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 Millions of people worldwide are affected by chronic kidney disease (CKD), 
which is one of the main causes of death. Using machine learning (ML) 

models, this study attempts to create a computer-aided diagnostic (CAD) 
system that can autonomously detect chronic kidney disease (CKD) with 
improved interpretability. An online medical database provided 340 
ultrasound images used in this study, which included both normal and 
abnormal instances. 94 texture and intensity attributes were obtained from 
these images using Pyrandiomics. Six machine learning methods were used 
for classification: According to the evaluation results, support vector 
machine (SVM), decision tree (DT), random forest (RF), k-nearest neighbors 

(k-NN), XG-Boost, and naïve Bayes (NB) models were considered. Among 
these models, the random forest model demonstrated the highest accuracy. 
Explainable artificial intelligence (XAI) methods, namely Shapley additive 
explanation (SHAP), were utilized to improve model transparency. 
Clinicians could be assisted in comprehending the reasoning behind the 
predictions using SHAP analysis, which identifies the most important 
features impacting the ML model and visualizes the ranking of each 
individual feature. 
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1. INTRODUCTION 

Chronic kidney disease (CKD) poses a significant global health threat, especially in low-income 

countries, due to its increasing prevalence and high mortality rates. Chronic diseases accounted for 60% of 

global deaths in 2005, increasing to 66.7% by 2020 (WHO). Early prediction and monitoring are essential to 

curtail CKD progression and prevent severe complications. CKD, marked by prolonged kidney damage or 

reduced function, incurs high medical costs and increases risks of stroke, heart disease, diabetes, and 

infections. Despite its widespread impact, CKD remains less recognized compared to other chronic illnesses 

[1].  

Thus, this study considers CKD early prediction and monitoring focusing on pediatrics kidney 

ultrasound images. Ultrasound (US) is favored for identifying vascular irregularities due to its noninvasive 

approach and lack of ionizing radiation. Specifically, two-dimensional ultrasound (2-D US) is standard for 
measuring kidney dimensions and morphology of the kidney, despite challenges posed by image quality 

variations among low-cost and conventional machines [2]. 

The texture features in US scan images are used to describe the structural characteristics of tissues. 

These images can detect subtle structural abnormalities, such as cysts, scarring, and changes in tissue texture, 

which may indicate the early stages of CKD [3]. Several techniques are used to extract textural information 

https://creativecommons.org/licenses/by-sa/4.0/
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from digital images, with the aim of capturing the structures, statistics, and model-based connections between 

image pixels. Only a few have compared the effectiveness of various known features using ultrasound dataset 

obtained from clinical settings. This research seeks to address this gap by evaluating the impact of certain US 

image characteristics on a pediatric dataset of kidney US images, with the objective of this study being to 

assess and evaluate the efficacy of machine learning techniques for identifying ultrasound images according 

to their texture and statistical features. 
A study presented a decision support system that utilized texture features such as Haralick, shape, 

wavelet, Tamira, and histogram of oriented gradients (HOG), along with machine learning (ML) and 

convolutional neural network (CNN) approaches. The system employed a decision tree classifier to achieve 

an F1 score of 85.3% [4]. In a research study [5] aimed at improving image texture before segmentation, 

texture analysis was performed using the gray-level co-occurrence matrix (GLCM) and intensity histogram 

(IH). The results indicated that GLCM parameters were the most essential for analyzing texture in kidney 

ultrasound images. 

In a separate study [6], a set of parameters was extracted from the regions of interest (ROI) of 

ultrasound images to diagnose chronic kidney disease. The GLCM and kidney size were used for diagnosis, 

and an artificial neural network (ANN) classifier yielded a result of 95.4%. In the following work [7], GLCM 

features with a fourteen-feature vector were extracted, and a linear discriminant analysis classifier was 

utilized for classification of different stages of CKD and could classify with 24% of higher accuracy when 
compared to the existing prosed work. In the following study [8] deep learning features and conventional 

imaging feature from US images were extracted, the conventional imaging feature included texture features 

obtained using Gabor filters, HOG features and geometrical features. Support vector machine (SVM) 

classifier was used to build on these features with AUC values of 0.92, 0.88, and 0.92 for left, right, and 

bilateral abnormal kidney scans, respectively and resulted in improved performance while combining 

traditional imaging data with deep learning-based features. A novel method for CKD screening using 

ultrasound images and a convolutional neural network (CNN) framework, named the texture branch network 

(TBN) [1]] was introduced, which integrates texture feature extraction methods such as GLCM and HOG 

into CNN which enhanced the models ability to classify CKD accurately. 

