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 This research explores two heuristic algorithms designed to efficiently solve 

the graph coloring problem. The implementation codes for both algorithms 

are provided for better understanding and practical application. The 

experimental methodology is thoroughly discussed to ensure clarity and 

reproducibility. The execution times of the algorithms were measured by 

running the test applications six times for each analyzed graph. The results 

indicate that the first algorithm generally produced better solutions than the 

second. In only two instances did the first algorithm produce solutions 

comparable to those of the second. The results reveal another trend: as the 

graph density exceeds 85%, the number of required colors increases 

significantly for both algorithms. However, even at a density of 95%, the 

number of colors required to color the graph's vertices does not exceed half 

the total number of vertices. As the graph density increases from 95% to 

100%, the number of colors required to color the graph rises significantly. 

However, when the graph density exceeds 97%, both algorithms produce 

identical solutions. 
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1. INTRODUCTION 

Informally, the labeling (or coloring) of a graph's vertices can be described as assigning each vertex 

a specific label (or color). The goal of this process is to assign labels (colors) such that no two adjacent 

vertices share the same label (color). The labels (or colors) assigned to the vertices are elements of a finite 

set, with each vertex receiving exactly one of these elements. A collection of vertices assigned the same label 

(color) is known as a chromatic (or color) class. If c-number sets are formed, i.e., classes can define a graph 

as c-colorable. Natural numbers from 1 through c are usually used to denote these chromatic classes. For a 

graph coloring to be valid, every pair of adjacent vertices (i.e., vertices connected by an edge) must be 

assigned different labels (colors). Formally and in general, it can be defined that when a graph is colored 

acceptably (correctly) for example with c colors, then it is c-colorable. An acceptable coloring of a graph 

always exists. If a graph has n vertices, each vertex can be assigned a unique color, resulting in exactly n 

chromatic classes. This will certainly be an acceptable labeling (or coloring) of the given graph. With this 

coloring scheme, no two vertices will share the same label (or color), regardless of whether they are 

connected by an edge [1], [2]. 

The smallest possible number of chromatic classes in which the vertices of a given graph can be 

distributed is called the optimal coloring of the graph and is denoted by χ(G). If a graph is not complete then 

χ(G) is certainly less than the number of vertices of the given graph, i.e., χ(G) < n. If it is found that for a 
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graph G, χ(G)=c, then this graph is c-chromatic. The correct (acceptable) coloring of a c-color graph is the 

grouping of the vertices of that graph into c sets, the vertices in each of these sets being unrelated to each 

other but may be (and usually are) connected vertices of different sets. If graph G' is a subgraph of a graph G, 

then any acceptable coloring of the graph G will also be an acceptable coloring of the graph G'. Moreover, 

the chromatic index of a graph G' is less than or at most equal to the chromatic index of a graph G [3], [4]. 

The problem of labeling (coloring) vertices (in the field of graph theory) is an NP-hard problem [5] 

and is still actively studied [6]–[9]. Various approaches, methods, and algorithms for solving this problem 

continue to be actively researched in scientific literature. For instance, the maximal independent set for the 

vertex-coloring problem on planar graphs [10], the adjacent vertex-distinguishing edge coloring [11], the 

rainbow vertex coloring problem [12], and many others. Different methods of the problem use various 

algorithms [13], [14], approaches [15]–[17] and techniques [18], [19]. Other methods are used to find a 

solution to such problems in the field of graph theory [20]. Many other more detailed and in-depth analyzes 

of this problem are discussed in [21]–[23]. 

Any complete graph that does not contain parallel edges and loops can be colored with exactly |V| of 

number of colors, where |V| is the number of vertices in this graph. This is because in every complete graph 

for every pair of vertices there is an edge that connects these vertices. Also, in every complete graph, every 

vertex is connected (by an edge) to every other vertex. Therefore, the chromatic index of any complete graph 

is equal to the number of vertices in that graph. Because of this statement, it can be concluded that if a graph 

has its complete subgraph, then the chromatic index of this graph will be at least equal (or greater) to the 

number of vertices that form the complete subgraph in the given graph. It is also known that in each graph 

that has its complete subgraph, it is possible for the chromatic index of this graph to be greater (but not less) 

than the number of vertices forming the complete subgraph [24]. 

