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 Deep learning has transformed medical diagnostics, especially in analyzing 

lung sounds to assess respiratory conditions. Traditional methods like 

computed tomography scans (CT scans) and X-rays are impractical in 

resource-limited settings due to radiation exposure and time consumption, 

while conventional stethoscopes often lead to misdiagnosis due to subjective 

interpretation and environmental noise. This study evaluates deep learning 

models for lung sound classification using the International Conference on 

Biomedical Health Informatics 2017 dataset, comprising 920 annotated 

samples from 126 subjects. Pre-processing includes down sampling, 

segmentation, normalization, and audio clipping, with feature extraction 

techniques like spectrogram and Mel-frequency cepstral coefficients 

(MFCC). The adopted automatic lung sound diagnosis network (ASLD-Net) 

model with triple feature input (time domain, spectrogram, and MFCC) 

achieved the highest accuracy at 97.25%, followed by the dual feature model 

(spectrogram and MFCC) at 95.65%. Single-input models with spectrogram 

and MFCC performed well, while the time domain input alone had the 

lowest accuracy. 
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1. INTRODUCTION 

The necessity for enhanced diagnostics is underscored by the fact that lung diseases, which are 

further exacerbated by COVID-19, continue to be the primary cause of death on a global scale [1], [2]. Over 

14% of fatalities worldwide are caused by pulmonary disorders, including asthma, chronic obstructive 

pulmonary disease (COPD), pneumonia, lung cancer, and tuberculosis [3]. Although traditional tools like CT 

scans and X-rays are useful, they are often time-consuming, entail radiation exposure, and may be 

inaccessible in resource-limited settings [4]. Concerns regarding diagnostic accuracy are raised by the 

imprecise results that conventional stethoscopes frequently produce as a result of subjective interpretation 

and environmental noise [5]. For improved diagnostic accuracy, digital stethoscopes with deep learning 

algorithms convert audio signals to digital format, to provide non-invasive, real-time monitoring [6], [7]. By 

https://creativecommons.org/licenses/by-sa/4.0/
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precisely extracting and categorizing pulmonary sounds, they enable remote patient monitoring and medical 

education [7]. This study evaluates the efficacy in the classification of lung sounds using deep learning with a 

variety of feature inputs, with the objective of enhancing diagnostic accuracy. 

Precise identification of lung sounds is essential for disease diagnosis and patient care. However, 

conventional stethoscopes frequently produce indistinct outcomes due to ambient noise and subjective 

interpretation. The objective of this work is to improve the analysis of lung sounds by employing pre-

processing techniques, extracting relevant features, utilizing deep learning for classification of normal and 

abnormal lung sounds by employing distinct feature inputs. The raw data of lung sounds exhibit 

irregularities, which poses a challenge for direct classification. Pre-processing guarantees consistency, 

facilitating precise feature extraction and classification. In order to enhance the classification efficiency, it is 

necessary to optimize the feature extraction methods due to the intricate nature of respiratory sounds. 

Classifying a wide range of respiratory abnormalities remains challenging due to the quality of the data and 

the importance of the features, despite the existence of numerous deep learning models. This work 

investigates the effectiveness of various types of features utilized in the classification of lung sounds by using 

deep learning. Thorough assessment of these models is crucial in order to identify the most efficient feature 

sets for identifying respiratory problems and incorporating them into clinical practice. 

This paper significantly contributes to lung disease diagnosis by providing an advanced method for 

capturing and analyzing lung sounds using deep learning and digital stethoscopes. It introduces a robust  

pre-processing framework to standardize lung sound data and compares feature extraction methods, including 

Mel-frequency cepstral coefficient (MFCC), spectrograms, and their combinations. A key contribution is the 

development of the automatic lung sound diagnosis network (ALSD-Net), which combines two-dimensional 

and one-dimensional convolutional layers to capture intricate lung sound patterns. Comprehensive evaluation 

highlights the superiority of integrated features, with the triple feature model achieving the highest accuracy. 

These findings demonstrate how deep learning-based digital stethoscopes can enhance non-invasive, real-

time monitoring and remote patient care, especially in resource-limited settings. 