The review above indicates that numerous investigations have focused on identifying and 

categorizing kidney ultrasound images using machine learning and deep learning approaches. Factors such as 
dataset characteristics, data quality, and extracted features significantly impact model performance. Earlier 

studies have primarily concentrated on GLCM and other statistical features in ultrasound and these studies 

have not elucidated which features contribute most to model effectiveness due to the lack of interpretability 

and the “black-box” [4] nature of their algorithms. Comprehending this “black-box” is crucial as it aids 

nephrologists in understanding the model's internal workings and decision-making processes. Moreover, 

many researchers have not used explainable (XAI) technique to determine the significance of individual 

texture feature in the classification of accuracy of pediatric ultrasound images. 

This research underscores the significance of gray-level texture and statistical features. These 

features capture spatial relationships between adjacent pixels and are comparatively straightforward to 

compute. This study uniquely examines a wide array of texture features, including gray level co-occurrence 

matrix (GLCM), gray level run length matrix (GLRLM), gray level dependence matrix (GLDM), gray level 
size matrix (GLSZM), neighboring gray tone difference matrix (NGTDM), and first-order features. The 

proposed approach utilizes a broad spectrum of texture features alone in conjunction with efficient machine 

learning algorithms for image classification. Furthermore, it introduces the explainable artificial intelligence 

(XAI) algorithm Shapley additive explanation (SHAP) to determine the impact of each extracted gray-level 

feature in identifying the specific influence of extracted features (such as echogenicity patterns, texture, and 

size measurements) that contribute most significantly to the model's decision-making process and in 

classification of pediatric kidney ultrasound images. 

The novel contribution of the proposed methodology: 

a. Examining texture characteristics in ultrasound images of pediatric kidneys to identify abnormalities, 

showcasing how each feature contributes to classification accuracy 

b. Incorporating XAI to reveal feature importance, enabling a clearer comprehension of how specific 

texture attributes affect classification precision. 
c. Testing the proposed method using six machine learning algorithms to determine their efficacy in 

categorizing pediatric kidney images. 

The paper is organized as follows: section 2 describes our methodology and the model we propose. 

Section 3 examines the experimental outcomes of our model. Section 4 provides an in-depth discussion of the 

proposed model, comparing it with prior research. Lastly, section 5 concludes the paper and suggests 

potential avenues for future research. 
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2. MATERIALS AND METHODS 

This section provides a concise overview of the proposed methodology for classifying pediatric 

kidney ultrasound images using a machine learning model. As illustrated in Figure 1, the process consists of 

six distinct stages. The initial phase involves data collection, followed by data preprocessing. The third stage 

focuses on extracting features from the data. Subsequently, the model is trained and evaluated using various 

metrics. The final step incorporates an XAI approach to interpret and elucidate the model's predictions. 

 
 

 
 

Figure 1. Representing the proposed workflow diagram 

 

 

2.1.  Data description 

This research work uses kidney ultrasound images from a dataset restricted to infants under seven 

years old. This dataset was created from a publicly accessible medical database [9]. The scope of kidney-

related illnesses is broad, and a subset concentrating on anomalies in pediatric kidneys has been carefully 

selected. There are 340 images in this subgroup of children less than seven, representing both normal and 

abnormal instances 

 

2.2.  Data pre-processing 

During the data preprocessing phase, we optimized the performance of the proposed model by 

executing a series of steps. Initially, all images were standardized to a resolution of 224×224 pixels and 

removed any artifacts by focusing on the kidney region of interest through cropping. We then eliminated 

noise using technique, Gaussian noise with a median filter, the filter smoothened the image by averaging the 

pixel values with a gaussian and replaced each pixel value with the median of the neighboring pixel values, 

that effectively reduced the high-frequency noise by preserving the edges while removing noise and hence 

achieved optimal results. Contrast limited adaptive histogram equalization (CLAHE) [10] was employed to 

enhance the image quality, the adaptability ensured the region with even small and subtle details were 

enhanced. while the Sobel operator [11] was used for edge detection to accurately identify the kidney 
boundaries while enhancing the visibility of structure and boundaries with the ultrasound images. We 

employed the automated data augmentation approach known as synthetic minority oversampling technique 

(SMOTE), which was applied from the majority class to construct a new synthetic sample to increase the size 

of our dataset and avoid overfitting. The sample of the preprocessed image is shown in Figure 2. 