In this paper, some results obtained after the execution of two modified versions of the greedy 

algorithm used to solve the problem of labeling (coloring) the vertices of a graph – Greedy coloring 

algorithm (GCA) [25] are presented and analyzed. The first version of the greedy algorithm is classical and 

the initial arrangement of the vertices does not change when it is executed. With this modification, the 

vertices are labeled (colored) in the order in which they were added to the graph - i.e., by index (greedy 

coloring algorithm based on the index ordering – GC-IDX). The second variant of the greedy algorithm is 

implemented as the initial order of the vertices is changed, but in a random arrangement way, i.e. a random 

arrangement of vertices is generated, one from all possible ones (which are exactly n!). After this step, the 

vertices of the graph are labeled (colored) according to the generated order of vertices – i.e., randomly 

(greedy coloring algorithm based on the random ordering - GC-RND). Both variants of the greedy algorithm 

are approximate, and thus, it is not guaranteed that either modification will find the optimal solution for 

labeling (coloring) the graph's vertices using the fewest labels (colors) possible. When solving NP-hard 

problems with large input data, only approximate algorithms can be used, since they can generate at least a 

close to the optimal solution and at an acceptable time, for example in the order of seconds to few minutes. 

Other algorithms for solving specific variants of the graph vertex labeling (coloring) problem are also known 

and discussed in other publications [26], [27]. 

 

 

2. RESEARCH METHOD 

This section shows and discusses the source codes of both algorithms GC-IDX and GC-RND 

algorithms. Both algorithms are approximate and solve the graph vertex coloring problem approximately. For 

both algorithms – GC-IDX and GC-RND, some parameters, dynamic arrays and matrices need to be declared 

in advance. They are presented in Figure 1. 

 

 

01 var 

02 │ NumberOfVertices: Integer; 

03 │ ArrayOfColors: array of TColor; 

04 │ MinimalColors, RandomCount: Integer; 

05 │ BestMinimalColors, BestIteration: Integer; 

06 │ AdjacencyMatrix: array of array of Integer; 

 

Figure 1. Source code of preliminary declarations 

 

 

The NumberOfVertices parameter stores the number of vertices in the graph. The ArrayOfColors 

array is used by both algorithms. Each item of this dynamic structure contains an item of type TColor with 

which the given vertex of the graph is colored. Both algorithms (CG-IDX and CG-RND) change the values 
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of these items. The MinimalColors parameter is aggregated and is used by the algorithms in the solution 

search loop. Each graph is represented by an adjacency matrix (line 6), which is used by both algorithms. 

Each item [u, v] of the matrix shows whether vertices with indices u and v are adjacent or not. 

The GreedyColoringIDX procedure implements the first approximate method for labeling (coloring) 

graph vertices. The source code of this procedure is shown in Figure 2. This procedure also uses some 

additional parameters – CurrentColor, V, Vertex and AcceptableSolution. The CurrentColor parameter holds 

the number of one of the colors used. Parameter V is used when iterating the adjacency matrix when 

searching for the neighbors of the given vertex. The AcceptableSolution parameter indicates whether the 

given vertex has been successfully colored with any of the available colors. 

 

 

01 procedure GreedyColoringIDX; 

02 begin 

03 │ var AcceptableSolution: Boolean := False; 

04 │ var V := 0; var Vertex := 0; var CurrentColor := 0; 

05 │ MinimalColors := 0; 

06 │ for Vertex := 1 to NumberOfVertices do 

07 │ begin 

08 │ │ CurrentColor := 0; 

09 │ │ while not AcceptableSolution do 

10 │ │ begin 

11 │ │ │ CurrentColor := CurrentColor + 1; 

12 │ │ │ AcceptableSolution := True; 

13 │ │ │ for V := 1 to NumberOfVertices do 

14 │ │ │ begin 

15 │ │ │ │ if ((AdjacencyMatrix[Vertex][V] > 0) and 

16 │ │ │ │     (ArrayOfColors[V]=CurrentColor)) then 

17 │ │ │ │ begin 

18 │ │ │ │ │ AcceptableSolution := False; 

19 │ │ │ │ │ Break; 

20 │ │ │ │ end; 

21 │ │ │ end; 

22 │ │ end; 

23 │ │ ArrayOfColors[Vertex] := CurrentColor; 

24 │ │ if (MinimalColors < CurrentColor) then 

25 │ │   MinimalColors := CurrentColor; 

26 │ end; 

