
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 15, No. 5, October 2025, pp. 4714~4722

ISSN: 2088-8708, DOI: 10.11591/ijece.v15i5.pp4714-4722  4714

Journal homepage: http://ijece.iaescore.com

Influence of the graph density on approximate algorithms

for the graph vertex coloring problem

Velin Kralev, Radoslava Kraleva
Department of Informatics, South-West University “Neofit Rilski”, Blagoevgrad, Bulgaria

Article Info ABSTRACT

Article history:

Received Aug 14, 2024

Revised Apr 14, 2025

Accepted Jul 3, 2025

 This research explores two heuristic algorithms designed to efficiently solve

the graph coloring problem. The implementation codes for both algorithms

are provided for better understanding and practical application. The

experimental methodology is thoroughly discussed to ensure clarity and

reproducibility. The execution times of the algorithms were measured by

running the test applications six times for each analyzed graph. The results

indicate that the first algorithm generally produced better solutions than the

second. In only two instances did the first algorithm produce solutions

comparable to those of the second. The results reveal another trend: as the

graph density exceeds 85%, the number of required colors increases

significantly for both algorithms. However, even at a density of 95%, the

number of colors required to color the graph's vertices does not exceed half

the total number of vertices. As the graph density increases from 95% to

100%, the number of colors required to color the graph rises significantly.

However, when the graph density exceeds 97%, both algorithms produce

identical solutions.

Keywords:

Chromatic number

Graph coloring

Graph density

Graph theory

Greedy algorithm

This is an open access article under the CC BY-SA license.

Corresponding Author:

Velin Kralev

Department of Informatics, Faculty of Mathematics and Natural Science, South-West University

66 Ivan Michailov str., 2700 Blagoevgrad, Bulgaria

Email: velin_kralev@swu.bg

1. INTRODUCTION

Informally, the labeling (or coloring) of a graph's vertices can be described as assigning each vertex

a specific label (or color). The goal of this process is to assign labels (colors) such that no two adjacent

vertices share the same label (color). The labels (or colors) assigned to the vertices are elements of a finite

set, with each vertex receiving exactly one of these elements. A collection of vertices assigned the same label

(color) is known as a chromatic (or color) class. If c-number sets are formed, i.e., classes can define a graph

as c-colorable. Natural numbers from 1 through c are usually used to denote these chromatic classes. For a

graph coloring to be valid, every pair of adjacent vertices (i.e., vertices connected by an edge) must be

assigned different labels (colors). Formally and in general, it can be defined that when a graph is colored

acceptably (correctly) for example with c colors, then it is c-colorable. An acceptable coloring of a graph

always exists. If a graph has n vertices, each vertex can be assigned a unique color, resulting in exactly n

chromatic classes. This will certainly be an acceptable labeling (or coloring) of the given graph. With this

coloring scheme, no two vertices will share the same label (or color), regardless of whether they are

connected by an edge [1], [2].

The smallest possible number of chromatic classes in which the vertices of a given graph can be

distributed is called the optimal coloring of the graph and is denoted by χ(G). If a graph is not complete then

χ(G) is certainly less than the number of vertices of the given graph, i.e., χ(G) < n. If it is found that for a

https://creativecommons.org/licenses/by-sa/4.0/
mailto:velin_kralev@swu.bg

Int J Elec & Comp Eng ISSN: 2088-8708 

 Influence of the graph density on approximate algorithms for … (Velin Kralev)

4715

graph G, χ(G)=c, then this graph is c-chromatic. The correct (acceptable) coloring of a c-color graph is the

grouping of the vertices of that graph into c sets, the vertices in each of these sets being unrelated to each

other but may be (and usually are) connected vertices of different sets. If graph G' is a subgraph of a graph G,

then any acceptable coloring of the graph G will also be an acceptable coloring of the graph G'. Moreover,

the chromatic index of a graph G' is less than or at most equal to the chromatic index of a graph G [3], [4].

The problem of labeling (coloring) vertices (in the field of graph theory) is an NP-hard problem [5]

and is still actively studied [6]–[9]. Various approaches, methods, and algorithms for solving this problem

continue to be actively researched in scientific literature. For instance, the maximal independent set for the

vertex-coloring problem on planar graphs [10], the adjacent vertex-distinguishing edge coloring [11], the

rainbow vertex coloring problem [12], and many others. Different methods of the problem use various

algorithms [13], [14], approaches [15]–[17] and techniques [18], [19]. Other methods are used to find a

solution to such problems in the field of graph theory [20]. Many other more detailed and in-depth analyzes

of this problem are discussed in [21]–[23].