 

 

 
 

Figure 2. Sample of pediatric kidney ultrasound image 

 
 

2.3.  Feature extraction 
The effectiveness of our proposed model relies heavily on image feature extraction, with the 

primary aim of this research being to identify and extract the most significant feature vectors. A valuable and 
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efficient method for obtaining radiological features from medical images is PyRadiomics [12], which 

encompasses three categories: intensity-based, morphological, and textural features. Intensity-based (first-

order) features utilize histograms to represent intensity distribution in ROIs without considering spatial 

relationships. Morphological traits describe the geometric characteristics of the area. Textural (second-order) 

features employ structures like GLCM, GLSZM, GLRLM, NGTDM, and GLDM to characterize the spatial 

arrangement of intensity levels based on gray levels. The PyRadiomics package provided a list of selected 
feature vectors. PyRadiomics is an open-source Python package designed for the processing and extraction of 

radiomics features from medical image data, utilizing a wide array of automated data characterization 

algorithms. This package was used to extract texture features from pediatric ultrasound images, with 

radiomics features being extracted for both normal and abnormal images. Figure 3 shows the texture feature 

extracted from the sample pediatric kidney image and Table 1 provides a detailed description of each texture 

feature type and its sub-features. 

 

 

 
 

Figure 3. Visualization of the features extracted pediatric Kidney ultrasound image 

 

 

Table 1. List of feature vectors extracted from the feature type 
Feature type Feature 

First Order: Based solely 

on the values of each pixel, 

without considering spatial 

relationships. 

Energy, total energy, entropy, minimum, 10th percentile, 90th percentile, maximum, mean, median, 

inter quartile range, range, mean absolute deviation, robust mean absolute deviation, root mean 

squared, standard deviation, skewness, kurtosis, variance, uniformity. 

GLCM: It calculates the 

frequency with which pairs 

of pixels in a picture with 

given values and spatial 

relationships occur. 

Auto-correlation, joint average, cluster prominence, cluster shade, contrast, correlation, difference 

average, difference entropy, difference variance, joint energy, joint entropy, informational measure of 

correlation (IMC)1, informational measure of correlation (IMC)2, inverse difference (ID), inverse 

difference normalized (IDN), inverse variance, maximum probability, sum average, sum entropy, sum 

of squares. 

GLSZM: Counts the 

number of interconnected 

zones or areas in an image 

of specified size and gray 

scale 

Small area emphasis (SAE), large area emphasis (LAE), gray level non-uniformity (GLN), gray level 

non-uniformity normalized (GLNN), size-zone non-uniformity (SZN), size-zone non-uniformity 

normalized (SZNN), zone percentage (ZP), gray level variance (GLV), zone variance (ZV), zone 

entropy (ZE), low gray level zone emphasis (LGLZE), high gray level zone emphasis (HGLZE), 

small area low gray level emphasis (SALGLE), small area high gray level emphasis (SAHGLE), large 

area low gray level emphasis (LALGLE), large area high gray level emphasis (LAHGLE). 

GLRLM: Measures the 

distance between 

consecutive groups of 

pixels that have the same 

grayscale. 

Short run emphasis (SRE), long run emphasis (LRE), gray level non-uniformity (GLN), gray level 

non-uniformity normalized (GLNN), run length non-uniformity (RLN), run length non-uniformity 

normalized (RLNN), run percentage (RP), gray level variance (GLV), run variance (RV), run entropy 

(RE), low gray level run emphasis (LGLRE), high gray level run emphasis (HGLRE), short run low 

gray level emphasis (SRLGLE), short run high gray level emphasis (SRHGLE), long run low gray 

level emphasis (LRLGLE), long run high gray level emphasis (LRHGLE). 

GLDM: Calculates the 

number of pixels at a 

specific distance that are 

influenced by a particular 

shade of gray. 