27 end; 

 

Figure 2. Source code of the GreedyColoringIDX procedure 

 

 

The parameters MinimalColors, V, Vertex and CurrentColor are set to 0 in the beginning of the 

GreedyColoringIDX procedure (rows 4 and 5). The procedure checks which of the current colors can be used 

to color the given vertex (through a for-loop started on row 6). Finding the color with the smallest possible 

index to be used for coloring is realized by a while-loop (rows 09 - 22). Just before the execution of the loop, 

the CurrentColor parameter is set to 0 (row 08). In line 11, the CurrentColor parameter is incremented by 1, 

which means that on the first iteration of the loop, this parameter will be set to 1. Through the for loop 

(executed between rows 11-21), it is checked whether any of the neighboring (adjacent) vertices of the 

current vertex (parameter Vertex) is not already colored with the color CurrentColor. If this is not the case, 

then the current vertex is colored with CurrentColor. The execution of the for loop can be prematurely 

terminated if a vertex which is adjacent to the current one and is already colored with the CurrentColor is 

found. If this happens, the AcceptableSolution parameter is set to False before the loop is terminated. In this 

situation, the coloring of the current vertex with the CurrentColor is impossible, and the procedure executes a 

new iteration of the while loop and increasing the index of the current color by 1 (row 11). Execution of the 

while loop (rows 09 - 22) continues until an acceptable (possible) color is found for the current vertex. In this 

case, the parameter AcceptableSolution will be set to True (on row 12 before starting the for loop). The value 

of the CurrentColor parameter is stored in the array ArrayOfColors in the item associated with the parameter 

Vertex (row 23). The value of the CurrentColor parameter is copied to the MinimalColors parameter only if 

the value of the CurrentColor parameter is greater than the value of the MinimalColors parameter. 

When the value of the MinimalColors parameter is increased by one, it means that the available 

colors are not enough to color the current vertex and a new color needs to be added, which is done by 

increasing by one the value of the MinimalColors parameter. The execution of the for loop (lines 06 – 26) 

ends only when all the vertices in the graph are colored, and in such a way that no pair of adjacent vertices 
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are colored with the same color. After the execution of the GreedyColoringIDX procedure, the 

MinimalColors parameter stores the minimum number of colors needed to color the given graph, according 

to the implementation of the algorithm constructed in this way. 

The GreedyColoringRND procedure implements the second approximate method for coloring graph 

vertices. The source code of this procedure is shown in Figure 3. This procedure also uses some additional 

parameters – BestMinimalColors, BestIteration and RandomCount. The BestMinimalColors parameter holds 

the minimal number of colors needed to color the graph vertices. This parameter has a different purpose than 

the MinimalColors parameter, which contains the minimum number of colors required when running the 

current GreedyColoringIDX procedure. In contrast to this parameter, the BestMinimalColors parameter 

contains the minimum number of colors to color the graph after executing several GreedyColoringIDX 

procedures. In contrast to this parameter, the BestMinimalColors parameter contains the minimum number of 

colors to color the graph after running the GreedyColoringIDX procedure several times. The number of these 

calls is determined by the RandomCount parameter, which is initialized when the GreedyColoringRND 

procedure is started. Accordingly, the BestIteration parameter stores which call the GreedyColoringIDX 

procedure found the best solution, information about which is stored in the BestMinimalColors parameter. 

The essence of the GreedyColoringRND procedure consists in the successive generation of different 

(random) permutations of the vertices of the graph, based on which, in the next step, these vertices will be 

colored according to this order by the GreedyColoringIDX procedure. The random order of the vertices is 

generated by the for loop (lines 07 – 12), starting from the last vertex for which a new index of another vertex 

is chosen (randomly) with which the current one is exchanged (line 11). In the next step, a new (random) 

index is chosen for the penultimate vertex, which is exchanged with some vertex from those before it. This 

process is repeated until all vertices up to the first have been randomly swapped. After the new order is 

generated, the procedure GreedyColoringIDX is called, which colors the vertices of the graph in the thus 

generated suborder. When the GreedyColoringIDX procedure is executed, the number of colors needed to 

color all vertices of the graph is calculated. This count is stored in the MinimalColors parameter, which is 

compared to the best solution found from a previous iteration of the algorithm. If the current solution is better 

(i.e. the MinimalColors parameter has a smaller value than the BestMinimalColors parameter) then the 

current solution is stored as the best found so far. Accordingly, the BestIteration parameter stores the 

iteration at which this (best) solution was found. 

