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Air pollution is still a serious worldwide issue, and accurate air quality index
(AQI) prediction is needed. This paper proposes a hybrid deep learning
model integrating 1D convolutional neural networks (ConvlD) and long
short-term memory (LSTM) networks, optimized with particle swarm
optimization (PSO) to enhance AQI forecasting. The model was evaluated at

six urban areas: Bandra, Thane, Mazgaon, Kurla, Nerul, and Malad, and

compared with a single LSTM network. PSO adjusted hyperparameters like
hidden units, batch size, epochs, and learning rate was used to improve
predictive accuracy. The ConvlD+LSTM hybrid model drastically
decreased RMSE by 49.19% (Bandra), 33.97% (Thane), 5.24% (Mazgaon),
20.52% (Kurla), 35.85% (Nerul), and 27.54% (Malad), and R? Score
improvements up to 751.2%. Training logs indicated smoother convergence
with loss decrease at faster rates compared to LSTM, showing better
learning efficiency and generalization. By combining spatial and temporal
feature extraction with automated hyperparameter tuning, this model
captures sophisticated pollution patterns which increases the reliability of
AQI prediction. Enhancements in the future can be adding regularization
methods and more feature inputs to improve the accuracy.
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1. INTRODUCTION

Air pollution remains one of the most urgent global challenges, contributing to approximately seven
million premature deaths each year [1], [2]. Effective monitoring and prediction of air quality are essential to
mitigating its harmful impacts. The air quality index (AQI) serves as a standardized tool to convey air quality
levels, empowering the public and policymakers to make informed decisions [3], [4]. However, despite the
widespread deployment of air monitoring stations and the availability of extensive datasets, accurately
forecasting AQI poses a significant challenge. This complexity arises from the intricate temporal and spatial
patterns embedded within air quality data.

A wide range of articles have applied deep learning methods to enhance AQI prediction. The use of
sequence-to-sequence temporal models, including recurrent neural networks (RNNs), long short-term memory
(LSTM) networks, and gated recurrent units (GRUs), have been proven to be effective in time-series forecasting
because of their capacity to model temporal dependencies [5], [6]. For multivariate AQI forecasting, different
deep learning architectures have shown robustness in understanding the variation in time-series data. Multiple
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variables, such as, pollutant level, weather factors and spatial factors related to geographical location can be
used for forecasting [7]. For instance, hybridized techniques, convolutional neural network-LSTM (CNN-
LSTM) [8], [9] models have been applied in spatial temporal clustering to enhance the forecast of AQI at
variety of places and time horizons. Wuhan is one case, where a fuzzy entropy based ensemble LSTM model
combined with decomposition reconstruction techniques significantly enhances daily prediction correctness for
AQI [10]. Similarly, Roy et al. [11] have depicted that the hybridization of LSTM models outclasses isolated
models for the AQI prediction within Kattankulathur and Kolkata. In Sichuan, China, architectures which are
using LSTM cells have surpassed traditional algorithms like back propagation (BP) and GRU networks [12].

Other revolutionary composite techniques have emerged in recent studies. Particularly, Prophet-
LSTM models have demonstrated excellent accuracy for extreme AQI values forecast in Nanjing [13].
Wavelet transform and advanced transformer networks are shown to effectively record time-frequency
domain parameters for AQI modeling in Guilin [14]. Random connectivity-enabled LSTM models further
enhanced prediction reliability while reducing the cost of computation and surpassing standard approaches
like support vector regression (SVR), autoregressive integrated moving average (ARIMA), and feedforward
neural network (FFNN) [15]. Apart from the aforementioned methods, Gupta et al. [16] dealt with the issue
of data imbalance by employing the synthetic minority oversampling technique (SMOTE) along with
regression techniques, like CatBoost and SVR, for AQI forecasting in Indian cities. Those studies provided
better multivariate feature handling. A review in depth [17], [18] have raised the awareness of ensemble
approaches like stacking, bagging, and boosting simultaneously alongside more recent deep learning
paradigms, along with their prospects and pitfalls.

Random forest was the preferred method for spatial modelling of PM» s, and deep learning, LSTM,
XGBoost, and ensemble models followed, with advancement in machine learning create a window for
improvement, inter-comparison studies, and new applications in unknown areas [19]. Optimization
algorithms such as particle swarm optimization (PSO) have been crucial in improving model performance.
Huang et al. [20] used PSO to optimize the hyperparameters of the LSTM for predicting water quality in
China's South-North water transfer project, where substantial accuracy enhancement was observed.
Similarly, a CNN-Bi-LSTM hybrid model optimized with PSO revealed lesser error values such as mean
absolute error (MAE), mean squared error (MSE), and root mean squared error (RMSE) for the wheat yield
forecast [21]. These advancements go to underscore the efficiency of PSO and other nature-inspired
algorithms to improve the accuracy and effectiveness of deep learning-based forecasting models.