Small dependence emphasis (SDE), large dependence emphasis (LDE), gray level non-uniformity 

(GLN), dependence non-uniformity (DN), dependence non-uniformity normalized (DNN), gray level 

variance (GLV), dependence variance (DV), dependence entropy (DE), low gray level emphasis 

(LGLE), high gray level emphasis (HGLE), small dependence low gray level emphasis (SDLGLE), 

small dependence high gray level emphasis (SDHGLE), large dependence low gray level emphasis 

(LDLGLE), large dependence high gray level emphasis (LDHGLE). 

NGTDM: Determines the 

extent to which a pixel 

differs from the average 

gray tone of its neighbors 

within a specific radius. 

Busyness, coarseness, complexity, contrast, strength. 
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2.4.  Machine learning classifiers 

After completing the feature extraction stage, the machine-learning model was trained using the 

extracted features to determine the algorithm that would provide better accuracy. In this study, we utilized 

some of the most widely used and reliable classifiers owing to their dependability: support vector machine 

(SVM), random forest (RF), k-nearest neighbor (KNN), XG-boost decision tree (DT), and XG-Boost, all of 

which are machine learning algorithms designed for classification. Prior research mentioned in this paper 

selected only a small number of texture features for the analysis of kidney images. Additionally, we 
incorporated first-order statistics into our analysis to evaluate the performance of both texture and statistical 

features using classifiers preferred in previous studies. 

 

2.4.1. Support vector machine (SVM) 

SVM have been extensively applied in areas such as cheminformatics, bioinformatics, and 

biometrics for tasks such as classification and regression. They rely on support vectors for binary 

classification and build models using training data, ensuring high precision using hyperplanes for linearly 

separable data. For nonlinear data, the SVM maps to higher-dimensional spaces using kernel functions, 

necessitating careful parameter selection [13]. 

 

2.4.2. Naive Bayes (NB) 

NB is a straightforward yet effective algorithm that utilizes Bayes' theorem, assuming that features 
are independent. This approach is particularly advantageous in situations with limited training data and can 

sometimes surpass more sophisticated models like logistic regression in terms of how quickly they converge. 

Its efficiency and minimal computational demands make it a favoured choice across various disciplines [14]. 

 

2.4.3. Decision tree (DT) 

DT is an essential classification method that operates by repeatedly splitting data according to 

particular feature values. This hierarchical arrangement enables the model to make choices by navigating a 

tree-like structure, where each node signifies a feature condition. As a crucial element of ensemble 

techniques such as RF, DT provide both interpretability and precision when handling intricate data sets [15]. 

 

2.4.4. Random forest (RF) 
RF is a robust ensemble learning technique that improves prediction accuracy by integrating several 

DTs, each trained on different portions of the dataset. By consolidating the outcomes of individual trees 

through majority voting, [16], it effectively minimizes the likelihood of overfitting. This approach is 

particularly advantageous for tasks like medical image analysis, where precise disease classification is 

essential, especially when dealing with extensive and intricate datasets [17]. 

 

2.4.5. K-nearest neighbor (KNN) 
KNN is a straightforward yet powerful classification technique that categorizes new data points by 

considering the predominant class among their closest neighbors in the training dataset. As a non-parametric 

approach, it does not rely on any assumptions regarding the data's distribution. The performance and 

precision of KNN are influenced by factors such as the value of k and the selected distance metric, which 
determine how the similarity between instances is assessed [18]. 

 

2.4.6. XG-Boost 

XGBoost is a robust algorithm for gradient-boosted trees, specifically crafted for high efficiency and 

performance in managing structured data. It constructs models in a sequential manner, with each subsequent 

tree aiming to rectify the mistakes of its predecessors, thus enhancing the overall predictive accuracy. By 

optimizing a regularized objective function, XGBoost adeptly balances the complexity and performance of 

the model, making it particularly well-suited for large-scale classification tasks [19]. 

