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ABSTRACT

Accurate localization in land vehicle navigation systems is highly dependent on
the global navigation satellite system (GNSS). However, GNSS signal outages
are common in urban areas due to obstacles such as tall buildings and tunnels.
To mitigate these issues, digital road maps and dead reckoning sensors, like
odometers, are often integrated to provide continuous vehicle localization. This
paper presents a robust estimation method to solve the fusion problem of GNSS,
odometer, and digital road map measurements in the presence of GNSS out-
ages. The proposed solution utilizes a marginalized particle filter (MPF), which
combines the robustness of particle filtering with the efficiency of a Kalman
filter to handle the linear and non-linear parts of the state and/or measurement
equations, respectively. When GNSS signals are unavailable, the MPF fuses
all available pseudo-range data with odometric and map information to enhance
vehicle positioning. The effectiveness of the proposed method is demonstrated
using real-world data in an urban transportation scenario, highlighting signifi-
cant performance improvements and real-time application potential.
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1. INTRODUCTION
In recent decades, the use of positioning and navigation technologies has significantly increased, es-

pecially in transportation applications. The global navigation satellite system (GNSS) is a fundamental com-
ponent for many navigation systems due to its long-term stability and global coverage [1], [2]. However, in
dense urban environments, GNSS performance can be compromised due to poor satellite visibility and signal
blockages caused by tall buildings and tunnels. These challenges necessitate the use of supplementary sensors
to ensure continuous and accurate vehicle positioning [3], [4]

Dead-reckoning (DR) sensors, such as odometers, are commonly used to provide continuous navi-
gation support. Integrated into antilock braking systems (ABS), odometers generate digital pulses for each
wheel revolution, allowing for distance estimation [5]. Additionally, digital road maps can enhance positioning
accuracy through a process known as map-matching, which aligns the vehicle’s estimated position with the
road network. Many methods have been developed to solve the map-matching problem, employing topologic
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and geometric techniques such as point-to-point, point-to-arc, and curve-to-curve matching [6], [7]. However,
these methods are susceptible to errors in dense road networks.

The extended Kalman filter (EKF) is frequently used to integrate GNSS data with measurements from
odometers and low-cost inertial navigation systems (INS). However, the EKF’s reliance on linearization can
introduce significant estimation errors over time, and its assumption of Gaussian noise may not hold in non-
linear, non-Gaussian contexts [8], [9]. In contrast, the unscented Kalman filter (UKF) uses a sampling technique
to handle non-linearities and provides a more accurate approximation of the system’s dynamic model, albeit at
a higher computational cost [11], [10].

To address these limitations, recent advancements have focused on sequential Monte Carlo (SMC)
methods, including the marginalized particle filter (MPF). These methods are capable of handling non-linear
models and non-Gaussian statistics without requiring a linearization stage, as the EKF does. The MPF, in
particular, is designed to reduce computational cost by applying particle filtering to the non-linear components
of the state while using a Kalman filter for linear components [12]. This hybrid approach not only maintains
high accuracy but also ensures computational efficiency, making it suitable for real-time applications [13].
Recent studies have shown the effectiveness of these methods in integrating GNSS with inertial navigation
systems (INS) and other sensors to enhance vehicle localization accuracy in urban environments [14], [15].

This paper presents a marginalized particle filter (MPF) for land vehicle navigation in urban environ-
ments, where partial or total GNSS outages are common. During partial GNSS outages, the proposed method
uses available pseudo-range data, even when fewer than four satellites are visible. In the event of total GNSS
outages, the algorithm also incorporates dead-reckoning sensors and a digital road map to provide continuous
localization. The MPF effectively solves the multi-sensor fusion problem by sequentially integrating measure-
ments from all sensors to estimate the vehicle’s 3D position. The proposed approach demonstrates significant
improvements in both accuracy and computational efficiency, particularly in challenging urban environments.