 

 

2. RELATED PREVIOUS STUDIES 

Effective pre-processing is crucial for accurately classifying lung sounds using deep learning 

techniques. Resampling, as done by [8], ensures uniformity across datasets by choosing a sample rate of  

44.1 kHz. In [9], the audio frequency was adjusted to 22 kHz, whereas [10] resampled all recordings at  

4,000 Hz, considering that the primary signal of interest is mostly below 2,000 Hz. Filtering methods, such as 

Gaussian Butterworth filters used by [11], second-order Butterworth bandpass filters utilized by [12], and 

wavelet denoising with high-pass filtering employed by [13], successfully remove unwanted noise and retain 

important signals. For audio clipping techniques, study [10] fit cycles into duration segments of 2.7 s, 

ensuring data consistency and compatibility. Data augmentation methods, such as time stretching and vocal 

tract length perturbation (VTLP), are employed by [9] to increase data quality and diversity. 

Mel-spectrograms and spectrograms obtained using short-time Fourier transform (STFT) are 

essential for examining lung sounds. Mel-spectrograms, as employed by [13] and [14], convert frequency 

components to the Mel scale, providing perceptually significant information for sound analysis. 

STFT spectrograms, as demonstrated by [9] and [10], enable the simultaneous collection of temporal and 

frequency features, which is crucial for accurately classifying respiratory cycles. Spectrogram clipping 

improves processing efficiency by emphasizing important sound features. Mel-frequency cepstral 

coefficients (MFCCs), obtained using FFT and discrete cosine transform (DCT), accurately characterize 

spectrum attributes. Researchers such as [15] and [16], have utilized MFCCs to improve classification 

accuracy by reducing feature correlation and emulating human auditory perception. These techniques 

enhance the quality and comprehensibility of feature representations vital for the analysis and categorization 

of lung sounds. 

Deep learning algorithms have demonstrated encouraging outcomes in categorizing lung sounds. 

Researchers [14] achieved 94% accuracy using a VGGish-stacked bidirectional gated recurrent unit (BiGRU) 

model, focusing on precision, recall, and F1-score. In [11], the ALSD-Net, a convolutional neural network 

(CNN), achieved 94.24% accuracy. Another study [12] integrated a CNN with best discrepancy forest (BDF), 

attaining remarkable performance with 99.94% accuracy and impressive precision, specificity, sensitivity, 

and F1-score metrics. Traditional machine learning methods have also been successful: [8] achieved 99% 

accuracy with fine Gaussian support vector machine (SVM), and [15] obtained 97.45% accuracy with 

gradient boosting. Hybrid models, like the CNN bi-directional long short-term memory (BDLSTM) used by 

[17], achieved 98.26% accuracy, effectively integrating temporal and spatial variables. This research 

highlights significant advancements in AI algorithms for the accurate classification and diagnosis of 

respiratory disorders. 
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3. METHOD 

This study adopts a structured approach to develop a deep learning model for lung sound 

classification. It involves multiple stages, beginning with signal acquisition and followed by pre-processing, 

feature extraction, model development, training, and evaluation. Each stage plays a critical role in ensuring 

the accuracy and reliability of the proposed system, and they are detailed in the following subsections. 

 

3.1.  Lung sound signal acquisition 

The dataset from the International Conference on Biomedical and Health Informatics (ICHBI) 2017 

Challenge is utilized in this study. It is a scientific challenge that took place in 2017, which offers a 

respiratory database and an official score system. A total of 5.5 hours of recordings with a collection of 920 

annotated audio samples from 126 subjects are included in this database [18]. With a total of 6,898 cycles, 

these cycles are further categorized into 3,642 normal cycles, 1,864 containing crackles, 886 containing 

wheezes, and 506 containing both crackles and wheezes. Table 1 shows the lung sound characteristics. 
 

 

Table 1. Lung sound characteristics 
Lung sound Cause Acoustic characteristic Associated disease 

Normal Smooth and continuous airflow through the respiratory 

passages without any abnormal disruptions. 

Frequency range: 

60–600 Hz 

- 

Crackle Explosive opening of small airways or the alveoli, air 

bubble in larger airways. 

Non-musical and explosive 

in nature 
Frequency range: 

350–650 Hz 

Duration: <20 ms 

Interstitial lung fibrosis 

Pneumonia 
COPD 

Bronchiectasis 

Asthma 
Wheeze Airflow limitation and airway narrowing. Frequency range: 

100–1,000 Hz 

Duration: >100 ms 

COPD 

Asthma 

Tumor blocking airway 

 

 

3.2.  Pre-processing 

This study utilizes various pre-processing techniques to prepare lung sound data for classification. 