 

2.5.  Explainable artificial intelligence (XAI) 

AI addresses issues with ethics, justice, privacy, bias, and transparency by making AI decisions 

easier for humans to understand. XAI is a technique that is used to decipher AI systems [20]. XAI seeks to 
define AI behaviors, strengths, limitations, and future behavior through better decision making, time savings, 

and increased trust in the medical sector. XAI provides developers with choices to strike a compromise 

between explainability and speed. Expert systems must explain how they work and why they are necessary to 

guarantee that people comprehend their applications and designs correctly. Shapley additive explanation 

(SHAP) and local interpretable model-agnostic explanation (LIME) are the two most well-known approaches 

in XAI [21]. 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Explainable artificial intelligence and feature based technique for the classification … (Fizhan Kausar) 

4153 

The SHAP method, which is a transparent machine learning strategy, demonstrates the relevance of 

input variables in making predictions. This helps discern useful prediction techniques, such as categorizing 

peptides or images. SHAP combines local and global interpretations to assign a value to each feature based 

on its contribution to the predictions [22]. Although it may occasionally produce contradictory explanations, 

SHAP's solid theoretical foundation in game theory guarantees unbiased forecasts. It improves 

comprehension by working in harmony with other techniques such as LIME [23]. TreeSHAP is used for 
conditional predictions because it can be time-consuming for large samples and may disregard feature 

dependency. 

By assessing the influence of extracted features on predictions, SHAP ranks of features in machine 

learning models, improving interpretability by highlighting important contributors of each feature to model 

outputs. SHAP is adaptable because, unlike standard ranking techniques, it can handle non-linear linkages 

and it reveals which combination of features influencing the prediction and ensures a fairer and more 

transparent evaluation and more balanced analyses of the model’s performance. In the end, using SHAP 

enhances accuracy, increases model refinement. 

 

2.6.  Performance metrics 

Kidney abnormality images are classified as true positive (TP), true negative (TN), false positive 

(FP), or false negative (FN) based on diagnosis accuracy, crucial for evaluating classification models. 
Evaluation metrics include accuracy, sensitivity, specificity, precision, recall, F1 score, and AUC curve. 

Below, we provide a brief description of these metrics [24]. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁 𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁⁄  (1) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)  (2) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑡𝑦 = 𝑇𝑁 𝑇𝑁 + 𝐹𝑃⁄   (3) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 𝑇𝑃 + 𝐹𝑁⁄    (4) 

 

𝐹1 − 𝑆𝐶𝑂𝑅𝐸 = 2 ∗ 𝑇𝑃 2 ∗ 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃⁄  (5) 

 

𝐴𝑈𝐶 = 𝑇𝑃𝑅 − 𝐹𝑃𝑅 + 1/2   (6) 

 

 

3. EXPERIMENTAL RESULTS 

The experiment was carried out on a Windows 10 system with an Intel i5 processor. The 
development environment used was Jupyter Notebook. This research proposes a ML approach for effectively 

categorizing pediatric kidney ultrasound images. The dataset, comprising both normal and abnormal pediatric 

kidney scans, was collected from online medical ultrasound image repositories. The primary objective was to 

classify these images based on texture characteristics. Image preprocessing involved applying a Gaussian 

median filter to enhance quality and reduce noise, utilizing CLAHE for image improvement, and 

implementing the Sobel operator for edge detection. Due to a notable imbalance between normal and 

abnormal images in the dataset, SMOTE was employed to generate synthetic images, creating a more 

suitable foundation for ML training. Following data stabilization, texture features were extracted, including 

first-order derivatives, GLCM, GLRLM, GLSZM, GLDM, and NGTDM. The extracted features were 

divided in a 70:30 ratio and input into various ML classifiers, including RF, DT, NB, SVM, KNN and  

XG-Boost. The classifiers' performance was assessed using a standard evaluation approach, incorporating 
metrics like precision, recall, accuracy, sensitivity, specificity, F1 score, and AUC curve. Table 2 displays the 

performance outcomes for each classifier. To comprehend the influence of individual features on the 

classification outcomes, XAI techniques were employed. The test results are elaborated on in the following 

section. 

The RF classifier achieved the highest accuracy of 98% among the evaluated models. This superior 

performance can be attributed to its method of creating multiple trees using various data subsets and 

averaging their predictions, enabling it to rank feature importance. Other classifiers' accuracy ranged from 

60% to 95%. The results table indicates that while random forest and XG-Boost excelled, SVM demonstrated 

a strong ability to differentiate between classes, making it more reliable in terms of AUC. NB showed poor 

performance, whereas KNN performed well across multiple thresholds for class distinction. DT required a 

balance between sensitivity and specificity. Figure 4 provides a graphical comparison of the classifiers. 