 

 

01 procedure GreedyColoringRND; 

02 begin 

03 │ BestMinimalColors := MaxInt; RandomCount := 100; 

04 │ BestIteration := 0; 

05 │ for var Iteration := 1 to RandomCount do 

06 │ begin 

07 │ │ for var V := NumberOfVertices downto 1 do 

08 │ │ begin 

09 │ │ │ var I := V; 

10 │ │ │ var J := Random(V) + 1; 

11 │ │ │ var T := I; I := J; J := T; // Swap vertices I and J 

12 │ │ end; 

13 │ │ GreedyColoringIDX(); 

14 │ │ if MinimalColors < BestMinimalColors then 

15 │ │ begin 

16 │ │ │ BestMinimalColors := MinimalColors; 

17 │ │ │ BestIteration := Iteration; 

18 │ │ end; 

19 │ end; 

20 end; 

 

Figure 3. Source code of the GreedyColoringRND procedure 

 

 

3. RESULTS AND DISCUSSION 

The results of the experiment will be presented. An analysis between the two approximate methods 

will also be presented in terms of the number of minimum colors required to color the test graphs, as well as 

the running time of the algorithms. For this study, 24 graphs with 1000 vertices and different numbers of 

edges were created. These graphs are undirected and contain no multi-edges (parallel edges or multiple 

edges) or loops. The number of edges is determined by the graph density (in percentage) that is set for each 

graph. This parameter ranges from 5 to 95 for graphs G1 – G19 and changes in 5 percent increments. For 

graphs G20 – G24 this parameter ranges from 96 to 100 and changes in 1 percent increments.  
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Each graph contains the same number of vertices (1000). The maximum possible number of edges 

that a graph with 1000 vertices can contain (without parallel edges and loops) is 1000*(1000-1)/2=499500. 

From these edges, a certain percentage of them is randomly selected based on the graph density parameter. 

Additional information about the test graphs and the results of the execution of the two algorithms are shown 

in Tables 1 and 2. The experimental conditions are: 64-bit Win 11 OS and hardware configuration: 

Processor: Intel (R) Core (TM) i5-12450H at 4.40 GHz; RAM: 16 GB, SSD 1000 GB. 

 

 

Table 1. Results of the approximate algorithms for graphs G1 – G19 
Graph 

number 
Graph Density Edges  Greedy Coloring (IDX) Greedy Coloring (RND) Diff in 

file name (%) (count)  Colors Time (ms) Colors Time (ms) Iteration colors 

1 G_1000_24976 5 24 976  15 31 19 2609 17 4 

2 G_1000_49950 10 49 950  25 47 31 2625 126 6 
3 G_1000_74926 15 74 926  35 63 41 2656 42 6 

4 G_1000_99900 20 99 900  45 76 53 2672 131 8 

5 G_1000_124876 25 124 876  55 78 66 2688 209 11 
6 G_1000_149850 30 149 850  66 79 75 2703 153 9 

7 G_1000_174826 35 174 826  77 81 85 2718 127 8 

8 G_1000_199800 40 199 800  86 93 94 2734 72 8 
9 G_1000_224776 45 224 776  99 109 108 2735 91 9 

10 G_1000_249750 50 249 750  113 110 124 2750 103 11 

11 G_1000_274726 55 274 726  128 112 139 2751 24 11 
12 G_1000_299700 60 299 700  141 125 152 2797 197 11 

13 G_1000_324676 65 324 676  157 127 169 2798 46 12 

14 G_1000_349650 70 349 650  174 156 175 2813 81 1 
15 G_1000_374626 75 374 626  195 157 204 2828 28 9 

16 G_1000_399600 80 399 600  222 172 226 2875 73 4 

17 G_1000_424576 85 424 576  255 188 256 2905 62 1 
18 G_1000_449550 90 449 550  293 203 301 2906 158 8 

19 G_1000_474526 95 474 526  384 248 394 2922 94 10 

 

 

Table 2. Results of the approximate algorithms for graphs G20 – G24 
Graph 

number 

Graph Density Edges  Greedy Coloring (IDX) Greedy Coloring (RND) Diff in 

file name (%) (count)  Colors Time (ms) Colors Time (ms) Iteration colors 

20 G_1000_479520 96 479 520  419 265 422 2975 65 3 

21 G_1000_484516 97 484 516  461 287 460 3052 27 1 
22 G_1000_489510 98 489 510  856 304 856 3196 41 0 

23 G_1000_494506 99 494 506  902 352 902 3351 34 0 

24 G_1000_499500 100 499 500  1000 407 1000 3828 79 0 

 

 

In Tables 1 and 2, the “Graph number” column shows the number of the test graph. The “Graph file 

name” column shows the name of the file where the information for the corresponding test graph is stored. 

