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 Air pollution is still a serious worldwide issue, and accurate air quality index 

(AQI) prediction is needed. This paper proposes a hybrid deep learning 

model integrating 1D convolutional neural networks (Conv1D) and long 

short-term memory (LSTM) networks, optimized with particle swarm 

optimization (PSO) to enhance AQI forecasting. The model was evaluated at 

six urban areas: Bandra, Thane, Mazgaon, Kurla, Nerul, and Malad, and 

compared with a single LSTM network. PSO adjusted hyperparameters like 

hidden units, batch size, epochs, and learning rate was used to improve 

predictive accuracy. The Conv1D+LSTM hybrid model drastically 

decreased RMSE by 49.19% (Bandra), 33.97% (Thane), 5.24% (Mazgaon), 

20.52% (Kurla), 35.85% (Nerul), and 27.54% (Malad), and R² Score 

improvements up to 751.2%. Training logs indicated smoother convergence 

with loss decrease at faster rates compared to LSTM, showing better 

learning efficiency and generalization. By combining spatial and temporal 

feature extraction with automated hyperparameter tuning, this model 

captures sophisticated pollution patterns which increases the reliability of 

AQI prediction. Enhancements in the future can be adding regularization 

methods and more feature inputs to improve the accuracy. 
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1. INTRODUCTION 

Air pollution remains one of the most urgent global challenges, contributing to approximately seven 

million premature deaths each year [1], [2]. Effective monitoring and prediction of air quality are essential to 

mitigating its harmful impacts. The air quality index (AQI) serves as a standardized tool to convey air quality 

levels, empowering the public and policymakers to make informed decisions [3], [4]. However, despite the 

widespread deployment of air monitoring stations and the availability of extensive datasets, accurately 

forecasting AQI poses a significant challenge. This complexity arises from the intricate temporal and spatial 

patterns embedded within air quality data. 

A wide range of articles have applied deep learning methods to enhance AQI prediction. The use of 

sequence-to-sequence temporal models, including recurrent neural networks (RNNs), long short-term memory 

(LSTM) networks, and gated recurrent units (GRUs), have been proven to be effective in time-series forecasting 

because of their capacity to model temporal dependencies [5], [6]. For multivariate AQI forecasting, different 

deep learning architectures have shown robustness in understanding the variation in time-series data. Multiple 

https://creativecommons.org/licenses/by-sa/4.0/
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variables, such as, pollutant level, weather factors and spatial factors related to geographical location can be 

used for forecasting [7]. For instance, hybridized techniques, convolutional neural network-LSTM (CNN-

LSTM) [8], [9] models have been applied in spatial temporal clustering to enhance the forecast of AQI at 

variety of places and time horizons. Wuhan is one case, where a fuzzy entropy based ensemble LSTM model 

combined with decomposition reconstruction techniques significantly enhances daily prediction correctness for 

AQI [10]. Similarly, Roy et al. [11] have depicted that the hybridization of LSTM models outclasses isolated 

models for the AQI prediction within Kattankulathur and Kolkata. In Sichuan, China, architectures which are 

using LSTM cells have surpassed traditional algorithms like back propagation (BP) and GRU networks [12]. 

Other revolutionary composite techniques have emerged in recent studies. Particularly, Prophet-

LSTM models have demonstrated excellent accuracy for extreme AQI values forecast in Nanjing [13]. 

Wavelet transform and advanced transformer networks are shown to effectively record time-frequency 

domain parameters for AQI modeling in Guilin [14]. Random connectivity-enabled LSTM models further 

enhanced prediction reliability while reducing the cost of computation and surpassing standard approaches 

like support vector regression (SVR), autoregressive integrated moving average (ARIMA), and feedforward 

neural network (FFNN) [15]. Apart from the aforementioned methods, Gupta et al. [16] dealt with the issue 

of data imbalance by employing the synthetic minority oversampling technique (SMOTE) along with 

regression techniques, like CatBoost and SVR, for AQI forecasting in Indian cities. Those studies provided 

better multivariate feature handling. A review in depth [17], [18] have raised the awareness of ensemble 

approaches like stacking, bagging, and boosting simultaneously alongside more recent deep learning 

paradigms, along with their prospects and pitfalls. 