In spite of major breakthroughs in deep learning for AQI prediction, most present models lack
flexibility across varied urban environments because feature extraction is not efficient and hyperparameter
tuning process is not optimal. Most methods are based on either CNN for spatial feature extraction or LSTMs
for sequential modeling and don't take advantage of the dual strengths of both architectures. Moreover,
hyperparameter optimization of deep learning models is usually done manually, thus rendering process is
cumbersome and reduces predictive precision. Although there has been significant improvement in AQI
prediction, there are still several challenges, including guaranteeing model stability across different
geographic locations, which impacts generalizability and real-world usability.

In addition, hyperparameter optimization, a key step towards improving model performance, is
largely uninvestigated in most of the previous work. Most current methods are focused on temporal or spatial
aspects but do not combine both with great effectiveness and hence result in less accurate partial forecasts.
Filling these blanks, this research proposes a hybrid ConvlD+LSTM based on PSO that not only enhances
feature presentation but also, through automatic optimization of hyperparameters, greatly promotes
forecasting accuracy. Through the model's validation across six different urban sites, the research proves its
better predictive capacity than individual deep learning models, supporting the requirement for more
generalized and optimized solutions to address the multifaceted challenges of AQI prediction under various
environmental conditions.

Effective AQI forecasting involves modeling both spatial and temporal dependencies in air pollution
data, which is not often handled well by conventional models. To overcome such shortcomings, this research
introduces a hybrid deep learning framework involving 1D convolutional neural networks (ConvlD) and
LSTM networks, tuned with PSO. The Conv1D layer learns spatial features from air pollution data and the
LSTM layer learns temporal relationships so that the model can identify long-term changes in air quality
trends. PSO again improves the performance of the model by fine-tuning the hyperparameters including the
number of neurons, batch size, learning rate, and epochs so that the network is optimized for every dataset.
The robustness and generalizability of the model are ensured by validation over six different locations in
Mumbai, which are Bandra, Thane, Mazgaon, Kurla, Nerul, and Malad; demonstrating its capability to give
an accurate and reliable AQI prediction over different environmental conditions.

The following sections provide a detailed outline of the methodology and validate the relevance of
the proposed approach. Section 2 describes the experimental setup, including data collection and preprocessing
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procedures, the design of the hybrid ConvlD-LSTM model architecture, and the evaluation metrics used to
measure its performance. Section 3 offers a comprehensive analysis of the results, demonstrating the hybrid
model's superiority through comparisons with existing methods across various metrics and geographic
locations. Lastly, section 4 concludes the study by summarizing the key findings and presenting potential
future directions to further enhance the accuracy and applicability of AQI forecasting.

2. METHOD

This section further explains each step that was used in this research, as shown in Figure 1, which
includes data acquisition, data handling followed by use of PSO algorithm for finding optimal hyper
parameter, next step is data transformation and division, and lastly, model training and testing.

2.1. Data collection

This dataset includes AQI readings for six sites, namely, Bandra, Thane, Mazgaon, Kurla, Nerul and
Malad, which are located in the Indian city of Mumbai. The data has varied characteristics, ranging from
pollutant concentrations such as PMjs, PMjy, NOx, SO,, CO, Ozone; climatic characteristics like
temperature, dew_point, temperature_min, temperature max, and diurnal temperature, pressure, humidity,
wind speed and wind degrees. The hourly frequency data of pollutants were taken from the CPCB [22]
website, and meteorological parameters for different sites were retrieved using the OpenWeatherMap [23]
APIL. Table 1, shows summary of data collected for six different sites with total number records per site where
frequency of observations is hourly, that is, there are 24 values recorded in a day.