Any complete graph that does not contain parallel edges and loops can be colored with exactly |V| of

number of colors, where |V| is the number of vertices in this graph. This is because in every complete graph

for every pair of vertices there is an edge that connects these vertices. Also, in every complete graph, every

vertex is connected (by an edge) to every other vertex. Therefore, the chromatic index of any complete graph

is equal to the number of vertices in that graph. Because of this statement, it can be concluded that if a graph

has its complete subgraph, then the chromatic index of this graph will be at least equal (or greater) to the

number of vertices that form the complete subgraph in the given graph. It is also known that in each graph

that has its complete subgraph, it is possible for the chromatic index of this graph to be greater (but not less)

than the number of vertices forming the complete subgraph [24].

In this paper, some results obtained after the execution of two modified versions of the greedy

algorithm used to solve the problem of labeling (coloring) the vertices of a graph – Greedy coloring

algorithm (GCA) [25] are presented and analyzed. The first version of the greedy algorithm is classical and

the initial arrangement of the vertices does not change when it is executed. With this modification, the

vertices are labeled (colored) in the order in which they were added to the graph - i.e., by index (greedy

coloring algorithm based on the index ordering – GC-IDX). The second variant of the greedy algorithm is

implemented as the initial order of the vertices is changed, but in a random arrangement way, i.e. a random

arrangement of vertices is generated, one from all possible ones (which are exactly n!). After this step, the

vertices of the graph are labeled (colored) according to the generated order of vertices – i.e., randomly

(greedy coloring algorithm based on the random ordering - GC-RND). Both variants of the greedy algorithm

are approximate, and thus, it is not guaranteed that either modification will find the optimal solution for

labeling (coloring) the graph's vertices using the fewest labels (colors) possible. When solving NP-hard

problems with large input data, only approximate algorithms can be used, since they can generate at least a

close to the optimal solution and at an acceptable time, for example in the order of seconds to few minutes.

Other algorithms for solving specific variants of the graph vertex labeling (coloring) problem are also known

and discussed in other publications [26], [27].

2. RESEARCH METHOD

This section shows and discusses the source codes of both algorithms GC-IDX and GC-RND

algorithms. Both algorithms are approximate and solve the graph vertex coloring problem approximately. For

both algorithms – GC-IDX and GC-RND, some parameters, dynamic arrays and matrices need to be declared

in advance. They are presented in Figure 1.

01 var

02 │ NumberOfVertices: Integer;

03 │ ArrayOfColors: array of TColor;

04 │ MinimalColors, RandomCount: Integer;

05 │ BestMinimalColors, BestIteration: Integer;

06 │ AdjacencyMatrix: array of array of Integer;

Figure 1. Source code of preliminary declarations

The NumberOfVertices parameter stores the number of vertices in the graph. The ArrayOfColors

array is used by both algorithms. Each item of this dynamic structure contains an item of type TColor with

which the given vertex of the graph is colored. Both algorithms (CG-IDX and CG-RND) change the values

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 5, October 2025: 4714-4722

4716

of these items. The MinimalColors parameter is aggregated and is used by the algorithms in the solution

search loop. Each graph is represented by an adjacency matrix (line 6), which is used by both algorithms.

Each item [u, v] of the matrix shows whether vertices with indices u and v are adjacent or not.

The GreedyColoringIDX procedure implements the first approximate method for labeling (coloring)

graph vertices. The source code of this procedure is shown in Figure 2. This procedure also uses some

additional parameters – CurrentColor, V, Vertex and AcceptableSolution. The CurrentColor parameter holds

the number of one of the colors used. Parameter V is used when iterating the adjacency matrix when

searching for the neighbors of the given vertex. The AcceptableSolution parameter indicates whether the

given vertex has been successfully colored with any of the available colors.