Random forest was the preferred method for spatial modelling of PM2.5, and deep learning, LSTM, 

XGBoost, and ensemble models followed, with advancement in machine learning create a window for 

improvement, inter-comparison studies, and new applications in unknown areas [19]. Optimization 

algorithms such as particle swarm optimization (PSO) have been crucial in improving model performance. 

Huang et al. [20] used PSO to optimize the hyperparameters of the LSTM for predicting water quality in 

China's South-North water transfer project, where substantial accuracy enhancement was observed. 

Similarly, a CNN-Bi-LSTM hybrid model optimized with PSO revealed lesser error values such as mean 

absolute error (MAE), mean squared error (MSE), and root mean squared error (RMSE) for the wheat yield 

forecast [21]. These advancements go to underscore the efficiency of PSO and other nature-inspired 

algorithms to improve the accuracy and effectiveness of deep learning-based forecasting models. 

In spite of major breakthroughs in deep learning for AQI prediction, most present models lack 

flexibility across varied urban environments because feature extraction is not efficient and hyperparameter 

tuning process is not optimal. Most methods are based on either CNN for spatial feature extraction or LSTMs 

for sequential modeling and don't take advantage of the dual strengths of both architectures. Moreover, 

hyperparameter optimization of deep learning models is usually done manually, thus rendering process is 

cumbersome and reduces predictive precision. Although there has been significant improvement in AQI 

prediction, there are still several challenges, including guaranteeing model stability across different 

geographic locations, which impacts generalizability and real-world usability. 

In addition, hyperparameter optimization, a key step towards improving model performance, is 

largely uninvestigated in most of the previous work. Most current methods are focused on temporal or spatial 

aspects but do not combine both with great effectiveness and hence result in less accurate partial forecasts. 

Filling these blanks, this research proposes a hybrid Conv1D+LSTM based on PSO that not only enhances 

feature presentation but also, through automatic optimization of hyperparameters, greatly promotes 

forecasting accuracy. Through the model's validation across six different urban sites, the research proves its 

better predictive capacity than individual deep learning models, supporting the requirement for more 

generalized and optimized solutions to address the multifaceted challenges of AQI prediction under various 

environmental conditions. 

Effective AQI forecasting involves modeling both spatial and temporal dependencies in air pollution 

data, which is not often handled well by conventional models. To overcome such shortcomings, this research 

introduces a hybrid deep learning framework involving 1D convolutional neural networks (Conv1D) and 

LSTM networks, tuned with PSO. The Conv1D layer learns spatial features from air pollution data and the 

LSTM layer learns temporal relationships so that the model can identify long-term changes in air quality 

trends. PSO again improves the performance of the model by fine-tuning the hyperparameters including the 

number of neurons, batch size, learning rate, and epochs so that the network is optimized for every dataset. 

The robustness and generalizability of the model are ensured by validation over six different locations in 

Mumbai, which are Bandra, Thane, Mazgaon, Kurla, Nerul, and Malad; demonstrating its capability to give 

an accurate and reliable AQI prediction over different environmental conditions. 

The following sections provide a detailed outline of the methodology and validate the relevance of 

the proposed approach. Section 2 describes the experimental setup, including data collection and preprocessing 

https://www.google.com/search?q=Convolutional+Neural+Network&rlz=1C1CHBF_enID994ID994&oq=cnn-ltsm&gs_lcrp=EgZjaHJvbWUyBggAEEUYOTILCAEQABgKGAsYgAQyCwgCEAAYChgLGIAEMgsIAxAAGAoYCxiABDILCAQQABgKGAsYgAQyCwgFEAAYChgLGIAEMgsIBhAAGAoYCxiABDIHCAcQABjvBTIKCAgQABiABBiiBNIBCDU2NDdqMGo3qAIIsAIB8QXrA2yINkAf5g&sourceid=chrome&ie=UTF-8&ved=2ahUKEwiiuo2Fv8iRAxVJz6ACHVgmOiMQgK4QegYIAQgAEAY
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procedures, the design of the hybrid Conv1D-LSTM model architecture, and the evaluation metrics used to 

measure its performance. Section 3 offers a comprehensive analysis of the results, demonstrating the hybrid 

model's superiority through comparisons with existing methods across various metrics and geographic 

locations. Lastly, section 4 concludes the study by summarizing the key findings and presenting potential 

future directions to further enhance the accuracy and applicability of AQI forecasting. 

