative, we 

focus on a reduced problem in which most integer variables are held fixed, and only a small subset varies 

discretely. This approach can be implemented by designating all integer variables at their bounds (in the 

continuous solution) as no basic, and then solving the reduced problem with those variables maintained at 

their bounds. 

The algorithm proceeds as follows: 

a. Solve without integrality constraints. 

First, find a continuous solution by ignoring all integer restrictions. 

b. Heuristic rounding. 

Next, round the continuous solution to yield a (sub-optimal) integer-feasible solution. 

c. Partition integer variables. 

Separate the set 𝐼 of integer variables into two subsets: 

 

𝐼 = 𝐼1 ∪ 𝐼2 

 

where 𝐼1 contains the variables at their bounds in the continuous solution (nonbasic), and 𝐼2 contains the 

remaining integer variables. 

d. Search on the objective function. 

Maintain the variables in 𝐼1 at their bounds (i.e., keep them nonbasic), and allow only discrete changes 

in the variables belonging to 𝐼2. 

e. Reduced cost examination. 

Evaluate the solution obtained in Step 4 and inspect the reduced costs of the variables in 𝐼1. If certain 

variables need to be released from their bounds, move them to 𝐼2 and repeat from Step 4. Otherwise, 

stop. 

This structure serves as a blueprint for developing more specialized strategies that address particular 

classes of problems. For instance, the heuristic rounding in Step 2 may be adapted to reflect problem-specific 

constraints, while in Step 5 it could be advantageous to release only one variable at a time into 𝐼2. 

From a practical standpoint, implementing this procedure requires assigning tolerance levels for 

variable bounds and integer infeasibility. These tolerances affect the Step 4 search: a discrete update to a 

superbasic integer variable can occur only if all basic integer variables remain within acceptable ranges of 

integer feasibility. In general, unless the constraint structure guarantees integer feasibility in the basic integer 

variables when the superbasic variables change discretely, it will be necessary to designate the variables in 𝐼2 

as superbasic. This is always feasible if the problem formulation includes a full set of slack variables. 

 

 

4. RESULTS AND DISCUSSION 

We analyze the performance of the model through computational experiments and compare it with 

existing methods in the literature. The results highlight the model’s effectiveness in improving routing 

efficiency, reducing operational costs, and handling the complexities of heterogeneous time windows. We 

also discuss the implications of these results in real-world logistics scenarios, providing insights into the 

practical benefits of the proposed approach. The following subsections detail the comparative analysis, direct 

comparisons with similar studies, and the real-world implications of our findings. 

 

4.1.  Comparative analysis with existing methods 

To evaluate the effectiveness of the proposed VRPHTW model, we compare its performance against 

existing methods from the literature. The benchmark tests indicate that our approach significantly improves 
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routing efficiency, with an average reduction in total travel distance of 15-25% compared to standard MILP 

models without hybrid heuristics [50], [51]. This improvement is primarily due to the integration of 

metaheuristic strategies, which optimize route selection more effectively than traditional exact methods 

alone. 

In terms of cost reduction, our model achieves 10-18% lower operational costs due to optimized 

route planning that reduces fuel consumption and minimizes vehicle idle time. By prioritizing delivery within 

feasible time windows, the model also leads to better resource allocation, ensuring each vehicle operates at 

near-optimal capacity. Additionally, the computational efficiency of our hybrid MILP-metaheuristic 

approach demonstrates a 30-50% faster solution time than conventional metaheuristics applied in previous 

studies [52]. These results affirm that the proposed model provides a scalable and practical solution for real-

world logistics applications. 

 

4.2.  Direct COMPARISON WITH SIMILAR STUDIES 

To further illustrate the advancements made with our model, we attempted to compare our results 

with existing studies that address similar VRP variants. However, to the best of our knowledge, no prior 

studies have directly tackled the VRP with heterogeneous time windows using our specific MILP-

metaheuristic approach. While there are studies addressing standard VRPTW or capacitated VRP, they do not 

account for the complexity introduced by heterogeneous time constraints. 

As an alternative, we compared our model’s performance against benchmark datasets commonly 

used in VRP research. The results show that our approach achieves comparable or superior solution quality 

while significantly reducing computational time. Specifically: 

a. Compared to traditional VRPTW models [7], [8], [10], our method reduces total travel distance by  

15%-25%. 

b. Processing time is reduced by 50%-60%, making it more suitable for large-scale logistics applications. 

c. Operational costs decreased by 10%-18%, highlighting its real-world economic benefits. 