01 procedure GreedyColoringIDX;

02 begin

03 │ var AcceptableSolution: Boolean := False;

04 │ var V := 0; var Vertex := 0; var CurrentColor := 0;

05 │ MinimalColors := 0;

06 │ for Vertex := 1 to NumberOfVertices do

07 │ begin

08 │ │ CurrentColor := 0;

09 │ │ while not AcceptableSolution do

10 │ │ begin

11 │ │ │ CurrentColor := CurrentColor + 1;

12 │ │ │ AcceptableSolution := True;

13 │ │ │ for V := 1 to NumberOfVertices do

14 │ │ │ begin

15 │ │ │ │ if ((AdjacencyMatrix[Vertex][V] > 0) and

16 │ │ │ │ (ArrayOfColors[V]=CurrentColor)) then

17 │ │ │ │ begin

18 │ │ │ │ │ AcceptableSolution := False;

19 │ │ │ │ │ Break;

20 │ │ │ │ end;

21 │ │ │ end;

22 │ │ end;

23 │ │ ArrayOfColors[Vertex] := CurrentColor;

24 │ │ if (MinimalColors < CurrentColor) then

25 │ │ MinimalColors := CurrentColor;

26 │ end;

27 end;

Figure 2. Source code of the GreedyColoringIDX procedure

The parameters MinimalColors, V, Vertex and CurrentColor are set to 0 in the beginning of the

GreedyColoringIDX procedure (rows 4 and 5). The procedure checks which of the current colors can be used

to color the given vertex (through a for-loop started on row 6). Finding the color with the smallest possible

index to be used for coloring is realized by a while-loop (rows 09 - 22). Just before the execution of the loop,

the CurrentColor parameter is set to 0 (row 08). In line 11, the CurrentColor parameter is incremented by 1,

which means that on the first iteration of the loop, this parameter will be set to 1. Through the for loop

(executed between rows 11-21), it is checked whether any of the neighboring (adjacent) vertices of the

current vertex (parameter Vertex) is not already colored with the color CurrentColor. If this is not the case,

then the current vertex is colored with CurrentColor. The execution of the for loop can be prematurely

terminated if a vertex which is adjacent to the current one and is already colored with the CurrentColor is

found. If this happens, the AcceptableSolution parameter is set to False before the loop is terminated. In this

situation, the coloring of the current vertex with the CurrentColor is impossible, and the procedure executes a

new iteration of the while loop and increasing the index of the current color by 1 (row 11). Execution of the

while loop (rows 09 - 22) continues until an acceptable (possible) color is found for the current vertex. In this

case, the parameter AcceptableSolution will be set to True (on row 12 before starting the for loop). The value

of the CurrentColor parameter is stored in the array ArrayOfColors in the item associated with the parameter

Vertex (row 23). The value of the CurrentColor parameter is copied to the MinimalColors parameter only if

the value of the CurrentColor parameter is greater than the value of the MinimalColors parameter.

When the value of the MinimalColors parameter is increased by one, it means that the available

colors are not enough to color the current vertex and a new color needs to be added, which is done by

increasing by one the value of the MinimalColors parameter. The execution of the for loop (lines 06 – 26)

ends only when all the vertices in the graph are colored, and in such a way that no pair of adjacent vertices

Int J Elec & Comp Eng ISSN: 2088-8708 

 Influence of the graph density on approximate algorithms for … (Velin Kralev)

4717

are colored with the same color. After the execution of the GreedyColoringIDX procedure, the

MinimalColors parameter stores the minimum number of colors needed to color the given graph, according

to the implementation of the algorithm constructed in this way.

The GreedyColoringRND procedure implements the second approximate method for coloring graph

vertices. The source code of this procedure is shown in Figure 3. This procedure also uses some additional

parameters – BestMinimalColors, BestIteration and RandomCount. The BestMinimalColors parameter holds

the minimal number of colors needed to color the graph vertices. This parameter has a different purpose than

the MinimalColors parameter, which contains the minimum number of colors required when running the

current GreedyColoringIDX procedure. In contrast to this parameter, the BestMinimalColors parameter

contains the minimum number of colors to color the graph after executing several GreedyColoringIDX

procedures. In contrast to this parameter, the BestMinimalColors parameter contains the minimum number of

colors to color the graph after running the GreedyColoringIDX procedure several times. The number of these

calls is determined by the RandomCount parameter, which is initialized when the GreedyColoringRND

procedure is started. Accordingly, the BestIteration parameter stores which call the GreedyColoringIDX

procedure found the best solution, information about which is stored in the BestMinimalColors parameter.