 

 

2. METHOD 

This section further explains each step that was used in this research, as shown in Figure 1, which 

includes data acquisition, data handling followed by use of PSO algorithm for finding optimal hyper 

parameter, next step is data transformation and division, and lastly, model training and testing. 

 

2.1.  Data collection 

This dataset includes AQI readings for six sites, namely, Bandra, Thane, Mazgaon, Kurla, Nerul and 

Malad, which are located in the Indian city of Mumbai. The data has varied characteristics, ranging from 

pollutant concentrations such as PM2.5, PM10, NOx, SO2, CO, Ozone; climatic characteristics like 

temperature, dew_point, temperature_min, temperature_max, and diurnal temperature, pressure, humidity, 

wind speed and wind degrees. The hourly frequency data of pollutants were taken from the CPCB [22] 

website, and meteorological parameters for different sites were retrieved using the OpenWeatherMap [23] 

API. Table 1, shows summary of data collected for six different sites with total number records per site where 

frequency of observations is hourly, that is, there are 24 values recorded in a day. 

 

 

 
 

Figure 1. Overview of research methodology 
 

 

Table 1. Detailed record count of data for six sites 
S. No Site Number of Records Time Period 

1 Bandra 63529 01.01.2017 – 31.03.2024 

2 Thane 63529 01.01.2017 – 31.03.2024 
3 Mazgaon 29929 01.11.2020 – 31.03.2024 

4 Kurla 42251 01.06.2019 – 31.03.2024 

5 Nerul 29929 01.11.2020 – 31.03.2024 
6 Malad 29929 01.11.2020 – 31.03.2024 

 

 

2.2.  Data pre-processing 

Various data processing stepa are performed to assure data quality and consistency. Missing value 

imputation is conducted by filling missing values with average of data value from the same day using the 

previous or following years, as applicable, and if missing values still exist, linear interpolation with forward 

fill is used. Then, outliers are identified using the interquartile ranges [24]. Data is passed to 
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“StandardScaler” and “MinMaxScaler” module of Scikit-Learn after outlier treatment to ensure that all of the 

features have the same scale and to limit them to a particular range of 0 to 1. 
 

2.3.  Particle swarm optimizer for hyperparameter tuning 

Inspired by the social behavior of creatures like flocking birds, particle swarm optimization (PSO) is 

a population-based evolutionary method. This operates by dispersing a large number of interactive particles 

throughout the search area. Every particle has the potential to solve the optimization problem. As the 

particles travel, arguments are updated according to previous errors and those in its neighborhood. Tracing 

and following particles in the population is a method that is necessary for the swarm to converge towards its 

optimal solution [20], [21], [25].  

The following five or six hyperparameters as shown in Table 2, were determined depending on 

model architecture using the PSO algorithm. For each of these hyperparameters, a set of discrete values were 

used and the PSO algorithm has to find the best combination that minimizes loss. This optimizer was 

designed to run for ten particles, with each of them performing five iterations. 
 

 

Table 2. Hyperparameter values used for optimization search 
S. No Hyperparameters Values 

1 Number of Units in Hidden Layer 1 (N1) [32, 64, 128] 

2 Number of Units in Hidden Layer 2 (N2) [16, 32, 64] 

3 Number of Units in Hidden Layer 3 (N3) [16, 32, 64] 
4 Epochs [10, 20, 30, 40, 50] 

5 Batch size [128, 256, 512] 

6 Learning rate [0.001, 0.01] 

 

 

2.4.  Data transformation and splitting 

The normalized time series data is converted into supervised learning data set, which is then split 

into three distinct sets in a 70:20:10 basis: training, validation, and testing. The training set will be 70%, 

enabling it to learn the patterns and relationships within the dataset. It is during model development that the 

validation set, which is 20% of the data, is used to tune the model weights, so that the model does not overfit. 

Lastly, the remaining 10% goes to the testing set that is, used for model evaluation. 
 