Furthermore, the Random Forest algorithm's feature importance ranking is displayed in Figure 5. In this 
graph, the x-axis represents individual feature values calculated based on entropy, while the y-axis shows the 
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feature ranking. The top five most influential features contributing to the classification of pediatric ultrasound 

images, as ranked by RF, are 𝐹𝑖𝑟𝑠𝑡𝑂𝑟𝑑𝑒𝑟_𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠, 𝑔𝑙𝑐𝑚_𝐼𝑀𝐶2, 𝑔𝑙𝑑𝑚_𝑙𝑜𝑤𝑔𝑟𝑎𝑦𝑙𝑒𝑣𝑒𝑙𝑒𝑚𝑝𝑎𝑠𝑖𝑠, 

𝑔𝑙𝑑𝑚_𝑠𝑚𝑎𝑙𝑙𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒𝑙𝑜𝑤𝑔𝑟𝑎𝑦𝑙𝑒𝑣𝑒𝑙𝑒𝑚𝑝𝑎𝑠𝑖𝑠, and 𝑔𝑙𝑠𝑧𝑚_𝑠𝑚𝑎𝑙𝑙𝑎𝑟𝑒𝑎𝑒𝑚𝑝𝑎𝑠𝑖𝑠. 

 

 

Table 2. Results of classification of kidney images 
Classifier Accuracy Sensitivity Specificity Precision Recall F-1 Score AUC 

Support vector machine 0.82 0.74 0.91 0.91 0.74 0.82 0.91 

Naïve Bayes 0.75 0.46 0.56 0.71 0.46 0.56 0.78 

Decision Tree 0.84 0.54 0.94 0.92 0.54 0.70 0.85 

Random Forest 0.98 0.97 0.92 0.93 0.97 0.98 0.78 

KNN 0.67 0.51 0.86 0.82 0.51 0.62 0.85 

XG Boost 0.95 0.91 0.88 0.96 0.91 0.95 0.79 

 

 

 
 

Figure 4. Performance comparison of ML algorithms 

 
 

 
 

Figure 5. Random forest feature ranking on the extracted features form ultrasound images 
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Furthermore, our study utilizes SHAP to gain insight into our ML models prediction, Figure 6 

presents the feature importance ranking with the SHAP summary plot for the Random Forest. The top three 

most important features that contribute to the predictive model are 𝑒𝑛𝑒𝑟𝑔𝑦, 𝐺𝐿𝐶𝑀_𝐼𝑚𝑐2, and 

𝐹𝑖𝑟𝑠𝑡𝑂𝑟𝑑𝑒𝑟_𝑆𝑘𝑤𝑒𝑛𝑒𝑠𝑠. The graph presents the SHAP values on the x-axis and the rankings of the features 

on the y-axis. The features that have a higher SHAP value are considered to be more influential in detecting 
the classes based on texture features and are arranged in ascending order based on their SHAP scores, with 

the highest scores at the top of the figure. Figure 7 SHAP beeswarm graphic offers a detailed explanation of 

the impact of feature characteristics on the final outcome, including both global explanations and 

interpretations (comprehensive explanations).  

This graph offers significant insights into the distinct roles of textual and first-order derivative 

features, enabling a comprehensive grasp of their influence on model predictions. The x-axis displays the 

SHAP values, with each line representing an individual feature. Blue dots signify lower feature values, while 

red dots represent higher ones. Each point on the graph corresponds to a single observation, and the feature's 

effect on the model's output is indicated by its position along the x-axis. 

When comparing the random forest algorithm's feature importance results with those shown in 

Figure 3, we notice that they don't perfectly match the SHAP influence analysis results presented in Figure 4. 
However, upon closer examination, several features appear in both features ranking analyses, including 

𝑔𝑙𝑑𝑚_𝑠𝑚𝑎𝑙𝑙𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒𝑙𝑜𝑤𝑔𝑟𝑎𝑦𝑙𝑒𝑣𝑒𝑙𝑒𝑚𝑝𝑎𝑠𝑖𝑠, 𝑔𝑙𝑐𝑚_𝐼𝑀𝐶2, 𝑔𝑙𝑟𝑙𝑚_𝑟𝑢𝑛𝑒𝑛𝑡𝑟𝑜𝑝𝑦, 𝑛𝑔𝑡𝑑𝑚_𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ, 