Initially, down sampling is employed to decrease the sampling rate to 4,000 Hz in order to simplify the 

processing, while continuing to adhere to the guidelines given by the Nyquist theorem [10], [15]. 

Segmentation is the process of dividing recordings into respiratory cycles using annotated start and stop 

times. This results in distinct categories such as normal, crackles, wheezes, and combination of both crackles 

and wheezes. The audio clipping process ensures that all cycle durations are standardized to 2.7 seconds by 

either cropping excess duration from longer cycles or employing zero padding to shorter ones [10]. 

Amplitude normalization ensures consistency by rescaling all signals to the range of (-1, 1) in order to reduce 

variations caused by noise and physiological differences among patients [11]. The purpose of these pre-

processing methods is to improve the consistency and excellence of lung sound data, making it more suitable 

for subsequent deep learning classification models. 

 

3.3.  Feature extraction 

Extracting features from lung sound audio recordings is crucial for generating more manageable and 

useful information. The process involves the careful selection of significant features, streamlining the data, 

and identifying patterns associated with respiratory abnormalities. The selected features for this study consist 

of MFCC and spectrograms. Figure 1 illustrates three signal features plots that show the raw lung sound in 

time domain in Figure 1(a), the MFCC feature in Figure 1(b) and the spectrogram in Figure 1(c).  

 

3.3.1. Mel-frequency cepstral coefficient  

The process of extracting MFCC begins by applying the FFT on signals that have been windowed. 

A Mel-scale filter bank, specifically a triangle bandpass filter bank, is employed to convert the linear 

frequency spectrum into the Mel-frequency scale, replicating the auditory perception of humans. The formula 

employed as (1) [19]:  
 

𝑓𝑚𝑒𝑙 = 2596 ∗ 𝑙𝑜𝑔(1 +
𝑓𝑙𝑖𝑛𝑒𝑎𝑟

700
)                    (1) 

 

where 𝑓𝑚𝑒𝑙  represents frequency in Mel scale and 𝑓𝑙𝑖𝑛𝑒𝑎𝑟  represents frequency in linear scale. Applying a 

logarithmic transformation after filtering decreases the impact of changes in amplitude. Afterwards, the 

logarithmic-scale signal is applied to the DCT in order to calculate the MFCCs. These coefficients quantify 

the amplitude of the spectrum in the time domain. This method improves the representation of essential 

acoustic features for classification tasks. 
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure 1. The lung sound signal, (a) the pre-processed signal in time domain, (b) MFCC feature, and 

(c) spectrogram feature 

 

 

3.3.2. Spectrogram 

Time-varying frequency components of audio signals can be identified by spectrograms, which are 

generated when the STFT transforms windowed portions of the signals into the frequency [20]. It is 

calculated by (2): 

 

𝑋(𝑚, 𝜔) = ∑ 𝑥(𝑛)𝜔(𝑛 − 𝑚)𝑒−𝑗𝜔𝑛∞
𝑛=−∞      (2) 

 

The discrete-time signal is represented by 𝑥(𝑛), the window function, which is usually Gaussian or Hanning, 

is represented by 𝜔(𝑛), the time index is 𝑚, and the angular frequency is indicated by 𝜔. The spectrogram is 

a crucial tool for analyzing complicated, time-varying signals like respiratory cycles because it records how 

the frequency content changes over time by moving the window across the signal and computing the STFT at 

each place. 

 

3.4.  Deep learning classification 

Using sequential CNN architecture designed for both audio and visual data processing, namely, the 

adopted ALSD-Net model offers an advanced method for automated lung sound diagnostics. This model 

involves two-dimensional convolutional layers to extract features from picture representations and one-

dimensional convolutional layers to analyze audio recordings. Seven convolutional layers make up the model 
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architecture. The first four layers each have 16 filters and rectified linear unit (ReLU) activation. To improve 

training efficiency and stability, max-pooling with a pool size of 2 and batch normalization are applied after 

each convolutional layer. With 32 filters apiece, subsequent convolutional layers preserve reliable feature 

extraction at various abstraction levels. In order to avoid overfitting during model training, dropout layers are 

carefully placed after the convolutional and dense layers, with rates of 0.2 and 0.4, respectively. In order to 

generate probabilistic predictions for the 4 types of lungs sounds that the model is targeting, the final layer 

uses a dense layer with SoftMax activation [11]. This architecture highlights the model's ability to identify 

complex patterns in lung sound data. Table 2 and Figure 2 show the hyperparameters set and the architecture 

model for ALSD-Net, respectively.  