The “Density (%)” column shows the density of the test graph in terms of the number of edges that this graph 

contains out of all the possible edges that this graph would have if it were complete. Accordingly, the column 

“Edge count” shows the number of these edges. The “Color” columns show the number of required colors 

that each of the algorithms used to color the corresponding graph. Accordingly, the “Time (ms)” columns 

show the time for each of the two algorithms to generate a solution. The “Iteration” column shows the best 

iteration of the GC-RND algorithm where the algorithm generated the best solution out of a total of 250 

iterations performed. The “Diff in colors” column shows the difference in chromatic classes between the GC- 

RND algorithm and the CG-IDX algorithm. 

Table 1 and the charts in Figures 4 and 5 show the results of the two algorithms in terms of the 

number of required colors that the two algorithms used to color the graphs from G1 through G19. The results 

also show that for all nineteen graphs from G1 through G19, the GC-IDX algorithm found better solutions 

than the GC-RND algorithm. In two cases, only the number of chromatic classes (colors) generated by the 

GC-RND algorithm are close to those generated by the GC-IDX algorithm – these are the cases for graphs 

G14 and G17. For graph G14, the GC-IDX algorithm generated a solution where 174 colors were needed to 

color the graph. Accordingly, the GC-RND algorithm found a very close solution, where 175 colors were 

needed to color the graph (i.e., only one color more than the colors the GC-IDX algorithm used). In all other 

cases, the GC-IDX algorithm found solutions that were better than those found by the GC-RND algorithm. 

The difference in the number of colors varies between 4 and 12, with graphs G1 and G16 having a difference 

of 4 colors and graph G13 having a difference of 12 colors as shown in Figure 5. However, Figures 4 and 5 

show that as the number of edges in the graph increases, which is a consequence of the graph density 
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increasing, the GC-RND algorithm begins to generate solutions that are closer to those generated by GC-IDX 

algorithm. From the trend of the obtained results, it can be concluded that for graphs with a higher density, 

for example greater than 70%, the GC-RND algorithm can be successfully used to generate solutions. 

 

 

 
 

Figure 4. The number of colors (left y-axis) generated by the two algorithms at different graph densities 

(right y-axis) 

 

 

 
 

Figure 5. Difference in chromatic classes between the GC (RND) algorithm and the CG (IDX) algorithm 

 

 

The chart in Figure 4 shows another trend, which is related to the number of required colors that the 

two algorithms used in finding a solution. When increasing the density of the graph, for example for values 

greater than 85%, the number of required colors increases significantly, and this is true for both algorithms - 

GC-IDX algorithm and GC-RND algorithm. However, the number of colors needed to color the vertices of a 

graph, even at a density of 95% does not exceed more than half the number of vertices in the same graph, 

since 394/1000=0.394. This is an important result of how increasing the density of the graph affects the 

number of chromatic classes generated by the algorithms. It is known that for a complete graph, i.e., at 100% 

density, the number of colors required to color a graph equal to the number of vertices of that graph. This 

means that when the density of the graph changes between 95% and 100%, the number of colors needed to 

color the graph increases significantly. This is exactly what the results presented in Table 2. It can also be 

seen that at high values of the graph density parameter, both algorithms generate identical solutions, such as 

the results obtained for graphs with density above 97%. 

The chart in Figure 6 illustrates how increasing the number of edges (and thus the graph density) 

impacts the execution time of the two algorithms. The execution time of the GC-RND algorithm is 
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significantly longer than that of the GC-IDX algorithm. This difference varies: for example, in graph G1, 

which has the lowest density, the difference is the largest, while in graph G19, which has the highest density, 

the difference is the smallest. However, for each run of the GC-RND algorithm, 100 iterations are performed, 

and the iteration that generates the best solution is selected. The times presented in Table 1 include the 

execution time of all 100 iterations. This means that the actual time for a single execution of the algorithm is, 

on average, 100 times less. The complexity of both algorithms is quadratic, primarily depending on the 

number of vertices in the graph, and to a lesser extent on its density, i.e., the number of edges. This is 

illustrated in Figure 6, where a significant increase in the number of edges, and thus the graph's density, 

results in the execution time of both algorithms changing insignificantly and linearly, with only a very small 

increment. 