2.5.  Model architectures 

Two deep learning architectures implemented are LSTM and Conv1D+LSTM. One of the forms of 

RNN architecture, especially for the processing of sequential data, is the long short-term memory, or LSTM. 

LSTMs could decide whether information should be written, deleted, or read through a gating system within 

every cell of this network architecture. Input gate, forget gate, and output gate are three kinds of gates that are 

used in an LSTM cell [10], [26], [27]. The input gate states what information shall be added to this cell state 

and the output gate determines what information the LSTM should send out at that phase [2]. The Conv1D is a 

special type of convolution layer designed to handle one dimensional data such time series data. These 

Conv1D can extract local spatial features while processing input data sequences. In order to capture temporal 

dependencies in the retrieved features, the LSTM layer is applied after the Conv1D layer [28], [29]. The 

architecture diagram of the both networks used in this research is depicted in Figure 2. Figure 2(a) is the 

detailed LSTM architecture which consist of two stacked LSTM layer each of them has dropout regularization 

applied, and two dense layers towards the end. The input features are fed into stacked LSTM layers, shown in 

blue and green, to capture the temporal dependencies of the data. The output from the LSTM layers passes 

through fully connected dense layers, represented as purple blocks, to produce the final forecast. 

Figure 2(b) is the architecture diagram of the proposed hybrid Conv1D+LSTM network. The model 

consists of two convolution layers, one LSTM layer, and two dense layers towards the end. The input 

features are fed into stacked 1D convolution layers, shown in blue and grey, to capture the spatial 

dependencies of the data and perform smoothing operation on data. The output from the Conv1D layers is 

passed to LSTM layer, shown in green, for understanding temporal correlation in data. Lastly, output from 

LSTM is fed to fully connected dense layers, represented as purple blocks, to produce the final forecast. 

The optimum hyperparameter that the PSO algorithm searched for both networks and sites is shown 

in Table 3. The parameters are fine-tuned by PSO to improve model accuracy and efficiency in making 

accurate forecast. Values in Table 3 implies that LSTM has greater variability in hyperparameters (N1, batch 

size, epochs), which is more location-specific and requires greater fine-tuning. Whereas Conv1D+LSTM has 

more invariant hyperparameters between locations, meaning that the model structure is more generalized. For 

training, Conv1D+LSTM requires more epochs and larger batch sizes, which generally means higher 

computational cost, while LSTM would be trained faster with smaller sizes of a batch and epochs. Overall, 
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the models use similar learning rate but LSTM appears to have stronger location-specific fine-tuning. 

Conv1D+LSTM remains relatively consistent along locations, indicating that LSTM is more sensitive to 

local patterns and requires finer adjustment of hyperparameters, and Conv1D+LSTM has provided a way 

with a little more robust and consistent framework. 

 

 

  
(a) (b) 

 

Figure 2. Architecture of (a) LSTM and proposed hybrid (b) Conv1D+LSTM network 

 

 

Table 3. Optimized hyperparameter values identified by PSO algorithm 
Models Hyperparameters Bandra Thane Mazgaon Kurla Nerul Malad 

LSTM N1 64 128 32 64 128 32 

N2 16 16 16 16 16 16 
Epochs 30 20 40 20 40 20 

Batch Size 128 256 512 256 512 128 

Learning Rate 0.01 0.01 0.01 0.001 0.001 0.001 

Conv1D+LSTM N1 64 32 64 64 64 64 
N2 16 16 16 32 16 16 

N3 64 16 64 32 64 32 

Epochs 50 30 20 30 20 50 
Batch Size 512 256 256 128 128 512 

Learning Rate 0.001 0.01 0.001 0.01 0.01 0.01 

 

 

2.6.  Evaluation measures 

The accuracy of the models is assessed using the mean absolute percentage error (MAPE), root 

mean square error (RMSE) [30] and coefficient of determination (R2 Score) [6]. Equations (1) to (3) shows 

how these metrics are calculated using actual and predicted values, as follows, 

 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

(𝑦𝑖− 𝑦̂)
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   (3) 

 

Where N is the number of samples of the test set, 𝑦𝑖  and 𝑦̂ are the actual and predicted values at time instance 

i, respectively, and 𝑦 is the mean of the test set sample values.  