 

 

Table 2. Hyperparameters for ALSD-Net model 
Hyperparameter Value 

Loss function Categorical cross-entropy 
Batch size 32 

Epochs 50 

Early stopping patience 10 
Optimizer Adam 

Learning rate 1×10-5 

Activation function ReLU 

 

 

 
 

Figure 2. Structure of ALSD-Net model 

 

 

3.5.  Performance evaluation 

The performance of the ALSD-Net model with distinct sets of feature input is evaluated by using 

important metrics and graphical tools such as learning curves and performance evaluation metrics. The first 

evaluation is the learning curves of the deep learning training and validation process, which illustrate how 

well a model predicts performance over time as a function of training effort, are crucial visual aids in deep 

learning. These curves primarily show the model's accuracy or loss based on the number of training epochs 

and both training and validation datasets. By analyzing these curves, significant details about the model's 

learning and generalization behaviors can be identified [21]. Then, once completed the training and 

validation, performance evaluation metrics that involve accuracy, precision, recall, and F1-score, are 

considered. These metrics provide insights into the strengths and weaknesses of different feature sets. 

Weighted averages of these metrics are computed to fairly compare models across balanced and imbalanced 

datasets. According to [22], assigning smaller weights to classes with more instances and larger weights to 

minority classes ensures a balanced evaluation, considering the influence of instances from all classes. 

 

 

4. RESULTS AND DISCUSSION 

This section presents the results and emphasizes the evaluation of the performance and efficiency of 

the proposed ALSD-Net model in classifying lung sounds. The assessment involves multiple types of lung 

sound features to understand their impact on the model's classification accuracy. These features include time 

domain signals, spectrogram representations, MFCC, dual feature input (a combination of spectrogram and 

MFCC), and triple feature input (a combination of time domain, spectrogram, and MFCC). The analysis aims 

to identify which feature set or combination provides the most effective input for enhancing the model’s 

classification capabilities. 
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4.1.  The adopted ALSD-Net training performance 

The analysis focuses on accuracy and loss curves derived from training and validation phases as 

shown in Table 3. Rapid gains in accuracy are observed in the time domain input, which stabilizes at roughly 

0.90 for training and 0.85 for validation. The associated loss values also show convergence below 0.4 and 

0.5, respectively.  

 

 

Table 3. The training performance 
Feature Accuracy curve Loss curve 

Time 

domain 

  

Spectrogram 

  

MFCC 

  

Spectrogram 

and MFCC 

  

Time 

domain, 

spectrogram 
and MFCC 
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The spectrogram input also shows a faster accuracy increase, stabilizing at values close to 0.95 for 

training and 0.93 for validation, with just small losses between 0.1 and 0.18. Comparable patterns can be seen 

in the MFCC input, with loss values between 0.1 and 0.2 and accuracy values between 0.95 and 0.93. The 

integration of MFCC and spectrogram inputs results in high accuracy, approximately 0.94 for validation and 

almost 0.95 for training, with losses decreasing to about 0.20 and 0.25 for each situation. Specifically, when 

time domain, spectrogram, and MFCC inputs are combined, training and validation peak accuracies are 

approximately 0.98, while loss values are close to 0.10. 

 

4.2.  The adopted ALSD-Net testing performance 

Each feature set was assessed using metrics such as accuracy, precision, recall, and F1-score for 

classifying normal lung sounds, crackles, wheezes, and combination of crackles and wheezes, as shown in 

Table 4. The results show significant differences in performance between various feature inputs. For 

example, the time domain feature demonstrated outstanding precision and recall metrics, reaching its 

maximum accuracy of 95.69% in categorizing normal lung sounds. By comparison, the spectrogram input 

demonstrated exceptional performance in identifying crackles, with a 99.44% accuracy rate, as well as good 

precision and recall ratings for this class. In a similar vein, the MFCC feature set performed admirably, 

achieving a 97.20% classification accuracy for crackles. 