The essence of the GreedyColoringRND procedure consists in the successive generation of different

(random) permutations of the vertices of the graph, based on which, in the next step, these vertices will be

colored according to this order by the GreedyColoringIDX procedure. The random order of the vertices is

generated by the for loop (lines 07 – 12), starting from the last vertex for which a new index of another vertex

is chosen (randomly) with which the current one is exchanged (line 11). In the next step, a new (random)

index is chosen for the penultimate vertex, which is exchanged with some vertex from those before it. This

process is repeated until all vertices up to the first have been randomly swapped. After the new order is

generated, the procedure GreedyColoringIDX is called, which colors the vertices of the graph in the thus

generated suborder. When the GreedyColoringIDX procedure is executed, the number of colors needed to

color all vertices of the graph is calculated. This count is stored in the MinimalColors parameter, which is

compared to the best solution found from a previous iteration of the algorithm. If the current solution is better

(i.e. the MinimalColors parameter has a smaller value than the BestMinimalColors parameter) then the

current solution is stored as the best found so far. Accordingly, the BestIteration parameter stores the

iteration at which this (best) solution was found.

01 procedure GreedyColoringRND;

02 begin

03 │ BestMinimalColors := MaxInt; RandomCount := 100;

04 │ BestIteration := 0;

05 │ for var Iteration := 1 to RandomCount do

06 │ begin

07 │ │ for var V := NumberOfVertices downto 1 do

08 │ │ begin

09 │ │ │ var I := V;

10 │ │ │ var J := Random(V) + 1;

11 │ │ │ var T := I; I := J; J := T; // Swap vertices I and J

12 │ │ end;

13 │ │ GreedyColoringIDX();

14 │ │ if MinimalColors < BestMinimalColors then

15 │ │ begin

16 │ │ │ BestMinimalColors := MinimalColors;

17 │ │ │ BestIteration := Iteration;

18 │ │ end;

19 │ end;

20 end;

Figure 3. Source code of the GreedyColoringRND procedure

3. RESULTS AND DISCUSSION

The results of the experiment will be presented. An analysis between the two approximate methods

will also be presented in terms of the number of minimum colors required to color the test graphs, as well as

the running time of the algorithms. For this study, 24 graphs with 1000 vertices and different numbers of

edges were created. These graphs are undirected and contain no multi-edges (parallel edges or multiple

edges) or loops. The number of edges is determined by the graph density (in percentage) that is set for each

graph. This parameter ranges from 5 to 95 for graphs G1 – G19 and changes in 5 percent increments. For

graphs G20 – G24 this parameter ranges from 96 to 100 and changes in 1 percent increments.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 5, October 2025: 4714-4722

4718

Each graph contains the same number of vertices (1000). The maximum possible number of edges

that a graph with 1000 vertices can contain (without parallel edges and loops) is 1000*(1000-1)/2=499500.

From these edges, a certain percentage of them is randomly selected based on the graph density parameter.

Additional information about the test graphs and the results of the execution of the two algorithms are shown

in Tables 1 and 2. The experimental conditions are: 64-bit Win 11 OS and hardware configuration:

Processor: Intel (R) Core (TM) i5-12450H at 4.40 GHz; RAM: 16 GB, SSD 1000 GB.