4 ™\
Data Pollutant Parameters ( Me;eor%l.a gL;al Pa[l‘ameter s
- } temp. humidity, dew point, pressure,
L Collection (PMyo. PM, 5. NOx. 80, CO, Ozone) wind speed, wind degree. etc. )
I

-

Data Imputation
(using time based mean imputer)

Outlier treatment
(using Inter Quantile Ranges)

Data
Pre-processing

¥

Normalization

\

[ Hyperparameter Tuning

| Standardization |

Particle Swarm Optimization

(T p . a Converting Time Series Data to N
ra!]s Orlf]anfm an Supervised Learning Dataset

Train Validation Test - T Y

Split | Train | | Validation | | Test |
A I J
4 — LSTM R

Model Development Model Training === ¥ Conv +LSTM

and Evaluation

| Model Validation |

. J

Figure 1. Overview of research methodology

Table 1. Detailed record count of data for six sites

S. No Site Number of Records Time Period
1 Bandra 63529 01.01.2017 —31.03.2024
2 Thane 63529 01.01.2017 —31.03.2024
3 Mazgaon 29929 01.11.2020 —31.03.2024
4 Kurla 42251 01.06.2019 — 31.03.2024
5 Nerul 29929 01.11.2020 —31.03.2024
6 Malad 29929 01.11.2020 —31.03.2024

2.2. Data pre-processing

Various data processing stepa are performed to assure data quality and consistency. Missing value
imputation is conducted by filling missing values with average of data value from the same day using the
previous or following years, as applicable, and if missing values still exist, linear interpolation with forward
fill is used. Then, outliers are identified using the interquartile ranges [24]. Data is passed to
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“StandardScaler” and “MinMaxScaler” module of Scikit-Learn after outlier treatment to ensure that all of the
features have the same scale and to limit them to a particular range of O to 1.

2.3. Particle swarm optimizer for hyperparameter tuning

Inspired by the social behavior of creatures like flocking birds, particle swarm optimization (PSO) is
a population-based evolutionary method. This operates by dispersing a large number of interactive particles
throughout the search area. Every particle has the potential to solve the optimization problem. As the
particles travel, arguments are updated according to previous errors and those in its neighborhood. Tracing
and following particles in the population is a method that is necessary for the swarm to converge towards its
optimal solution [20], [21], [25].

The following five or six hyperparameters as shown in Table 2, were determined depending on
model architecture using the PSO algorithm. For each of these hyperparameters, a set of discrete values were
used and the PSO algorithm has to find the best combination that minimizes loss. This optimizer was
designed to run for ten particles, with each of them performing five iterations.

Table 2. Hyperparameter values used for optimization search

S. No Hyperparameters Values
1 Number of Units in Hidden Layer 1 (N1) [32, 64, 128]
2 Number of Units in Hidden Layer 2 (N2) [16, 32, 64]
3 Number of Units in Hidden Layer 3 (N3) [16, 32, 64]
4 Epochs [10, 20, 30, 40, 50]
5 Batch size [128, 256, 512]
6 Learning rate [0.001, 0.01]

2.4. Data transformation and splitting

The normalized time series data is converted into supervised learning data set, which is then split
into three distinct sets in a 70:20:10 basis: training, validation, and testing. The training set will be 70%,
enabling it to learn the patterns and relationships within the dataset. It is during model development that the
validation set, which is 20% of the data, is used to tune the model weights, so that the model does not overfit.
Lastly, the remaining 10% goes to the testing set that is, used for model evaluation.

2.5. Model architectures

Two deep learning architectures implemented are LSTM and ConvlD+LSTM. One of the forms of
RNN architecture, especially for the processing of sequential data, is the long short-term memory, or LSTM.
LSTMs could decide whether information should be written, deleted, or read through a gating system within
every cell of this network architecture. Input gate, forget gate, and output gate are three kinds of gates that are
used in an LSTM cell [10], [26], [27]. The input gate states what information shall be added to this cell state
and the output gate determines what information the LSTM should send out at that phase [2]. The ConvID is a
special type of convolution layer designed to handle one dimensional data such time series data. These
Conv1D can extract local spatial features while processing input data sequences. In order to capture temporal
dependencies in the retrieved features, the LSTM layer is applied after the ConvlD layer [28], [29]. The
architecture diagram of the both networks used in this research is depicted in Figure 2. Figure 2(a) is the
detailed LSTM architecture which consist of two stacked LSTM layer each of them has dropout regularization
applied, and two dense layers towards the end. The input features are fed into stacked LSTM layers, shown in
blue and green, to capture the temporal dependencies of the data. The output from the LSTM layers passes
through fully connected dense layers, represented as purple blocks, to produce the final forecast.

Figure 2(b) is the architecture diagram of the proposed hybrid Conv1D+LSTM network. The model
consists of two convolution layers, one LSTM layer, and two dense layers towards the end. The input
features are fed into stacked 1D convolution layers, shown in blue and grey, to capture the spatial
dependencies of the data and perform smoothing operation on data. The output from the Conv1D layers is
passed to LSTM layer, shown in green, for understanding temporal correlation in data. Lastly, output from
LSTM is fed to fully connected dense layers, represented as purple blocks, to produce the final forecast.