2. VEHICLE SYSTEM AND SENSOR MEASUREMENT MODELING
2.1. Vehicle dynamics modeling

To address this estimation problem, we use a state model. The state vector Xk = (xk, yk, zk, v
x
k , v

y
k ,

vzk, γ
x
k , γ

y
k , γ

z
k)

T includes the 3-D components of the vehicle’s position x, y, z, velocity v, and acceleration γ.
The vehicle’s dynamics are described using kinematic equations. Focusing on the x-component, we can write
the equations as (1):

γx
k = γx

k−1 + wγx
k

vxk = vxk−1 + γx
k−1∆t+ wvx

k
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(1)

where (wγx
k
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) are additive white Gaussian noise terms, and ∆t represents the sampling interval. These
equations can be expressed in matrix form as (2):γx
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The same set of equations applies to the y and z components, allowing us to describe the overall vehicle
dynamics with the following equation:

Xk = FXk−1 +Wk (3)

where Wk ∼ N(0, Qk) is a white Gaussian noise vector, and F is the dynamic transition matrix of the system,
structured as:

F =

 Fx 03×3 03×3

03×3 Fy 03×3

03×3 03×3 Fz
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where each block Fx, Fy , and Fz corresponds to the dynamic transition sub-matrices for the x, y, and z
components, respectively.

2.2. Measurement equations without satellite masking
When GPS data is available, the estimator incorporates these measurements to enhance the state es-

timation. The GPS measurement vector ZGPS
k = (xGPS

k , yGPS
k , zGPS

k )T is related to the state vector through the
measurement function hGPS and can be expressed as (4):

ZGPS
k = hGPS(Xk) + V GPS

k (4)

where hGPS is the measurement function and V GPS
k is an additive white Gaussian noise with zero mean and

covariance matrix RGPS
k .

2.3. Measurement equations with partial GPS outages
When the number of available satellite signals is insufficient to compute a complete GPS position (i.e.,

fewer than 4 satellites), the filter utilizes the limited pseudorange measurements to compute the GPS position
and estimate the vehicle’s kinematic characteristics. For example, if only three satellites are visible, the GPS
pseudorange equations Prjk for the j-th satellite can be expressed as follows, neglecting various additional
biases related to signal propagation (ionospheric and tropospheric delays):

Prjk =

√
(xk − xs,j

k )2 + (yk − ys,jk )2 + (zk − zs,jk )2 + cδk (5)

where (xk, yk, zk) are the coordinates of the receiver’s position, (xs,j
k , ys,jk , zs,jk ) are the coordinates of the j-th

satellite, δk is the clock offset, and c is the speed of light.
The receiver’s position and clock offset (xk, yk, zk, δk) are unknown parameters that must be esti-

mated. Typically, computing the receiver’s location directly would require more than four pseudorange mea-
surements. However, the proposed method leverages the available pseudorange measurements to estimate a
partial GPS position ZPGPS

k using the predicted state vector components and a non-linear least squares method
to solve the system of equations.

Pseudorange measurements are initially computed in the earth-centered, earth-fixed (ECEF) coordi-
nate system and then transformed into the Universal Transverse Mercator (UTM) coordinate system to be fused
with odometric and map measurements. The partial GPS position can be described as (6):

ZPGPS
k = hPGPS(Xk) + V PGPS

k (6)

where hPGPS is the non-linear measurement function used in the pseudorange equations, and V PGPS
k represents

Gaussian white noise with zero mean and covariance RPGPS
k .

2.4. Odometer measurement equations
When GPS data is unavailable, the differential odometry sensor is used to estimate the vehicle’s

position [16]. This sensor provides measurements ZODO
k of the elementary displacements of the left and right

wheels [17]. The measurement vector is given by (7):

ZODO
k =

(
∆DR

k

∆DL
k

)
= hODO(Xk) + V ODO

k (7)

where (∆DR
k ) and (∆DL

k ) are the elementary displacements of the right and left wheels, respectively, and
θODO
k is the vehicle’s orientation relative to the horizontal axis. The function hODO represents the odometry

measurement function, and V ODO
k is an additive white Gaussian noise with zero mean and covariance matrix