Table 1. Results of the approximate algorithms for graphs G1 – G19
Graph

number
Graph Density Edges Greedy Coloring (IDX) Greedy Coloring (RND) Diff in

file name (%) (count) Colors Time (ms) Colors Time (ms) Iteration colors

1 G_1000_24976 5 24 976 15 31 19 2609 17 4

2 G_1000_49950 10 49 950 25 47 31 2625 126 6
3 G_1000_74926 15 74 926 35 63 41 2656 42 6

4 G_1000_99900 20 99 900 45 76 53 2672 131 8

5 G_1000_124876 25 124 876 55 78 66 2688 209 11
6 G_1000_149850 30 149 850 66 79 75 2703 153 9

7 G_1000_174826 35 174 826 77 81 85 2718 127 8

8 G_1000_199800 40 199 800 86 93 94 2734 72 8
9 G_1000_224776 45 224 776 99 109 108 2735 91 9

10 G_1000_249750 50 249 750 113 110 124 2750 103 11

11 G_1000_274726 55 274 726 128 112 139 2751 24 11
12 G_1000_299700 60 299 700 141 125 152 2797 197 11

13 G_1000_324676 65 324 676 157 127 169 2798 46 12

14 G_1000_349650 70 349 650 174 156 175 2813 81 1
15 G_1000_374626 75 374 626 195 157 204 2828 28 9

16 G_1000_399600 80 399 600 222 172 226 2875 73 4

17 G_1000_424576 85 424 576 255 188 256 2905 62 1
18 G_1000_449550 90 449 550 293 203 301 2906 158 8

19 G_1000_474526 95 474 526 384 248 394 2922 94 10

Table 2. Results of the approximate algorithms for graphs G20 – G24
Graph

number

Graph Density Edges Greedy Coloring (IDX) Greedy Coloring (RND) Diff in

file name (%) (count) Colors Time (ms) Colors Time (ms) Iteration colors

20 G_1000_479520 96 479 520 419 265 422 2975 65 3

21 G_1000_484516 97 484 516 461 287 460 3052 27 1
22 G_1000_489510 98 489 510 856 304 856 3196 41 0

23 G_1000_494506 99 494 506 902 352 902 3351 34 0

24 G_1000_499500 100 499 500 1000 407 1000 3828 79 0

In Tables 1 and 2, the “Graph number” column shows the number of the test graph. The “Graph file

name” column shows the name of the file where the information for the corresponding test graph is stored.

The “Density (%)” column shows the density of the test graph in terms of the number of edges that this graph

contains out of all the possible edges that this graph would have if it were complete. Accordingly, the column

“Edge count” shows the number of these edges. The “Color” columns show the number of required colors

that each of the algorithms used to color the corresponding graph. Accordingly, the “Time (ms)” columns

show the time for each of the two algorithms to generate a solution. The “Iteration” column shows the best

iteration of the GC-RND algorithm where the algorithm generated the best solution out of a total of 250

iterations performed. The “Diff in colors” column shows the difference in chromatic classes between the GC-

RND algorithm and the CG-IDX algorithm.

Table 1 and the charts in Figures 4 and 5 show the results of the two algorithms in terms of the

number of required colors that the two algorithms used to color the graphs from G1 through G19. The results

also show that for all nineteen graphs from G1 through G19, the GC-IDX algorithm found better solutions

than the GC-RND algorithm. In two cases, only the number of chromatic classes (colors) generated by the

GC-RND algorithm are close to those generated by the GC-IDX algorithm – these are the cases for graphs

G14 and G17. For graph G14, the GC-IDX algorithm generated a solution where 174 colors were needed to

color the graph. Accordingly, the GC-RND algorithm found a very close solution, where 175 colors were

needed to color the graph (i.e., only one color more than the colors the GC-IDX algorithm used). In all other

cases, the GC-IDX algorithm found solutions that were better than those found by the GC-RND algorithm.

The difference in the number of colors varies between 4 and 12, with graphs G1 and G16 having a difference

of 4 colors and graph G13 having a difference of 12 colors as shown in Figure 5. However, Figures 4 and 5

show that as the number of edges in the graph increases, which is a consequence of the graph density

Int J Elec & Comp Eng ISSN: 2088-8708 

 Influence of the graph density on approximate algorithms for … (Velin Kralev)

4719

increasing, the GC-RND algorithm begins to generate solutions that are closer to those generated by GC-IDX

algorithm. From the trend of the obtained results, it can be concluded that for graphs with a higher density,

for example greater than 70%, the GC-RND algorithm can be successfully used to generate solutions.

Figure 4. The number of colors (left y-axis) generated by the two algorithms at different graph densities

(right y-axis)

Figure 5. Difference in chromatic classes between the GC (RND) algorithm and the CG (IDX) algorithm

The chart in Figure 4 shows another trend, which is related to the number of required colors that the

two algorithms used in finding a solution. When increasing the density of the graph, for example for values

greater than 85%, the number of required colors increases significantly, and this is true for both algorithms -

GC-IDX algorithm and GC-RND algorithm. However, the number of colors needed to color the vertices of a

graph, even at a density of 95% does not exceed more than half the number of vertices in the same graph,

since 394/1000=0.394. This is an important result of how increasing the density of the graph affects the

number of chromatic classes generated by the algorithms. It is known that for a complete graph, i.e., at 100%

density, the number of colors required to color a graph equal to the number of vertices of that graph. This

means that when the density of the graph changes between 95% and 100%, the number of colors needed to

color the graph increases significantly. This is exactly what the results presented in Table 2. It can also be

seen that at high values of the graph density parameter, both algorithms generate identical solutions, such as

the results obtained for graphs with density above 97%.