The optimum hyperparameter that the PSO algorithm searched for both networks and sites is shown
in Table 3. The parameters are fine-tuned by PSO to improve model accuracy and efficiency in making
accurate forecast. Values in Table 3 implies that LSTM has greater variability in hyperparameters (N1, batch
size, epochs), which is more location-specific and requires greater fine-tuning. Whereas ConvlD+LSTM has
more invariant hyperparameters between locations, meaning that the model structure is more generalized. For
training, ConvlD+LSTM requires more epochs and larger batch sizes, which generally means higher
computational cost, while LSTM would be trained faster with smaller sizes of a batch and epochs. Overall,
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the models use similar learning rate but LSTM appears to have stronger location-specific fine-tuning.
ConvlD+LSTM remains relatively consistent along locations, indicating that LSTM is more sensitive to
local patterns and requires finer adjustment of hyperparameters, and ConvlD+LSTM has provided a way
with a little more robust and consistent framework.
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Figure 2. Architecture of (a) LSTM and proposed hybrid (b) Conv1D+LSTM network

Table 3. Optimized hyperparameter values identified by PSO algorithm

Models Hyperparameters Bandra Thane Mazgaon Kurla Nerul Malad
LSTM N1 64 128 32 64 128 32
N2 16 16 16 16 16 16
Epochs 30 20 40 20 40 20
Batch Size 128 256 512 256 512 128

Learning Rate 0.01 0.01 0.01 0.001  0.001  0.001
ConvlD+LSTM N1 64 32 64 64 64 64
N2 16 16 16 32 16 16
N3 64 16 64 32 64 32
Epochs 50 30 20 30 20 50
Batch Size 512 256 256 128 128 512
Learning Rate 0.001 0.01 0.001 0.01 0.01 0.01

2.6. Evaluation measures

The accuracy of the models is assessed using the mean absolute percentage error (MAPE), root
mean square error (RMSE) [30] and coefficient of determination (R? Score) [6]. Equations (1) to (3) shows
how these metrics are calculated using actual and predicted values, as follows,

1 Gi=9
MAPE = =¥ |— 1
o ] M
1 ~
RMSE = /;Z?zl(yi - 9)? 2
" (i 9)?
R2=1— Z:L=1(yl y)2 3)
Zi=1(yi_X)

Where N is the number of samples of the test set, y; and ¥ are the actual and predicted values at time instance
i, respectively, and y is the mean of the test set sample values.

2.7. Simulation setup

All simulations for this research were carried out on Google Colaboratory, which is a Jupyter
notebook-based environment on the cloud with GPU support. The models were developed and executed
using Python 3.9 and a collection of open-source libraries such as TensorFlow 2.10, Keras 2.10, Scikit-learn
1.1.3, Pandas 1.3.5, NumPy 1.21.6, Matplotlib 3.5.1, and pyswarm 0.6 which is a library for PSO. Also,
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Colab's GPU runtime provided a Tesla T4 GPU with 12 GB RAM which improved the speed of the model
training. In addition, during the simulation, a fixed random seed was used to ensure result reproducibility.

The models were trained with the Adam optimizer and the objective was to minimize mean squared
logarithmic error (MSLE) loss. Convolution and LSTM layers used ReLU, and the output dense layers used a
linear activation function. The simulation pipeline encompasses the entire workflow for data preprocessing,
hyperparameter optimization using PSO, model training, and performance evaluation for each of the six
locations, which are Bandra, Thane, Mazgaon, Kurla, Nerul, and Malad.