𝑓𝑖𝑟𝑠𝑡𝑜𝑟𝑑𝑒𝑟_𝑠𝑘𝑤𝑒𝑛𝑒𝑠𝑠, 𝑔𝑙𝑑𝑚_𝑙𝑜𝑤𝑔𝑟𝑎𝑦𝑙𝑒𝑣𝑒𝑙𝑒𝑚𝑝ℎ𝑎𝑠𝑖𝑠, 𝑔𝑙𝑠𝑧𝑚_𝑠𝑚𝑎𝑙𝑙𝑎𝑟𝑒𝑎𝑒𝑚𝑝𝑎𝑠𝑖𝑠, 𝑛𝑔𝑡𝑑𝑚_𝑏𝑢𝑠𝑦𝑛𝑒𝑠𝑠, 

𝑒𝑛𝑒𝑟𝑔𝑦, 𝑙𝑎𝑟𝑔𝑒𝑎𝑟𝑒𝑎𝑙𝑜𝑤𝑔𝑟𝑎𝑡𝑙𝑒𝑣𝑒𝑙𝑒𝑚𝑝ℎ𝑎𝑠𝑖𝑠, 𝑔𝑙𝑠𝑧𝑚_𝑠𝑖𝑧𝑒𝑧𝑜𝑛𝑒𝑛𝑜𝑛𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑, and 

𝑔𝑙𝑠𝑧𝑚_𝑧𝑜𝑛𝑒𝑒𝑛𝑡𝑟𝑜𝑝𝑦. Although their rankings differ based on the scale used, we can infer that both 

approaches are relatively consistent in identifying the most influential features for analyzing ultrasound 

images. Additionally, we have compared our research to existing studies, as shown in Table 3. This 

comparison reveals that our method, which employs texture features for classification, has attained higher 

accuracy than previous investigations in this area. While prior studies primarily focused on GLCM or various 
image features and achieved good accuracy, our approach concentrates solely on different types of texture 

features, as kidney scans are primarily based on tissue characteristics 

 

 

 
 

Figure 6. The SHAP algorithm's ranking of the importance of the features extracted from the US images 
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Figure 7. Beeswarm summary plot illustrates the influence of extracted feature on the performance of random 

forest using SHAP values 

 

 

Table 3. Comparison of proposed model with existing work 
Ref no Year Features Extracted Total feature count Accuracy Classifier XAI 

[25] 2017 HOG, Haar as feature 

extraction USING 

SIFT, SURF 

324 HOG- 96.67% Haar -

93.3% LBP -90.0%, 

SURF -89.3% 

AdaBoost, SVM - 

[26] 2019 GLCM 21 84.61% ANN - 

[27] 2020 GLCM 44 77.80% ANN - 

[1] 2020 GLCM 16 88.48% CNN - 

[7] 2021 GLCM 21 97.46 LDA - 

[6] 2021 GLCM 57 95.40% ANN - 

[4] 2022 Haralick, Shape, 

Wavelet, Tamura, 

HOG 

42 96.68% k-NN, fuzzy  

k-NN, and SVM 

 

 

 2024 Proposed- GLCM, 

GLRL, GLSZM, 

GLDM, NGTDM, 

First-Order 

94 Highest accuracy 

Random Forest- 98% 

SVM, NB, DT, 

XG-Boost, KNN, 

RF 

SHAP 

 

 

4. DISCUSSION 
CKD is a progressive health issue that often goes unnoticed until advanced stages, emphasizing the 

need for early detection to ensure effective treatment. This study explores the development of an interpretable 

ML model for CKD prediction using texture features extracted from pediatric ultrasound images. Our 

research addresses key challenges in ML-based medical diagnostics, including data imbalance, 

comprehensive texture analysis, and model interpretability. 
The study involved the development and evaluation of six ML models. These models were trained 

and tested using a dataset derived from an online medical database, with 94 texture features extracted from 

the images. The primary objective was to classify kidney images based on these texture features. The RF 

model demonstrated superior performance compared to DT, NB, XG-BOOST, KNN, and SVM models. To 

address ongoing concerns about the opacity of ML model predictions, we incorporated explainability and 

interpretability features into the RF model using the SHAP technique. This approach provides a detailed 

analysis of specific texture features and their impact on image classification as normal or abnormal. 
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Previous research has employed various ML algorithms to classify kidney ultrasound images, 

typically using a limited number of texture features. There is a growing trend in exploring ML applications 

for CKD detection and classification. However, studies have not yet investigated external validation and 

explainability in the use of texture features alone for classifying pediatric kidney ultrasound images. Our 

research seeks to address this gap by examining the potential of machine learning algorithms in classifying 

chronic kidney disease. We employed SHAP to enhance the clarity and interpretability of our method, 
offering insights into the model's assumptions and highlighting the significance of particular features.  