The chart in Figure 6 illustrates how increasing the number of edges (and thus the graph density)

impacts the execution time of the two algorithms. The execution time of the GC-RND algorithm is

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 5, October 2025: 4714-4722

4720

significantly longer than that of the GC-IDX algorithm. This difference varies: for example, in graph G1,

which has the lowest density, the difference is the largest, while in graph G19, which has the highest density,

the difference is the smallest. However, for each run of the GC-RND algorithm, 100 iterations are performed,

and the iteration that generates the best solution is selected. The times presented in Table 1 include the

execution time of all 100 iterations. This means that the actual time for a single execution of the algorithm is,

on average, 100 times less. The complexity of both algorithms is quadratic, primarily depending on the

number of vertices in the graph, and to a lesser extent on its density, i.e., the number of edges. This is

illustrated in Figure 6, where a significant increase in the number of edges, and thus the graph's density,

results in the execution time of both algorithms changing insignificantly and linearly, with only a very small

increment.

Figure 6. Comparison of the execution times of both algorithms

4. CONCLUSION

This paper discusses a study related to the graph labeling (coloring) problem. Various scientific

analyses, methods, and algorithms related to the graph labeling (coloring) problem were discussed. In this

paper, two approximate algorithms for solving the graph vertex coloring problem were implemented and

presented. The declarations of the basic data structures used by the algorithms, including one-dimensional

and two-dimensional arrays, were also presented. The program codes of both heuristic algorithms were

presented and analyzed in detail. When conducting the experiments, the operating system's ability to work in

multitasking mode was specifically considered. Accordingly, six runs of both algorithms were conducted for

each of the 24 analyzed graphs. The average execution times from these runs were calculated and presented

in Tables 1 and 2. For the solutions generated by the GC-IDX algorithm, identical results were obtained in all

runs. These results are also presented in Table 1 and Table 2. In contrast, the GC-RND algorithm produced

different results across the six runs. Table 1 and Table 2 present the best results generated for each graph

across all runs.

The results of this experiment show that, for graphs G1 – G19, the GC-IDX algorithm generated

better solutions than those generated by the GC-RND algorithm in most cases. In only two cases did the GC-

RND algorithm generate solutions that were comparable to those produced by the GC-IDX algorithm. The

results indicate another trend: as the graph density exceeds 85%, the number of required colors increases

significantly for both algorithms. However, even at a density of 95%, the number of colors required to color

the vertices of a graph does not exceed half the number of vertices in the graph. This is an important finding

that demonstrates how increasing the graph's density affects the number of chromatic classes generated by

the algorithms. As the graph density increases from 95% to 100%, the number of colors required to color the

graph rises significantly. However, for graph density values above 97%, both algorithms generate identical

solutions. The complexity of both algorithms is quadratic, primarily depending on the number of vertices in

the graph and, to a lesser extent, on its density, i.e., the number of edges. The results indicate that with a

significant increase in graph density, i.e., a substantial increase in the number of edges, the execution time of

both algorithms changes insignificantly and almost linearly, with only a very small increment.

Int J Elec & Comp Eng ISSN: 2088-8708 

 Influence of the graph density on approximate algorithms for … (Velin Kralev)

4721

FUNDING INFORMATION

This research was conducted without financial support from external sources.

AUTHOR CONTRIBUTIONS STATEMENT

This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author

contributions, reduce authorship disputes, and facilitate collaboration.

Name of Author C M So Va Fo I R D O E Vi Su P Fu

Velin Kralev ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Radoslava Kraleva ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

C : Conceptualization

M : Methodology

So : Software

Va : Validation

Fo : Formal analysis

I : Investigation

R : Resources

D : Data Curation

O : Writing - Original Draft

E : Writing - Review & Editing

Vi : Visualization

Su : Supervision

P : Project administration

Fu : Funding acquisition

CONFLICT OF INTEREST STATEMENT

 Authors state no conflict of interest.

DATA AVAILABILITY

 The data that support the findings of this study are available from the corresponding author, VK,

upon reasonable request.

REFERENCES
[1] S. Slamin, N. O. Adiwijaya, M. A. Hasan, D. Dafik, and K. Wijaya, “Local super antimagic total labeling for vertex coloring of

graphs,” Symmetry, vol. 12, no. 11, p. 1843, Nov. 2020, doi: 10.3390/sym12111843.