3.  RESULT AND DISCUSSION

It can be observed from Table 4 that the ConvID+LSTM model performed better than the stand-
alone model with LSTM for all the sites. In particular, for Bandra and Thane, proposed hybrid architecture
has outperform on all metrics. Even for remaining four stations results achieved by ConvlD+LSTM model
have modest improvement over standalone LSTM architecture. For LSTM model and ConvlD+LSTM
models, the actual and predicted values of AQI for three sites, namely, Bandra, Thane and Kurla are
displayed in Figure 3, similar graphs were observed for other three sites. Actual values are shown in blue
color in the graph, while forecasted values are shown in green color. Figures 3(a) and 3(b) are plots for
Bandra site clearly indicates LSTM is good for capturing trend in AQI levels whereas hybrid model was
robust in identifying sudden spikes and dips in the AQI levels. Similar observation can be seen for Thane site
in Figures 3(c) and 3(d), where LSTM model was able to understand macro-trends and hybrid model could
identify micro-pattern or localized trends. Likewise, Figures 3(e) and 3(f) shows results achieved for Kural
site with exactly same observations. The proposed hybrid network clearly learned the sharp peaks in the
dataset. That shows the hybrid model is much better in learning complex patterns and temporal dependencies
underlying the data. The ConvlD component likely helps extract spatial features from the data, while the
LSTM component does a good job in modeling temporal dependencies. The combination of these two can
enable the model to exploit spatial and temporal information. The predicted values are very close to the
ground-truth values, especially during sharp increases and decreases of AQI concentrations using proposed
hybrid Convl1D+LSTM model than standalone LSTM model.

Figure 4 shows training history of LSTM and proposed model for three locations, in particular,
Bandra, Thane, and Kurla sites. In these plots, blue line indicates RMSE values on training set after every
epoch and orange line indicates RMSE values on validation set. On an average, training RMSE for LSTM
models smoothens out after 13-14 epochs. Figures 4(a) to 4(c) are training logs for LSTM models where
training RMSE curves in smooth indicating proper learning but validation RMSE curves are showing random
fluctuations, which signifies models’ inability in generalization as it is sensitive to noise and potential risk of
overfitting. Similarly, Figures 4(d) to 4(f), represents training logs of ConvlD+LSTM model for three sites,
Bandra, Thane and Kurla, similar results were seen for other three sites. After closely observing the graphs, it
is evident that, there is smooth decrease in RMSE values for training data except for Bandra site where there
is sudden spike possibly due improper hyper parameter settings. In contrast to LSTM models, hybrid models’
validation RMSE has shown less irregularity except for Kurla. Overall, proposed hybrid Conv1D+LSTM’s
learning logs when compared with learning logs of LSTM model, it shows that there is smooth decrease in
RMSE value for both training and validation set, exhibiting better generalization capabilities and they are
more robust, but still, even for ConvlD+LSTM models training can be improved further by adjusting
learning rates or using different regularization mechanisms.

The originality of this study is the combination of PSO with a Conv1D+LSTM hybrid model, which is
not often utilized in AQI prediction. Contrary to other deep learning methods that need labor-intensive manual
tuning, our PSO-based optimization procedure automates hyperparameter tuning, guaranteeing the best
performance of the model with minimal human intervention. The hybrid framework also supports more accurate
and generalizable AQI forecasts in different geographical locations, as seen in our experimental results.

Table 4. Performance measures, RMSE, R? Score and MAPE values for all LSTM and Conv1D+LSTM
models for all sites

S. No Site RMSE R?Score MAPE
LSTM Conv1D+LSTM LSTM ConvliD+LSTM LSTM  ConvI1D+LSTM
1 Bandra 43,1274 219119 -1.0021 0.7620 0.2981 0.1163
2 Thane 43,1458 28.4916 0.3633 0.8587 0.2161 0.1041
3 Mazgaon 23.0443 21.8389 0.2067 0.5572 0.1044 0.0999
4 Kurla 36.2694 28.8264 0.1297 0.6639 0.1847 0.1382
5 Nerul 63.3484 40.6324 -2.4412 0.4224 0.3706 0.1735
6 Malad 37.4798 27.1554 -0.1082 0.7049 0.2069 0.1423