 

 

 
 

Figure 6. Comparison of the execution times of both algorithms 

 

 

4. CONCLUSION 

This paper discusses a study related to the graph labeling (coloring) problem. Various scientific 

analyses, methods, and algorithms related to the graph labeling (coloring) problem were discussed. In this 

paper, two approximate algorithms for solving the graph vertex coloring problem were implemented and 

presented. The declarations of the basic data structures used by the algorithms, including one-dimensional 

and two-dimensional arrays, were also presented. The program codes of both heuristic algorithms were 

presented and analyzed in detail. When conducting the experiments, the operating system's ability to work in 

multitasking mode was specifically considered. Accordingly, six runs of both algorithms were conducted for 

each of the 24 analyzed graphs. The average execution times from these runs were calculated and presented 

in Tables 1 and 2. For the solutions generated by the GC-IDX algorithm, identical results were obtained in all 

runs. These results are also presented in Table 1 and Table 2. In contrast, the GC-RND algorithm produced 

different results across the six runs. Table 1 and Table 2 present the best results generated for each graph 

across all runs. 

The results of this experiment show that, for graphs G1 – G19, the GC-IDX algorithm generated 

better solutions than those generated by the GC-RND algorithm in most cases. In only two cases did the GC-

RND algorithm generate solutions that were comparable to those produced by the GC-IDX algorithm. The 

results indicate another trend: as the graph density exceeds 85%, the number of required colors increases 

significantly for both algorithms. However, even at a density of 95%, the number of colors required to color 

the vertices of a graph does not exceed half the number of vertices in the graph. This is an important finding 

that demonstrates how increasing the graph's density affects the number of chromatic classes generated by 

the algorithms. As the graph density increases from 95% to 100%, the number of colors required to color the 

graph rises significantly. However, for graph density values above 97%, both algorithms generate identical 

solutions. The complexity of both algorithms is quadratic, primarily depending on the number of vertices in 

the graph and, to a lesser extent, on its density, i.e., the number of edges. The results indicate that with a 

significant increase in graph density, i.e., a substantial increase in the number of edges, the execution time of 

both algorithms changes insignificantly and almost linearly, with only a very small increment. 

 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Influence of the graph density on approximate algorithms for … (Velin Kralev) 

4721 

FUNDING INFORMATION 

This research was conducted without financial support from external sources. 

 

 

AUTHOR CONTRIBUTIONS STATEMENT 

This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author 

contributions, reduce authorship disputes, and facilitate collaboration. 

 

Name of Author C M So Va Fo I R D O E Vi Su P Fu 

Velin Kralev ✓ ✓  ✓ ✓ ✓   ✓ ✓  ✓ ✓ ✓ 

Radoslava Kraleva ✓ ✓ ✓ ✓  ✓  ✓ ✓ ✓ ✓  ✓ ✓ 

 

C :  Conceptualization 

M :  Methodology 

So :  Software 

Va :  Validation 

Fo :  Formal analysis 

I :  Investigation 

R :  Resources 

D : Data Curation 

O : Writing - Original Draft 

E : Writing - Review & Editing 

Vi :  Visualization 

Su :  Supervision 

P :  Project administration 

Fu :  Funding acquisition 

 

 
 

CONFLICT OF INTEREST STATEMENT 

 Authors state no conflict of interest. 

 

 

DATA AVAILABILITY 

 The data that support the findings of this study are available from the corresponding author, VK, 

upon reasonable request. 
 

 

REFERENCES 
[1] S. Slamin, N. O. Adiwijaya, M. A. Hasan, D. Dafik, and K. Wijaya, “Local super antimagic total labeling for vertex coloring of 

graphs,” Symmetry, vol. 12, no. 11, p. 1843, Nov. 2020, doi: 10.3390/sym12111843. 