Among the evaluated texture features, 𝑔𝑙𝑑𝑚_𝑠𝑚𝑎𝑙𝑙𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒𝑙𝑜𝑤𝑔𝑟𝑎𝑦𝑙𝑒𝑣𝑒𝑙𝑒𝑚𝑝𝑎𝑠𝑖𝑠, 𝑔𝑙𝑐𝑚_𝐼𝑀𝐶2, 

𝑔𝑙𝑟𝑙𝑚_𝑟𝑢𝑛𝑒𝑛𝑡𝑟𝑜𝑝𝑦, 𝑛𝑔𝑡𝑑𝑚_𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ, 𝑓𝑖𝑟𝑠𝑡𝑜𝑟𝑑𝑒𝑟_𝑠𝑘𝑤𝑒𝑛𝑒𝑠𝑠, 𝑔𝑙𝑑𝑚_𝑙𝑜𝑤𝑔𝑟𝑎𝑦𝑙𝑒𝑣𝑒𝑙𝑒𝑚𝑝ℎ𝑎𝑠𝑖𝑠, 

𝑔𝑙𝑠𝑧𝑚_𝑠𝑚𝑎𝑙𝑙𝑎𝑟𝑒𝑎𝑒𝑚𝑝𝑎𝑠𝑖𝑠, 𝑛𝑔𝑡𝑑𝑚_𝑏𝑢𝑠𝑦𝑛𝑒𝑠𝑠, 𝑒𝑛𝑒𝑟𝑔𝑦, 𝑙𝑎𝑟𝑔𝑒𝑎𝑟𝑒𝑎𝑙𝑜𝑤𝑔𝑟𝑎𝑡𝑙𝑒𝑣𝑒𝑙𝑒𝑚𝑝ℎ𝑎𝑠𝑖𝑠, 

𝑔𝑙𝑠𝑧𝑚_𝑠𝑖𝑧𝑒𝑧𝑜𝑛𝑒𝑛𝑜𝑛𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑, and 𝑔𝑙𝑠𝑧𝑚_𝑧𝑜𝑛𝑒𝑒𝑛𝑡𝑟𝑜𝑝𝑦 emerged as the most influential for 

classification accuracy. These features have the potential to assist physicians in image classification. Future 

research should explore different combinations of texture features from GLCM, GLRLM, GLDM, NGTDM, 

and GLSZM, along with urine test reports, to provide more accurate and timely assessments of patient health, 

potentially leading to improved management of at-risk individuals. 
 

 

5. CONCLUSION  
This research introduces a sophisticated machine learning (ML) framework for categorizing 

pediatric kidney ultrasound images and determining the texture feature alone provide significant 

classification accuracy. The study employed various ML models, including RF, DT, KNN, NB, SVM and 

XG-Boost. RF emerged as the top performer, achieving 98% accuracy in distinguishing normal and abnormal 

pediatric ultrasound images. The investigation also utilized XAI technique like SHAP to provide insights into 

model behavior at both local and global levels. These methods offered coherent and logical explanations 

about 𝑒𝑛𝑒𝑟𝑔𝑦, 𝐺𝐿𝐶𝑀_𝐼𝑚𝑐2, and 𝐹𝑖𝑟𝑠𝑡𝑂𝑟𝑑𝑒𝑟_𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 texture features played a crucial role in 
determining classification outcome, thereby enhancing model transparency. The finding emphasizes the 

importance of tissue-level texture variation in diagnosing pediatric kidney abnormalities.  The next phase of 

this research will focus on feature selection technique to identify the most influential features, thereby 

inproving classification accuracy and model efficiency. The insight gained from this study can contribute to 

the development of AI-assisted decision support system for early detection and diagnosis of kidney 

abnormalities in children. 
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