 

2.7.  Simulation setup 

All simulations for this research were carried out on Google Colaboratory, which is a Jupyter 

notebook-based environment on the cloud with GPU support. The models were developed and executed 

using Python 3.9 and a collection of open-source libraries such as TensorFlow 2.10, Keras 2.10, Scikit-learn 

1.1.3, Pandas 1.3.5, NumPy 1.21.6, Matplotlib 3.5.1, and pyswarm 0.6 which is a library for PSO. Also, 
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Colab's GPU runtime provided a Tesla T4 GPU with 12 GB RAM which improved the speed of the model 

training. In addition, during the simulation, a fixed random seed was used to ensure result reproducibility. 

The models were trained with the Adam optimizer and the objective was to minimize mean squared 

logarithmic error (MSLE) loss. Convolution and LSTM layers used ReLU, and the output dense layers used a 

linear activation function. The simulation pipeline encompasses the entire workflow for data preprocessing, 

hyperparameter optimization using PSO, model training, and performance evaluation for each of the six 

locations, which are Bandra, Thane, Mazgaon, Kurla, Nerul, and Malad. 

 
 

3. RESULT AND DISCUSSION 

It can be observed from Table 4 that the Conv1D+LSTM model performed better than the stand-

alone model with LSTM for all the sites. In particular, for Bandra and Thane, proposed hybrid architecture 

has outperform on all metrics. Even for remaining four stations results achieved by Conv1D+LSTM model 

have modest improvement over standalone LSTM architecture. For LSTM model and Conv1D+LSTM 

models, the actual and predicted values of AQI for three sites, namely, Bandra, Thane and Kurla are 

displayed in Figure 3, similar graphs were observed for other three sites. Actual values are shown in blue 

color in the graph, while forecasted values are shown in green color. Figures 3(a) and 3(b) are plots for 

Bandra site clearly indicates LSTM is good for capturing trend in AQI levels whereas hybrid model was 

robust in identifying sudden spikes and dips in the AQI levels. Similar observation can be seen for Thane site 

in Figures 3(c) and 3(d), where LSTM model was able to understand macro-trends and hybrid model could 

identify micro-pattern or localized trends. Likewise, Figures 3(e) and 3(f) shows results achieved for Kural 

site with exactly same observations. The proposed hybrid network clearly learned the sharp peaks in the 

dataset. That shows the hybrid model is much better in learning complex patterns and temporal dependencies 

underlying the data. The Conv1D component likely helps extract spatial features from the data, while the 

LSTM component does a good job in modeling temporal dependencies. The combination of these two can 

enable the model to exploit spatial and temporal information. The predicted values are very close to the 

ground-truth values, especially during sharp increases and decreases of AQI concentrations using proposed 

hybrid Conv1D+LSTM model than standalone LSTM model. 

Figure 4 shows training history of LSTM and proposed model for three locations, in particular, 

Bandra, Thane, and Kurla sites. In these plots, blue line indicates RMSE values on training set after every 

epoch and orange line indicates RMSE values on validation set. On an average, training RMSE for LSTM 

models smoothens out after 13-14 epochs. Figures 4(a) to 4(c) are training logs for LSTM models where 

training RMSE curves in smooth indicating proper learning but validation RMSE curves are showing random 

fluctuations, which signifies models’ inability in generalization as it is sensitive to noise and potential risk of 

overfitting. Similarly, Figures 4(d) to 4(f), represents training logs of Conv1D+LSTM model for three sites, 

Bandra, Thane and Kurla, similar results were seen for other three sites. After closely observing the graphs, it 

is evident that, there is smooth decrease in RMSE values for training data except for Bandra site where there 

is sudden spike possibly due improper hyper parameter settings. In contrast to LSTM models, hybrid models’ 

validation RMSE has shown less irregularity except for Kurla. Overall, proposed hybrid Conv1D+LSTM’s 

learning logs when compared with learning logs of LSTM model, it shows that there is smooth decrease in 

RMSE value for both training and validation set, exhibiting better generalization capabilities and they are 

more robust, but still, even for Conv1D+LSTM models training can be improved further by adjusting 

learning rates or using different regularization mechanisms. 