[2] T. Emden-Weinert, S. Hougardy, and B. Kreuter, “Uniquely colourable graphs and the hardness of colouring graphs of large 
girth,” Combinatorics, Probability and Computing, vol. 7, no. 4, pp. 375–386, Dec. 1998, doi: 10.1017/S0963548398003678. 

[3] A. Punitha and G. Jayaraman, “Computation of total chromatic number for certain convex polytope graphs,” Journal of Applied 

Mathematics and Informatics, vol. 42, no. 3, pp. 567–582, 2024, doi: 10.14317/jami.2024.567. 
[4] S. Nicoloso and U. Pietropaoli, “Vertex-colouring of 3-chromatic circulant graphs,” Discrete Applied Mathematics, vol. 229, pp. 

121–138, Oct. 2017, doi: 10.1016/j.dam.2017.05.013. 

[5] M. R. Garey, D. S. Johnson, and L. Stockmeyer, “Some simplified NP-complete graph problems,” Theoretical Computer Science, 
vol. 1, no. 3, pp. 237–267, Feb. 1976, doi: 10.1016/0304-3975(76)90059-1. 

[6] F. Lehner and S. M. Smith, “On symmetries of edge and vertex colourings of graphs,” Discrete Mathematics, vol. 343, no. 9,  

p. 111959, Sep. 2020, doi: 10.1016/j.disc.2020.111959. 
[7] D. S. Malyshev and O. I. Duginov, “A complete complexity dichotomy of the edge-coloring problem for all sets of -edge 

forbidden subgraphs,” Journal of Applied and Industrial Mathematics, vol. 17, no. 4, pp. 791–801, Sep. 2023, doi: 

10.1134/S1990478923040099. 
[8] V. Kralev and R. Kraleva, “An analysis between different algorithms for the graph vertex coloring problem,” International 

Journal of Electrical and Computer Engineering, vol. 13, no. 3, pp. 2972–2980, 2023, doi: 10.11591/ijece.v13i3.pp2972-2980. 

[9] S. Ghosal and S. C. Ghosh, “Expected polynomial-time randomized algorithm for graph coloring problem,” Discrete Applied 

Mathematics, vol. 354, pp. 108–121, 2024, doi: 10.1016/j.dam.2023.08.001. 

[10] C. López-Ramírez, J. E. Gutiérrez Gómez, and G. De Ita Luna, “Building a maximal independent set for the vertex-coloring 

problem on planar graphs,” Electronic Notes in Theoretical Computer Science, vol. 354, pp. 75–89, 2020, doi: 
10.1016/j.entcs.2020.10.007. 

[11] Z. Huanping, Z. Peijin, L. Jingwen, and S. Huojie, “Novel algorithm for adjacent vertex-distinguishing edge coloring of large-

scale random graphs,” Journal of Engineering Science and Technology Review, vol. 14, no. 3, pp. 69–75, 2021, doi: 
10.25103/jestr.143.08. 

[12] P. T. Lima, E. J. van Leeuwen, and M. van der Wegen, “Algorithms for the rainbow vertex coloring problem on graph classes,” 

Theoretical Computer Science, vol. 887, pp. 122–142, Oct. 2021, doi: 10.1016/j.tcs.2021.07.009. 
[13] K. Kanahara, K. Katayama, and E. Tomita, “Speeding-up construction algorithms for the graph coloring problem,” IEICE 

Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E105.A, no. 9, p. 2021DMP0011, 

Sep. 2022, doi: 10.1587/transfun.2021DMP0011. 
[14] R. Martín-Santamaría, M. López-Ibáñez, T. Stützle, and J. M. Colmenar, “On the automatic generation of metaheuristic 

algorithms for combinatorial optimization problems,” European Journal of Operational Research, vol. 318, no. 3, pp. 740–751, 

2024, doi: 10.1016/j.ejor.2024.06.001. 
[15] K. H. Alnafisah, “Enhancing algorithmic techniques for streamlined complex graph structures in big data visualization,” 

Engineering, Technology and Applied Science Research, vol. 15, no. 2, pp. 21159–21165, 2025, doi: 10.48084/etasr.9740. 

[16] U. Fatima, S. Hina, and M. Wasif, “Analysis of community groups in large dynamic social network graphs through fuzzy 
computation,” Systems and Soft Computing, vol. 7, 2025, doi: 10.1016/j.sasc.2025.200239. 