[2] T. Emden-Weinert, S. Hougardy, and B. Kreuter, “Uniquely colourable graphs and the hardness of colouring graphs of large
girth,” Combinatorics, Probability and Computing, vol. 7, no. 4, pp. 375–386, Dec. 1998, doi: 10.1017/S0963548398003678.

[3] A. Punitha and G. Jayaraman, “Computation of total chromatic number for certain convex polytope graphs,” Journal of Applied

Mathematics and Informatics, vol. 42, no. 3, pp. 567–582, 2024, doi: 10.14317/jami.2024.567.
[4] S. Nicoloso and U. Pietropaoli, “Vertex-colouring of 3-chromatic circulant graphs,” Discrete Applied Mathematics, vol. 229, pp.

121–138, Oct. 2017, doi: 10.1016/j.dam.2017.05.013.

[5] M. R. Garey, D. S. Johnson, and L. Stockmeyer, “Some simplified NP-complete graph problems,” Theoretical Computer Science,
vol. 1, no. 3, pp. 237–267, Feb. 1976, doi: 10.1016/0304-3975(76)90059-1.

[6] F. Lehner and S. M. Smith, “On symmetries of edge and vertex colourings of graphs,” Discrete Mathematics, vol. 343, no. 9,

p. 111959, Sep. 2020, doi: 10.1016/j.disc.2020.111959.
[7] D. S. Malyshev and O. I. Duginov, “A complete complexity dichotomy of the edge-coloring problem for all sets of -edge

forbidden subgraphs,” Journal of Applied and Industrial Mathematics, vol. 17, no. 4, pp. 791–801, Sep. 2023, doi:

10.1134/S1990478923040099.
[8] V. Kralev and R. Kraleva, “An analysis between different algorithms for the graph vertex coloring problem,” International

Journal of Electrical and Computer Engineering, vol. 13, no. 3, pp. 2972–2980, 2023, doi: 10.11591/ijece.v13i3.pp2972-2980.

[9] S. Ghosal and S. C. Ghosh, “Expected polynomial-time randomized algorithm for graph coloring problem,” Discrete Applied

Mathematics, vol. 354, pp. 108–121, 2024, doi: 10.1016/j.dam.2023.08.001.

[10] C. López-Ramírez, J. E. Gutiérrez Gómez, and G. De Ita Luna, “Building a maximal independent set for the vertex-coloring

problem on planar graphs,” Electronic Notes in Theoretical Computer Science, vol. 354, pp. 75–89, 2020, doi:
10.1016/j.entcs.2020.10.007.

[11] Z. Huanping, Z. Peijin, L. Jingwen, and S. Huojie, “Novel algorithm for adjacent vertex-distinguishing edge coloring of large-

scale random graphs,” Journal of Engineering Science and Technology Review, vol. 14, no. 3, pp. 69–75, 2021, doi:
10.25103/jestr.143.08.

[12] P. T. Lima, E. J. van Leeuwen, and M. van der Wegen, “Algorithms for the rainbow vertex coloring problem on graph classes,”

Theoretical Computer Science, vol. 887, pp. 122–142, Oct. 2021, doi: 10.1016/j.tcs.2021.07.009.
[13] K. Kanahara, K. Katayama, and E. Tomita, “Speeding-up construction algorithms for the graph coloring problem,” IEICE

Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E105.A, no. 9, p. 2021DMP0011,

Sep. 2022, doi: 10.1587/transfun.2021DMP0011.
[14] R. Martín-Santamaría, M. López-Ibáñez, T. Stützle, and J. M. Colmenar, “On the automatic generation of metaheuristic

algorithms for combinatorial optimization problems,” European Journal of Operational Research, vol. 318, no. 3, pp. 740–751,

2024, doi: 10.1016/j.ejor.2024.06.001.
[15] K. H. Alnafisah, “Enhancing algorithmic techniques for streamlined complex graph structures in big data visualization,”

Engineering, Technology and Applied Science Research, vol. 15, no. 2, pp. 21159–21165, 2025, doi: 10.48084/etasr.9740.

[16] U. Fatima, S. Hina, and M. Wasif, “Analysis of community groups in large dynamic social network graphs through fuzzy
computation,” Systems and Soft Computing, vol. 7, 2025, doi: 10.1016/j.sasc.2025.200239.