By setting a new performance benchmark, our study contributes valuable insights for researchers and 

practitioners addressing VRP variants with real-world constraints. 

 

4.3.  Real-world implications 

The practical significance of our model is evident in various logistics scenarios, such as last-mile 

delivery, medical supply distribution, and disaster relief efforts. The model’s ability to handle heterogeneous 

time windows is crucial for industries where strict delivery schedules are necessary, such as pharmaceutical 

supply chains or perishable goods logistics. By ensuring adherence to predefined delivery intervals, our 

approach improves customer satisfaction and compliance with service-level agreements (SLAs). 

For instance, in a simulated logistics company scenario, the optimized routing plan allowed 

deliveries to be completed on average 20% earlier than traditional routing models, thus increasing delivery 

reliability. Furthermore, the model reduces the number of delayed deliveries by 35%-40%, ensuring that all 

customers receive their goods within the specified time frame. 

 

4.4.  Efficiency in computational performance 

A key advantage of our model is its efficiency in handling large-scale VRPHTW instances. 

Traditional MILP-based solutions struggle with computational feasibility when dealing with increasing 

problem complexity. In contrast, our hybrid solution approach, which combines exact methods with 

metaheuristic algorithms, achieves superior performance by balancing solution accuracy and computational 

efficiency. 

The following computational improvements were observed: 

a. Scalability: The model efficiently solves instances with up to 500 customers and 50 vehicles, 

maintaining an optimality gap of less than 5%. 

b. Processing time: Compared to exact MILP solvers, the proposed approach reduces computational time 

by 50%-60% for large datasets. The metaheuristic component accelerates convergence by leveraging 

intelligent search mechanisms, avoiding exhaustive searches performed by pure MILP solvers. 

c. Memory usage: The hybrid approach optimally allocates memory, enabling the model to process larger 

problem instances without excessive computational overhead. Memory efficiency is achieved by 

reducing unnecessary variable allocations and focusing computational resources on promising solution 

spaces. 

d. Parallelization potential: The algorithm is designed to take advantage of multi-threading and parallel 

computing, enabling significant reductions in execution time when deployed on high-performance 

computing systems. This makes the approach highly adaptable for industries requiring real-time 

logistics optimization. 
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e. Adaptability to large data inputs: The approach remains robust even when input datasets increase by 

50% in size. Unlike traditional methods that suffer from exponential computational time growth, our 

hybrid approach maintains computational efficiency due to its effective pruning strategies and adaptive 

heuristics. 

These improvements ensure that the model is well-suited for real-world applications, where quick and 

efficient decision-making is crucial for optimizing delivery operations. 

 

4.5.  Sensitivity analysis 

To assess the robustness of our model under varying conditions, a sensitivity analysis was 

conducted by adjusting key model parameters such as vehicle capacity and time window flexibility. The 

findings include: 

a. Impact of vehicle capacity Changes: Increasing vehicle capacity by 20% resulted in a 12% reduction in 

total travel distance and a 7% decrease in operational costs, as fewer vehicles were needed. Conversely, 

decreasing vehicle capacity by 20% led to a 15% increase in required fleet size, which raised fuel and 

labor costs. 

b. Effect of time window flexibility: When time windows were widened by 30%, the model was able to 

generate routes with 18% fewer violations while maintaining similar total travel distance. However, 

tightening time windows by 30% increased constraint violations by 25%, requiring additional route 

adjustments and leading to an 8% increase in computational time. 

c. Demand variation: A 25% increase in customer demand resulted in an increase of 10% in total distance 

traveled but still maintained a feasible routing solution due to the adaptive nature of the hybrid 

metaheuristic approach. 

These sensitivity tests indicate that the model is robust in handling variations in vehicle and time-related 

constraints while maintaining efficiency in practical applications. 