[17] T. Karthick, F. Maffray, and L. Pastor, “Polynomial cases for the vertex coloring problem,” Algorithmica, vol. 81, no. 3,  

pp. 1053–1074, Mar. 2019, doi: 10.1007/s00453-018-0457-y. 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 5, October 2025: 4714-4722 

4722 

[18] M. Chudnovsky, T. Karthick, P. Maceli, and F. Maffray, “Coloring graphs with no induced five-vertex path or gem,” Journal of 

Graph Theory, vol. 95, no. 4, pp. 527–542, 2020, doi: 10.1002/jgt.22572. 
[19] M. Zaker, “A new vertex coloring heuristic and corresponding chromatic number,” Algorithmica, vol. 82, no. 9, pp. 2395–2414, 

Sep. 2020, doi: 10.1007/s00453-020-00689-4. 

[20] D. Goyal and R. Jaiswal, “Tight FPT approximation for constrained k-center and k-supplier,” Theoretical Computer Science,  
vol. 940, pp. 190–208, Jan. 2023, doi: 10.1016/j.tcs.2022.11.001. 

[21] S. Fujita, S. Kitaev, S. Sato, and L.-D. Tong, “On properly ordered coloring of vertices in a vertex-weighted graph,” Order,  

vol. 38, no. 3, pp. 515–525, Oct. 2021, doi: 10.1007/s11083-021-09554-7. 
[22] Y. Uchida, K. Yajima, and K. Haraguchi, “Recycling solutions for vertex coloring heuristics,” Journal of the Operations 

Research Society of Japan, vol. 64, no. 3, pp. 184–202, 2021, doi: 10.15807/jorsj.64.184. 

[23] K. Oshiro and N. Oyamaguchi, “Palettes of Dehn colorings for spatial graphs and the classification of vertex conditions,” Journal 
of Knot Theory and Its Ramifications, vol. 30, no. 03, p. 2150015, Mar. 2021, doi: 10.1142/S0218216521500152. 

[24] J. Mangaiyarkkarasi, J. S. Revathy, and S. Mehta, “Introduction to graph theory,” in Neural Networks and Graph Models for 

Traffic and Energy Systems, IGI Global, 2025, pp. 65–82. 
[25] M. Jonckheere and M. Sáenz, “Asymptotic optimality of degree-greedy discovering of independent sets in configuration model 

graphs,” Stochastic Processes and their Applications, vol. 131, pp. 122–150, 2021, doi: 10.1016/j.spa.2020.09.009. 

[26] F. Bonomo-Braberman et al., “Better 3-coloring algorithms: Excluding a triangle and a seven vertex path,” Theoretical Computer 
Science, vol. 850, pp. 98–115, Jan. 2021, doi: 10.1016/j.tcs.2020.10.032. 

[27] G. S. Terci and B. Boz, “Coloring dynamic graphs with a similarity and pool-based evolutionary algorithm,” IEEE Access,  

vol. 13, pp. 38054–38075, 2025, doi: 10.1109/ACCESS.2025.3546108. 

 

 

BIOGRAPHIES OF AUTHORS 

 

 

Velin Kralev     is an associate professor of computer science at the Faculty of 

Mathematics and Natural Sciences, South-West University, Blagoevgrad, Bulgaria. He 

defended his Ph.D. thesis in 2010. His research interests include database systems 

development, optimization problems of the scheduling theory, graph theory, and  

component-oriented software engineering. He can be contacted at email: 

velin_kralev@swu.bg. 

  

 

Radoslava Kraleva     is an associate professor of computer science at the Faculty 

of Mathematics and Natural Sciences, South-West University “Neofit Rilski”, Blagoevgrad, 

Bulgaria. She defended her Ph.D. thesis “Acoustic-Phonetic Modeling for Children’s Speech 

Recognition in Bulgarian” in 2014. Her research interests include child-computer interaction, 

speech recognition, mobile app development and computer graphic. She is an editorial board 

member and reviewer of many journals. She can be contacted at email: rady_kraleva@swu.bg. 

 

 

https://orcid.org/0000-0002-7780-8281
https://scholar.google.com/citations?user=HtajJP4AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57196329191
https://www.webofscience.com/wos/author/record/E-7738-2014
https://orcid.org/0000-0003-3322-7298
https://scholar.google.com/citations?user=dIYw8HgAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57200286826
https://www.webofscience.com/wos/author/record/1319014