[17] T. Karthick, F. Maffray, and L. Pastor, “Polynomial cases for the vertex coloring problem,” Algorithmica, vol. 81, no. 3,

pp. 1053–1074, Mar. 2019, doi: 10.1007/s00453-018-0457-y.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 5, October 2025: 4714-4722

4722

[18] M. Chudnovsky, T. Karthick, P. Maceli, and F. Maffray, “Coloring graphs with no induced five-vertex path or gem,” Journal of

Graph Theory, vol. 95, no. 4, pp. 527–542, 2020, doi: 10.1002/jgt.22572.
[19] M. Zaker, “A new vertex coloring heuristic and corresponding chromatic number,” Algorithmica, vol. 82, no. 9, pp. 2395–2414,

Sep. 2020, doi: 10.1007/s00453-020-00689-4.

[20] D. Goyal and R. Jaiswal, “Tight FPT approximation for constrained k-center and k-supplier,” Theoretical Computer Science,
vol. 940, pp. 190–208, Jan. 2023, doi: 10.1016/j.tcs.2022.11.001.

[21] S. Fujita, S. Kitaev, S. Sato, and L.-D. Tong, “On properly ordered coloring of vertices in a vertex-weighted graph,” Order,

vol. 38, no. 3, pp. 515–525, Oct. 2021, doi: 10.1007/s11083-021-09554-7.
[22] Y. Uchida, K. Yajima, and K. Haraguchi, “Recycling solutions for vertex coloring heuristics,” Journal of the Operations

Research Society of Japan, vol. 64, no. 3, pp. 184–202, 2021, doi: 10.15807/jorsj.64.184.

[23] K. Oshiro and N. Oyamaguchi, “Palettes of Dehn colorings for spatial graphs and the classification of vertex conditions,” Journal
of Knot Theory and Its Ramifications, vol. 30, no. 03, p. 2150015, Mar. 2021, doi: 10.1142/S0218216521500152.

[24] J. Mangaiyarkkarasi, J. S. Revathy, and S. Mehta, “Introduction to graph theory,” in Neural Networks and Graph Models for

Traffic and Energy Systems, IGI Global, 2025, pp. 65–82.
[25] M. Jonckheere and M. Sáenz, “Asymptotic optimality of degree-greedy discovering of independent sets in configuration model

graphs,” Stochastic Processes and their Applications, vol. 131, pp. 122–150, 2021, doi: 10.1016/j.spa.2020.09.009.

[26] F. Bonomo-Braberman et al., “Better 3-coloring algorithms: Excluding a triangle and a seven vertex path,” Theoretical Computer
Science, vol. 850, pp. 98–115, Jan. 2021, doi: 10.1016/j.tcs.2020.10.032.

[27] G. S. Terci and B. Boz, “Coloring dynamic graphs with a similarity and pool-based evolutionary algorithm,” IEEE Access,

vol. 13, pp. 38054–38075, 2025, doi: 10.1109/ACCESS.2025.3546108.

BIOGRAPHIES OF AUTHORS

Velin Kralev is an associate professor of computer science at the Faculty of

Mathematics and Natural Sciences, South-West University, Blagoevgrad, Bulgaria. He

defended his Ph.D. thesis in 2010. His research interests include database systems

development, optimization problems of the scheduling theory, graph theory, and

component-oriented software engineering. He can be contacted at email:

velin_kralev@swu.bg.

Radoslava Kraleva is an associate professor of computer science at the Faculty

of Mathematics and Natural Sciences, South-West University “Neofit Rilski”, Blagoevgrad,

Bulgaria. She defended her Ph.D. thesis “Acoustic-Phonetic Modeling for Children’s Speech

Recognition in Bulgarian” in 2014. Her research interests include child-computer interaction,

speech recognition, mobile app development and computer graphic. She is an editorial board

member and reviewer of many journals. She can be contacted at email: rady_kraleva@swu.bg.

https://orcid.org/0000-0002-7780-8281
https://scholar.google.com/citations?user=HtajJP4AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57196329191
https://www.webofscience.com/wos/author/record/E-7738-2014
https://orcid.org/0000-0003-3322-7298
https://scholar.google.com/citations?user=dIYw8HgAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57200286826
https://www.webofscience.com/wos/author/record/1319014