 

 

Table 4. Performance evaluation metrics of the adopted ALSD-Net based on multiple features 
Class Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Time domain feature 

Normal 95.69 88.78 95.70 92.11 

Crackles 94.97 89.47 94.97 92.14 
Wheezes 44.73 85.00 44.74 58.62 

Both (Crackles + Wheezes) 84.12 89.83 84.13 86.89 

Overall Accuracy    88.84 
Spectrogram 

Normal 92.47 98.01 92.47 95.16 

Crackles 99.44 95.15 99.44 97.27 
Wheezes 90.79 76.67 90.79 83.13 

Both (Crackles + Wheezes) 96.83 98.39 96.83 97.6 

Overall Accuracy    94.49 
MFCC 

Normal 92.47 97.45 92.47 94.9 

Crackles 97.20 96.67 97.21 96.94 
Wheezes 90.78 71.13 90.79 79.77 

Both (Crackles + Wheezes) 92.06 96.67 92.06 94.31 

Overall Accuracy    93.48 
Spectrogram + MFCC 

Normal 95.84 95.42 96.73 96.07 

Crackles 99.17 98.89 98.89 98.89 
Wheezes 97.92 83.33 85.53 84.42 

Both (Crackles + Wheezes) 99.58 93.94 98.41 96.12 
Overall Accuracy    95.65 

Time domain + Spectrogram + MFCC 

Normal 97.67 99.17 96.51 97.82 
Crackles 99.57 98.90 99.44 99.17 

Wheezes 97.67 85.71 94.74 90.00 

Both (Crackles + Wheezes) 99.41 96.83 96.83 96.83 
Overall Accuracy    97.25 

 

 

The accuracy was improved overall by combining spectrogram and MFCC inputs, especially when 

identifying combinations of crackles and wheezes, which resulted in a 99.58% accuracy rate. The 

combination of spectrogram, MFCC, and time domain characteristics produced the best overall accuracy of 

97.25%, demonstrating remarkable performance in the classification of wheezes and crackles. These results 

highlight the usefulness of feature integration in improving the lung sound classification accuracy of the 

adopted ALSD-Net, providing important new information for the development of reliable diagnostic 

instruments in respiratory healthcare applications. 

Table 4 also compares the performance of different feature input sets for lung sound classification. 

The time domain input model shows the lowest performance, with an accuracy of 88.84%, precision of 

88.64%, recall of 88.84%, and an F1-score of 87.91%. This indicates its limited ability to capture complex 

patterns, making it the least reliable approach. 

In contrast, the triple feature input model, which combines time domain, spectrogram, and MFCC 

features, achieves the highest performance. It records an accuracy of 97.25%, a precision of 97.40%, recall of 
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97.10%, and an F1-score of 97.22%. This model's superior performance is due to the integration of varied 

features, which enhances its prediction accuracy and reliability. 

The spectrogram and MFCC input models also perform well but not as highly as the triple feature 

model. The spectrogram model achieves an accuracy of 94.49%, precision of 94.95%, recall of 94.49%, and 

an F1-score of 94.61%. Similarly, the MFCC model records an accuracy of 93.48%, precision of 94.28%, 

recall of 93.48%, and an F1-score of 93.71%. These models outperform the time domain model significantly, 

highlighting the advantage of capturing frequency domain information. 

The dual feature input model, combining spectrogram and MFCC features, shows impressive 

performance with an accuracy of 95.65%, precision of 94.85%, recall of 96.21%, and an F1-score of 95.52%. 

This model outperforms the individual spectrogram and MFCC models and closely matches the performance 

of the triple feature model. Integrating different feature types allows for the utilization of complementary 

information, resulting in improved overall performance. 

 

4.3.  Overall results 

Table 5 compares the performance of different feature input sets for lung sound classification. The 

time domain input model shows the lowest performance, with an accuracy of 88.84%, precision of 88.64%, 

recall of 88.84%, and an F1-score of 87.91%. This indicates its limited ability to capture complex patterns, 

making it the least reliable approach. 