RODO
k . The displacements for the right and left wheels can be expressed as (8):

∆DR
k =

√
(∆DR,x

k )2 + (∆DR,y
k )2

rR
+ V ODO,R

k

∆DL
k =

√
(∆DL,x

k )2 + (∆DL,y
k )2

rL
+ V ODO,L

k

(8)
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where rL and rR are the radii of the left and right wheels, respectively, and (∆DL,x
k ,∆DL,y

k ) and (∆DR,x
k ,

∆DR,y
k ) are the vehicle’s left and right displacements along the x and y components for each wheel. The

relationship between these displacements and the components of the state vector can be expressed for both
wheels as (9), (10):
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e

2
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−
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2

(
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−
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∥ vk−1 ∥
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2
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−
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k = vyk−1∆k +
e

2

(
vxk

∥ vk ∥
−
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) (10)

where e is the distance between the left and right wheels. The odometry measurements provide an estimate of
the vehicle’s speed and direction, allowing for corrections to the vehicle’s dynamics. However, it is important
to note that these sensors can accumulate errors over time, leading to potential inaccuracies in the vehicle’s
estimated location.

2.5. Road map measurement equations
When GPS data is unavailable, the proposed filter also integrates measurements from a digital road

map to enhance vehicle positioning. This road map is part of a geographic information system (GIS) and
consists of roads represented by two-dimensional arcs composed of piecewise segments. Each segment is
defined by a finite number of nodes, marking endpoints or transitions between segments. These nodes provide
essential location coordinates (xMAP

k , y MAP
k ) and orientation θMAP

k , which contribute to improving the vehicle’s
estimated location. The integration of the digital road map is modeled as a measurement equation, with the
cartographic database serving as a set of potential candidates for this equation, thus enhancing positioning
accuracy [18]. The road map measurement vector ZMAP

k = (xMAP
k , yMAP

k , θMAP
k ) includes the coordinates and

direction of a segment and it is given by (11):

ZMAP
k = hMAP(Xk) + V MAP

k (11)

where hMAP is the map measurement function, V MAP
k is an additive white Gaussian noise with zero mean and

covariance matrix RMAP
k . The equations for the map measurement function are:

xMAP
k = xk + V MAP,x

k

yMAP
k = yk + V MAP,y

k

θMAP
k = tan−1

(
vyk
vxk

)
+ V MAP,θ

k

(12)

This modeling allows for the direct integration of road map errors and uncertainties via the map measurement
noise statistics. Improved map measurements, combined with accurate cartographic data, significantly enhance
vehicle localization, particularly in urban environments where GPS coverage is poor.

3. MARGINALIZED PARTICLE FILTERING
Marginalized particle filtering (MPF), also known as Rao-Blackwellization filtering is an advanced

technique used to address the limitations of standard particle filters, especially in applications involving high-
dimensional state spaces and nonlinear models. By marginalizing out the linear components of the state, MPF
improves computational efficiency and estimation accuracy [19]. This section details the MPF approach and
its application to vehicle navigation.
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3.1. State model and marginalization
To address this estimation problem, we use a state model where the state vector is partitioned into

components Λk (position and velocity) and Γk (acceleration). This partitioning allows us to treat the linear
and non-linear components separately, improving the computational efficiency of the filtering process. The
dynamics and measurement equations can be expressed as (13):

Λk = FΛΛΛk−1 + FΛΓΓk−1 +WΛ
k

Γk = FΓΓΓk−1 +WΓ
k

Zk = h(Λk) + Vk

(13)

where WΛ
k and WΓ

k are Gaussian white noises with zero mean and covariance matrices QΛ
k and QΓ

k , respec-
tively. The measurement noise Vk is also a Gaussian white noise with zero mean and covariance matrix Rk.
The matrices FΛΛ, FΛΓ, and FΓΓ represent the relationships between the state components.