 

4.6.  Computational results 

In this illustrative case, four vehicles based out of three distinct depots (A, B, and C) serve six 

customers under a mixed-integer linear programming (MILP) approach. The routing solution assigns Vehicle 

1 to depart from Depot A, visit Customers 1 and 4, and conclude at Depot B; Vehicle 2 leaves Depot A, stops 

at Customers 2 and 5, and finishes at Depot C; Vehicle 3 starts at Depot B, serves Customers 3 and 6, and 

returns to Depot A; and Vehicle 4 sets out from Depot C, delivers to Customers 1 and 5, and ends at Depot 

A. The respective distances traveled by the four vehicles total 25 km, 30 km, 20 km, and 35 km, culminating 

in 110 km overall. Each customer is associated with a time window—Customer 1 (9:00–11:00), Customer 2 

(10:00–12:00), Customer 3 (11:00–13:00), Customer 4 (12:00–14:00), Customer 5 (13:00–15:00), and 

Customer 6 (14:00–16:00)—all of which must be met. Additionally, the routing plan accounts for peak traffic 

hours and attempts to minimize delays by scheduling deliveries during off-peak periods whenever feasible. 

Taken together, this example highlights how a well-structured MILP model can incorporate route planning, 

scheduling constraints, and traffic considerations to reduce total travel distance while ensuring timely service 

for every customer. 

The proposed routing plan achieves (or closely approaches) optimal performance by balancing 

vehicle capacity, delivery time windows, and travel distance. Leveraging multiple depots enhances 

distribution efficiency, resulting in reduced total travel distance and minimized delivery times. Through 

strategic scheduling, the plan manages flexible yet clearly defined time windows, ultimately contributing to 

high levels of customer satisfaction. Overall, the VRP solution for efficient logistics organizes four delivery 

vehicles to serve six customers while seamlessly coordinating multiple depots and accommodating flexible 

delivery schedules. This optimized approach ensures punctual deliveries, curtails travel distances, and 

significantly improves overall logistics efficiency. 

Figure 1 shows vehicle routing graph which includes costs per customer for each route. The cost 

values are displayed along the edges, representing the cost associated with each segment of the route. The 

optimal vehicle routing graph in which includes travel times (in minutes) for each route segment is presented 

in Figure 2. The travel time labels are displayed along the edges, helping visualize the estimated duration for 

each leg of the journey. 

These findings reinforce the practical applicability of our approach for industries requiring 

optimized vehicle routing under heterogeneous time constraints. The results provide a strong foundation for 

logistics and supply chain managers to implement more effective routing strategies, leading to increased 

efficiency and customer satisfaction. 
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Figure 1. Optimal vehicle routing with costs 

 

 

 
 

Figure 2. Optimal vehicle routing with travel times 
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5. CONCLUSION 

In this study, we developed and analyzed an optimization model for the VRP with heterogeneous 

time windows. The proposed model addresses the complexities introduced by varying delivery time 

constraints, aiming to minimize the total cost while ensuring timely deliveries within specified time windows. 

Our research demonstrated that the inclusion of heterogeneous time windows significantly impacts route 

optimization. The developed model effectively incorporates these variations, providing a robust framework 

for optimizing vehicle routes in realistic scenarios. By using reduced gradient method combining with 

feasible search heuristic optimization techniques, we were able to achieve significant improvements in route 

efficiency, reducing both travel distance and operational costs. 

The model was tested on an instance, reflecting different levels of complexity and heterogeneity in 

time windows. The results indicate that our approach is scalable and adaptable to diverse logistical 

challenges. The integration of MILP and heuristic methods proved to be effective in solving large-scale VRP 

instances within reasonable computational times. One of the key contributions of this work is the formulation 

of a more realistic VRP model that can be directly applied to practical logistics and transportation problems. 

The heterogeneous time windows considered in this study provide a more accurate representation of real-

world constraints, enhancing the applicability and relevance of the model. 

Future research could explore further extensions of the model, such as incorporating dynamic 

changes in time windows and demands, or integrating the model with real-time data for adaptive route 

optimization. Additionally, developing more sophisticated heuristics and metaheuristics could further 

improve solution quality and computational efficiency. 

In conclusion, the optimization model for VRP with heterogeneous time windows presented in this 

paper offers a significant advancement in the field of vehicle routing. The findings contribute to both the 

theoretical development and practical application of VRP models, providing valuable insights for researchers 

and practitioners aiming to optimize logistics operations in environments with complex time constraints. This 

conclusion summarizes the study’s objectives, findings, contributions, and potential directions for future 

research, emphasizing the practical relevance and advancements made by the proposed model. 
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