The originality of this study is the combination of PSO with a Conv1D+LSTM hybrid model, which is 

not often utilized in AQI prediction. Contrary to other deep learning methods that need labor-intensive manual 

tuning, our PSO-based optimization procedure automates hyperparameter tuning, guaranteeing the best 

performance of the model with minimal human intervention. The hybrid framework also supports more accurate 

and generalizable AQI forecasts in different geographical locations, as seen in our experimental results. 
 

 

Table 4. Performance measures, RMSE, R2 Score and MAPE values for all LSTM and Conv1D+LSTM 

models for all sites 
S. No Site RMSE R2 Score MAPE 

LSTM Conv1D+LSTM LSTM Conv1D+LSTM LSTM Conv1D+LSTM 

1 Bandra 43.1274 21.9119 -1.0021 0.7620 0.2981 0.1163 

2 Thane 43.1458 28.4916 0.3633 0.8587 0.2161 0.1041 

3 Mazgaon 23.0443 21.8389 0.2067 0.5572 0.1044 0.0999 

4 Kurla 36.2694 28.8264 0.1297 0.6639 0.1847 0.1382 

5 Nerul 63.3484 40.6324 -2.4412 0.4224 0.3706 0.1735 

6 Malad 37.4798 27.1554 -0.1082 0.7049 0.2069 0.1423 
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(a) (b) 

  

  
(c) (d) 

  

  
(e) (f) 

 

Figure 3. Training and testing forecast of AQI for all six sites: (a) Bandra (LSTM), (b) Bandra 

(Conv1D+LSTM), (c) Thane (LSTM), (d) Thane (Conv1D+LSTM), (e) Kurla (LSTM), and  

(f) Kurla (Conv1D+LSTM) 

 

 

   
(a) (b) (c) 

   

   
(d) (f) (g) 

 

Figure 4. Training history of both LSTM and CPNv1d+LSTM models for all six sites: (a) Bandra (LSTM), 

(b) Thane (LSTM), (c) Kurla (LSTM), (d) Bandra (Conv1D+LSTM), (e) Thane (Conv1D+LSTM),  

and (f) Kurla (Conv1D+LSTM) 
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4. CONCLUSION 

Air pollution is a brutal reality, particularly in Asian cities, with India carrying an unfair amount of the 

burden. A majority of the Indian population is exposed to extremely poor air quality, posing serious health 

hazards. The goal of this research is to forecast the hourly AQI index for six sites in Mumbai using a 

comparative analysis of an LSTM model and an integrated proposed hybrid Conv1D+LSTM model. The 

particle swarm optimizer was used to determine the optimal hyperparameters for all the networks under study. 

Based on the evaluation indicators and by performing a comparative analysis across six sites, 

Bandra, Thane, Mazgaon, Kurla, Nerul and Malad, it was discovered that proposed hybrid Conv1D+LSTM 

projected AQI values with less deviation from actual AQI values which can be understood from MAPE and 

RMSE values achieved. The R2 score also shows that for all sites, the Conv1D+LSTM model could 

understand the variation in the data more precisely. Specifically, the performance of the hybrid model gave 

average percentage improvement on RMSE values as 28.72%, average improvement in R2 Score is up to 

293.77%, and average MAPE enhancements was up to 38.24%. Therefore, the use of LSTM units in 

conjunction with 1D convolutional layers was adequate for capturing both local and global patterns over 

time. This could be due to the convolution layer smoothing the AQI time series and providing that smoothed 

data to the LSTM layer to forecast. Additionally, Conv1d layer can act as feature extractor and capture 

localized pattern which might be overlooked by standalone LSTM layers. It was also noted the training 

history of LSTM network indicates overfitting whereas Conv1D+LSTM are more robust but still it can be 

further enhanced by using regularization techniques or data augmentation. 

Additional variables, such as population density, traffic density, distance from the coast, landfills 

can be used to provide even more meaningful information. A substitute for hybrid models could be ensemble 

techniques, which combine the results of multiple weak models to increase forecast accuracy. For 

constructing a robust model, high-end deep network models such as autoencoders or transformers can be 

integrated with statistical time series analysis techniques. 
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