3.2. Proposed solution
Solving the dynamic state estimation requires determining the probability density function (PDF) of

the state vector Xk, based on the observed measurements:

P (Xk|Zk) = P (Λk,Γk|Zk) (14)

where Sk denotes the sequence {S0, . . . , Sk}, with S representing X,Z,Λ,Γ. Using Bayes’ theorem, this PDF
can be decomposed into two parts, corresponding to the linear and non-linear components of the state vector:

P (Xk|Zk) = P (Γk|Λk, Zk)P (Λk|Zk) = P (Γk|Λk)P (Λk|Zk) (15)

The probability density function P (Λk|Zk), which addresses the non-linear component of the problem, is
estimated using a particle filter. The recursive update is governed by Bayes’ theorem:

P (Λk|Zk) =
P (Zk|Λk)P (Λk|Λk−1)

P (Zk|Zk−1)
P (Λk−1|Zk−1) (16)

The calculation of the conditional PDF P (Γk|Λk) is performed under the assumption of known pose at each
time instant. Let Yk = Λk − FΓΓΛk−1. The dynamics equations for the state model are linear and Gaussian:{

Γk = FΓΓΓk−1 +WΓ
k ,

Yk = FΛΓΓk−1 +WΛ
k .

(17)

Given the linear Gaussian nature of these equations, the optimal solution for acceleration estimation is provided
by the Kalman filter.
The proposed algorithm for marginalized particle filtering involves the following steps:
a. Filter initialization parameters: The N particles Xi

0 are initialized according to the priori distribution:

Λi
0 ∼ P (Λ0), Γi

0 ∼ P (Γ0), P0|0 = P0 (18)

b. Prediction: At each time step k, the Kalman filter estimates the 3-D acceleration parameters for each particle
using all available measurements up to k − 1.

Γi
k|k−1 = FΓΓΓi

k−1|k−1 (19)

Pk|k−1 = FΓΓPk−1|k−1(F
ΓΓ)T +QΓ

k (20)

c. Particles propagation: The particles are propagated through the state space based on the dynamics equation
(13), generating N random sequences according to the distribution P (WΛ

k ).

Λi
k = FΛΛΛi

k−1 + FΛΓΓi
k|k−1 +WΛ

k (21)

WΛ
k ∼ N

(
0, FΛΓPk|k−1(F

ΛΓ)T +QΛ
k

)
(22)
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d. Updated estimation: The N Kalman filters are updated with the measurement using Λi
k and Λi

k−1:

Y i
k = Λi

k − FΓΓΛi
k−1 (23)

Kk = Pk|k−1(F
ΛΓ)T

(
FΛΓPk|k−1(F

ΛΓ)T +QΛ
k

)−1
(24)

Γi
k|k = Γi

k|k−1 +Kk

(
Y i
k − FΛΓΓi

k|k−1

)
(25)

Pk|k = Pk|k−1 −KkF
ΛΓPk|k−1 (26)

e. Weighting: The weighting step evaluates the probability associated with each particle using Bayes’ rule.
This step employs the available measurement Zk at time k to compute the weight of each particle, pik,
according to (27):

pik =

exp

(
−1

2
∥Zk − h(Λi

k)∥2Rk

)
∑N

j=1 exp

(
−1

2
∥Zk − h(Λj

k)∥
2
Rk

)pik−1 (27)

where ∥ · ∥2R = (·)TR−1(·). R is the measurement noise covariance matrix.
This step calculates the weight of each particle by leveraging the available observation Zk at time k.

Depending on the GPS data availability, three main scenarios are considered:
− GPS measurements available: in this scenario, the filter utilizes GPS measurements exclusively to determine

the vehicle’s parameters, such as acceleration, velocity, and position. GPS data is considered available when
pseudo-range measurements from at least four satellites are accessible. In such cases, the weights of the
particles are determined based on the available GPS data to update the particle states accurately.

pik =

exp

(
−1

2
∥ZGPS

k − hGPS(Λi
k)∥2RGPS

)
∑N

j=1 exp

(
−1

2
∥ZGPS

k − hGPS(Λj
k)∥

2
RGPS

)pik−1 (28)