Int J Elec & Comp Eng, Vol. 16, No. 1, February 2026: 333-341



Int J Elec & Comp Eng

ISSN: 2088-8708

339

ADI Concentraticn

401 Concentration

201 Coneentration

Bandra: Concentration of AQI - LSTM Model

Bandra: Concentration of AQI - Conv1D+LSTM Model

101 — Actual values ] 10| — Actual values |
— Predictions { — Predictions I
. : o :
5
06 206
§
0.4 5 04
g
02 02
] 1 ] 1
oo I 1 oo 1 1
0 10000 20000 1000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000
Number of Recards Number of Recards
(@) (b)
Thane: Concentration of AQI - LSTM Madel Thane: Concentration of AQI - Conv1D+LSTM Model
101 — Actual values I 10— Actual values I
— predictions — predictions 1
[E) 08
o %o
H
04 S o4
g
0.2 02
0o 0o
o 10000 20000 0000 40000 50000 60000 o 10000 20000 30000 40000 50000 650000
Number of Recards Number of Recards
(©) (d)
Kurla: Concentration of AQI - LSTM Model Kurla: Concentration of AQI - Conv1D+LSTM Model
10 — Actual values 1 I 10 — Actual values 1 I
— Predictions | — Predictions I
(£} ! 08 !
H
06 Soe
0s § os
£
02 02
oo 1 I oo 1 I
0 10000 20000 30000 40000 0 10000 20000 30000 40000
MNumber of Records Number of Records
(e) ¢
Figure 3. Training and testing forecast of AQI for all six sites: (a) Bandra (LSTM), (b) Bandra
(ConvlD+LSTM), (¢) Thane (LSTM), (d) Thane (ConvlD+LSTM), (e) Kurla (LSTM), and
(f) Kurla (Conv1D+LSTM)
RMSE values per Epoch for LSTM model : Bandra RMSE values per Epoch for LSTM model : Thane RMSE values per Epoch for LSTM model : Kurla
— tain_rmse M\ —— train_rmse —— train_rmse
016 — valrmse f\/\/\/ ‘\, \ 014 — val_rmse 0181 — val_rmse
\
A /\
\\ I\ A 013 017
\.\ M
0.14 \ -/ 012 016
VAVaN,
" 4 on w 015
2 2 2 014
012 010 3
013
0.09
010 012
a.08
011
007
0 5 10 15 20 25 30 00 25 50 75 100 125 150 175 00 25 50 75 100 125 150 175
epoch epoch epoch
(2) (b) (©)
RMSE values per Epoch for CONV+LSTM model : Bandra RMSE values per Epoch for CONV+LSTM model : Thane RMSE values per Epoch for CONV+LSTM model : Kurla
1e6
= — train_rmse — tain_rmse )
— wain_rmse — val_rmse 0135 — val_mse I\
5{ — val_mse 011 \ I\
\
0.130 \. ‘\' ‘I‘
\ |
a 0.10 0125 \ /\ “n |‘
Va\ |
] H ooe y 0120 \ [\
o g H
H = = 0115
2
0.08 0110
1 0105
007
0.100
o
o 10 20 30 20 50 ] 5 10 15 20 25 30 00 25 50 75 100 125 150 175
epoch epoch epoch

(2

Figure 4. Training history of both LSTM and CPNv1d+LSTM models for all six sites: (a) Bandra (LSTM),

(b) Thane (LSTM), (¢) Kurla (LSTM), (d) Bandra (Conv1D+LSTM), (e) Thane (Conv1D+LSTM),
and (f) Kurla (Conv1D+LSTM)

Optimizing hourly air quality index forecasting: a particle swarm ... (Darakhshan Khan)



340 a ISSN: 2088-8708

4. CONCLUSION

Air pollution is a brutal reality, particularly in Asian cities, with India carrying an unfair amount of the
burden. A majority of the Indian population is exposed to extremely poor air quality, posing serious health
hazards. The goal of this research is to forecast the hourly AQI index for six sites in Mumbai using a
comparative analysis of an LSTM model and an integrated proposed hybrid ConvlD+LSTM model. The
particle swarm optimizer was used to determine the optimal hyperparameters for all the networks under study.

Based on the evaluation indicators and by performing a comparative analysis across six sites,
Bandra, Thane, Mazgaon, Kurla, Nerul and Malad, it was discovered that proposed hybrid ConvlD+LSTM
projected AQI values with less deviation from actual AQI values which can be understood from MAPE and
RMSE values achieved. The R? score also shows that for all sites, the ConvID+LSTM model could
understand the variation in the data more precisely. Specifically, the performance of the hybrid model gave
average percentage improvement on RMSE values as 28.72%, average improvement in R? Score is up to
293.77%, and average MAPE enhancements was up to 38.24%. Therefore, the use of LSTM units in
conjunction with 1D convolutional layers was adequate for capturing both local and global patterns over
time. This could be due to the convolution layer smoothing the AQI time series and providing that smoothed
data to the LSTM layer to forecast. Additionally, Convld layer can act as feature extractor and capture
localized pattern which might be overlooked by standalone LSTM layers. It was also noted the training
history of LSTM network indicates overfitting whereas ConvlD+LSTM are more robust but still it can be
further enhanced by using regularization techniques or data augmentation.

Additional variables, such as population density, traffic density, distance from the coast, landfills
can be used to provide even more meaningful information. A substitute for hybrid models could be ensemble
techniques, which combine the results of multiple weak models to increase forecast accuracy. For
constructing a robust model, high-end deep network models such as autoencoders or transformers can be
integrated with statistical time series analysis techniques.
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