In contrast, the triple feature input model, which combines time domain, spectrogram, and MFCC 

features, achieves the highest performance. It records an accuracy of 97.25%, a precision of 97.40%, recall of 

97.10%, and an F1-score of 97.22%. This model's superior performance is due to the integration of varied 

features, which enhances its prediction accuracy and reliability. 

The spectrogram and MFCC input models also perform well but not as highly as the triple feature 

model. The spectrogram model achieves an accuracy of 94.49%, precision of 94.95%, recall of 94.49%, and 

an F1-score of 94.61%. Similarly, the MFCC model records an accuracy of 93.48%, precision of 94.28%, 

recall of 93.48%, and an F1-score of 93.71%. These models outperform the time domain model significantly, 

highlighting the advantage of capturing frequency domain information. 

The dual feature input model, combining spectrogram and MFCC features, shows impressive 

performance with an accuracy of 95.65%, precision of 94.85%, recall of 96.21%, and an F1-score of 95.52%. 

This model outperforms the individual spectrogram and MFCC models and closely matches the performance 

of the triple feature model. Integrating different feature types allows for the utilization of complementary 

information, resulting in improved overall performance. 

The triple feature model incorporating time domain, spectrogram, and MFCC emerged as the top 

performer with an accuracy of 97.25% in this study that assesses various feature inputs for lung sound 

classification. This model shows strong precision and recall metrics and performs well in all categories 

('Normal', 'Crackles', 'Wheezes', and combinations). The time domain model, on the other hand, has the 

lowest accuracy of any model, which is 88.84%, and finds it difficult to distinguish between various lung 

sound abnormalities due to its limited ability to capture intricate frequency and temporal fluctuations. 

In comparison, single-input models such as spectrogram (94.49% accuracy) and MFCC (93.48% 

accuracy) perform better in certain areas. For example, spectrogram is better at capturing frequency data over 

time, while MFCC makes use of spectral features, but it might be less successful at capturing subtle time-

frequency resolutions. These results are confirmed by earlier research, including works by [23] and [24], 

which demonstrate how well spectrogram performs in comparison to MFCC in tasks similar to classification. 

The integration of multiple features in the dual feature model (combining spectrogram and MFCC) 

achieves an accuracy of 95.65%, surpassing single-feature models by leveraging their complementary 

strengths. This method is consistent with research by [25], which showed that merging spectrogram and 

MFCC characteristics increased accuracy when compared to utilizing them separately. All things considered, 

the model's capacity to precisely categorize intricate lung sound patterns is improved by the integration of 

time domain, spectrogram, and MFCC features, which makes it a promising development for respiratory 

healthcare applications. 

 

 

Table 5. Comparison of weighted average across distinct feature input sets 
Feature input Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Time domain 88.84 88.64 88.84 87.91 
Spectrogram 94.49 94.95 94.49 94.61 

MFCC 93.48 94.28 93.48 93.71 

Dual feature input 95.65 94.85 96.21 95.52 
Triple feature input 97.25 97.40 97.10 97.22 
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5. CONCLUSION 

In conclusion, this study systematically evaluated the performance of different feature inputs within 

the adopted ALSD-Net for classifying lung sounds. The triple feature model, combining time domain, 

spectrogram, and MFCC, performed the best with 97.25% accuracy. The time domain model, on the other 

hand, struggled with the intricate frequency and timing patterns in lung sounds, yielding the lowest accuracy 

of 88.84%. While MFCC used spectrum characteristics but struggled with detailed timing, spectrogram 

(94.49% accuracy) and MFCC (93.48% accuracy) were two examples of single-feature models that 

demonstrated strengths in particular areas. Spectrogram was particularly good at capturing time-frequency 

dynamics. 

Furthermore, the research highlights the noteworthy benefit of combining several features, as 

demonstrated by the dual feature model (combining spectrogram and MFCC) that attains a 95.65% accuracy 

rate, utilizing complementary advantages to improve classification capability. The best feature combinations 

for enhancing lung sound classification accuracy are shown by these studies, which advance the field. They 

are consistent with earlier studies showing spectrograms to be more effective than MFCC in comparable 

tasks, confirming the strategy of using feature richness to improve diagnostic precision in respiratory care. To 

further improve and validate these findings for wider clinical applications, future efforts could investigate 

hybrid feature combinations and larger datasets, ultimately enhancing the capabilities of automated lung 

sound analysis systems. 
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