− Limited GPS availability: in the event of partial GPS outages, the available GPS pseudorange measures
are used even if fewer than four satellites are in view, as they still contain positioning information. To
avoid indetermination, the predicted localization parameters of the state vector are used to compute a GPS
measurement using the filter. For instance, if only three GPS satellites are available, the pseudo-range
equation can be expressed as (29):

Prjk =

√
(xs,j

k − x̂k|k−1)2 + (ys,j
k − yk)2 + (zs,jk − zk)2 + cδt (29)

where j = {1, 2, 3} and x̂k|k−1 represents the prediction of xk calculated by the filter. To compute a
partial GPS position ZPGPS

k , the predicted position x̂k|k−1 from the proposed filter, along with the least
squares method, can be used when at least three pseudo-range measurements are available. When only
two satellites are visible, the method requires using two components of the predicted state vector, ŷk|k−1

and ẑk|k−1, to solve the GPS navigation problem. This approach ensures that even with limited satellite
visibility, the system can still provide accurate positioning by effectively leveraging the available data.
During periods of limited GPS availability, the filter also integrates odometer measurements along with data
from digital road maps to estimate displacement. The primary challenge is aligning the previously predicted
state with the map data. This involves matching the predicted location of the vehicle with the road network
on the map.
There are several solutions to address the multitarget multisensor tracking problem. These solutions include
probabilistic data association and multiple hypothesis tracking techniques [20], similitude function mini-
mization, as well as approaches that utilize fuzzy logic and belief theory [21]. Moreover, Markov decision
processes with reinforcement learning offer robustness against noisy data [22].
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In our solution, we have opted for a probabilistic approach that employs the Mahalanobis distance as a
coherence metric [23], [24]. This metric is calculated based on the 2-D predicted map position: ẐMAP

k|k =

hMAP
(
X̂i

k|k

)
and each available map attribute, which includes the coordinates of nodes and the directions

of segments: ZMAP
m , m = {1, ...,mmax}. These normalized distances dm = (ZMAP

m , ẐMAP
k|k) are computed by

using every node and considering the following two possible directions of the road:

d1,m = min
m

[
(ZMAP,1

m − ẐMAP
k/k)

T (P̃ MAP
k/k)

−1
(
ZMAP,1

m − ẐMAP
k/k)

]
(30)

d2,m = min
m

[
(ZMAP,2

m − ẐMAP
k/k)

T (P̃ MAP
k/k)

−1 (ZMAP,2
m − ẐMAP

k/k)
]

(31)

where ZMAP,1
m = (xMAP

m , yMAP
m , θMAP

m ) and ZMAP,2
m = (xMAP

m , yMAP
m , θMAP

m + π)

P̃ MAP
k/k represents the error covariance of the two-dimensional predicted map measurement.

The most appropriate map data is identified by minimizing a distance criterion based on a predefined thresh-
old, i.e.,

ZMAP∗
k = arg min

ZMAP
[d1m, d2m] ≤ S

Assuming that each sensor’s measurement noise is independent, the log-likelihood function of equation 27
can be reformulated as follows:

∥ZPGPS
k − hPGPS(Λi

k)∥2RPGPS + ∥ZODO
k − hODO(Λi

k)∥2RODO + ∥ZMAP∗
k − hMAP(Λi

k)∥2RMAP

f. Estimation: The global estimated state is traditionally provided by aggregating the weighted contributions
of all particles. This can be mathematically expressed as (32):

X̂k|k =

N∑
i=1

pik

[(
Λi
k

)T
,
(
Γi
k|k

)T]T
=

N∑
i=1

pikX
i
k (32)

g. Resampling and redistribution: To address the degeneracy problem in the marginalized particle filter, a
resampling procedure is employed, duplicating particles with high weights and discarding those with low
weights. We use multinomial resampling, where particles are selected based on their weights compared to
a uniform distribution [0, 1] [25]. The number of effective particles Neff is kept below a threshold Nthresh,
calculated as (33):

N eff =
1∑N

i=1

(
pik
)2 < N thresh (33)

After resampling, the weights are normalized to pik = 1
N .

4. EXPERIMENTAL RESULTS
In this section, we present experimental results to quantify the advantages of the proposed marginal-

ized particle filter (MPF) method. The experiments were conducted using a vehicle driven in an urban area in
Calais, France. The test vehicle was equipped with a Novatel GPS receiver, which calculates the GPS posi-
tioning. The measurement campaign was conducted in an urban environment over a duration of 323 seconds.
The vehicle reached a maximum speed of 16.5 meters/second (approximately 60 kilometers/hour). The speed
varied significantly due to frequent accelerations and decelerations, as well as stop-and-go situations caused by
traffic lights and pedestrians. There were two periods where GPS positioning was unavailable due to an insuf-
ficient number of visible satellites: the first period lasted 40 seconds and the second lasted 30 seconds. During
these periods, the estimator used the available GPS pseudorange measurements, odometric measurements, and
the road network database as shown in Figure 1.

The sensors used in the experiments have the following parameters: The GPS provides the vehi-
cle’s 3-D location at a frequency of 1 Hz when available, with an error covariance matrix set to RGPS =

Marginalized particle filtering for reliable land vehicle navigation in ... (Abdelkabir Lahrech)
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[10 0 0; 0 10 0; 0 0 10]. The tropospheric delay is corrected using the Goodman and Goad model
and the ionospheric delay is adjusted with the Klobuchar model [26]. The odometer measurements are taken at
a frequency of 1 Hz with an associated error covariance matrix given by RODO = [0.5 0; 0 0.5]. This matrix
accounts for primary sources of error, such as wheel skids and variations in wheel pressure.

The road map is discretized into a 5 meter grid, with an error covariance matrix of RMAP = [25 0 0; 0
25 0; 0 0 0.1 (rad)]. This discretization accounts for quantization noise and facilitates matching within a
wider neighborhood. The algorithm utilizes a total of N = 1000 particles with a resampling threshold set at

Nthresh =
2N

3
.

Figure 1. Reference trajectory of the vehicle

4.1. Vehicle trajectory estimation
This section, present the results of the proposed MPF applied to experimental data from a real urban

transport scenario, focusing particularly on periods of GPS masking. During these periods, the filter utilizes
the available pseudo-range data, odometric measurements, and the digital road map database to estimate the
vehicle’s trajectory. To evaluate the effectiveness of our MPF algorithm, we calculated the trajectory error
using data collected from the differential GPS (DGPS) sensor.

Figures 2 and 3 show the velocity and acceleration errors in 3D for the vehicle, respectively. The
GPS signal is partially unavailable, lasting 40 seconds, between t = 104 and t = 144. We observe that
the joint use of the Dead Reckoning sensor and the digital road map database effectively bounds the velocity
errors and accurately corrects the vehicle’s dynamic characteristics, even when GPS data is unavailable. The
MPF approach effectively constrains the kinematic errors when odometric data, partial GPS measurements,
and digital road map data are used together.

4.2. Estimation of vehicle positioning
The marginalized particle filter shows enhanced accuracy in estimating the vehicle’s 3-D positioning

error, as illustrated in Figure 4. During the first period of partial GPS masking, which lasts 40 s from t = 104
s to t = 144 s, and the second period of partial GPS masking, lasting 30 s from t = 249 s to t = 279 s, the
combination of partial GPS measurements, the DR sensor, and the digital road map data proves effective. This
combination helps to bound the positioning errors and accurately corrects the vehicle’s dynamic characteristics
even in the absence of full or partial GPS data.

Int J Elec & Comp Eng, Vol. 15, No. 3, June 2025: 2735-2747
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Figure 2. Vehicle’s 3-D acceleration error across
time

Figure 3. Vehicle’s 3-D velocity error across
time

Figure 5 illustrates the evolution of the global dilution of precision (GDOP), a key performance crite-
rion for assessing GPS measurement quality, throughout the experiment. GDOP provides a measure of satellite
geometry’s impact on the accuracy of GPS positioning. During GPS outages, indicated by masking, neither
GPS positions nor GDOP values can be calculated. The plot highlights periods of higher GDOP, notably from
t = 150 to t = 228 and t = 255 to t = 273, which correspond to the degraded quality of the 3-D positioning
estimations. This elevated GDOP indicates poor satellite geometry, resulting in less accurate GPS localiza-
tion during these intervals. The figure also presents the visible satellite count during the sequence, providing
additional context for interpreting the variations in GDOP.

Figure 4. Vehicle’s 3-D position error across time

During GPS outage periods, we also plotted the time evolution of the Mahalanobis distance, as shown
in Figure 6. The values correspond to the minimum distances calculated from potential candidates. The map-
matching threshold was experimentally set at S = 7.

Figure 7 displays the road network overlaid with various estimated trajectories of the land vehicle on a
2-D map. The estimated paths from different methods are plotted for comparison with the reference trajectory.
The MPF estimated path is shown with red stars, representing the trajectory calculated using the MPF. The
reference path is depicted in green, representing the vehicle’s actual trajectory. The path estimated using dead
reckoning (DR) methods is shown as an orange dotted line.

Marginalized particle filtering for reliable land vehicle navigation in ... (Abdelkabir Lahrech)



2744 ❒ ISSN: 2088-8708

Figure 5. Evolution of GDOP and satellite visibility across time

Figure 6. Map-matching criterion during the GPS outage

Figure 7. Comparison of true and estimated vehicle trajectories
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The comparison reveals that both the MPF and DR-based paths closely follow the reference trajectory.
However, the DR-based path diverges over time due to cumulative errors. In contrast, the MPF path aligns
more accurately with the actual road network. This demonstrates the effectiveness of the map-tuned algorithm
in reducing cumulative odometry errors, particularly during GPS outages. The improvement underscores the
algorithm’s ability to maintain precise vehicle localization by effectively integrating map data with GPS and
DR measurements.

Table 1 provides a detailed summary of the mean errors and standard deviations for 3-D acceleration,
velocity, and positioning during the GPS outages lasting ∆t1 = 40 seconds and ∆t2 = 30 seconds. The
metrics are calculated for both individual outages and the entire period, reflecting the overall performance. The
aggregated results clearly demonstrate that the proposed method consistently maintains superior positioning
accuracy compared to DR-based navigation, particularly during GPS outages.

Table 1. Mean error and standard deviations during GPS masking periods (∆t1 = 40 s and ∆t2 = 30 s)
Error type Mean Standard deviation

∆t1 = 40 s ∆t2 = 30 s Total man ∆t1 = 40 s ∆t2 = 30 s Total Std Dev
3-D Acceleration (m/s2) 1.034810 0.674746 0.920335 0.875011 0.404364 0.712826

3-D Velocity (m/s) 1.702703 1.199478 1.559300 1.513326 0.594067 1.003898
3-D Positioning (m) 4.681527 6.212570 4.051459 2.352561 1.378975 1.970743

5. CONCLUSION
This paper presents a MPF approach to enhance vehicle localization in urban environments where

GNSS outages are frequent. The approach integrates data from GNSS, odometric sensors, and digital road
maps. The MPF efficiently addresses the sensor fusion problem, offering an optimal estimator due to the
separation of state components in the filtering process.

In the absence of GNSS, the method effectively utilizes available pseudorange measurements, odome-
ter data, and road map databases to accurately determine the vehicle’s position. This approach allows for
limiting positioning estimation errors that cannot be managed by odometer sensors alone. The benefits are
demonstrated through a real-world urban scenario, confirming the reliability and effectiveness of the proposed
method in maintaining accurate vehicle positioning when GNSS signals are unavailable. This approach can
be utilized in a variety of transportation contexts, including traveler information systems, surveillance systems,
and driver assistance, ensuring precise and continuous tracking of vehicle fleets.
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