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 A diverse array of diagnostic and detection methods has been developed as a 

result of the advent of Alzheimer’s disease (AD) as a significant global 

health issue. This study employs bio-inspired algorithms, such as the parrot 

optimization algorithm (POA), grey wolf optimizer (GWO), and differential 

evolution (DE), to identify the most effective feature selection techniques for 

AD diagnosis. The predictive accuracy of these algorithms was improved by 

the simple keywords: Alzheimer’s disease optimization classification 

machine learning metaheuristic mentation of the Alzheimer’s disease 

Dataset. This was achieved by integrating a personalized fitness function and 

optimizing parameter settings with decision tree classifiers. To evaluate the 

algorithms’ effectiveness in machine learning models with population sizes 

of 30 and 60, precision, recall, accuracy, and F1-score were evaluated at 5, 

15, and 30 iterations. The gradient boosting and XGBoost classifiers 

consistently obtained the highest results, while DE, GWO, and parrot 

optimization (PO) achieved maximal accuracy rates of 0.94, 0.93, and 0.94, 

respectively. These findings underscore the efficacy of integrating 

metaheuristic algorithms with robust classifiers to enhance the predictive 

accuracy of AD diagnosis. Furthermore, they illustrate that artificial 

intelligence (AI) algorithms that are operated by biological processes can 

accurately forecast AD, with the success rates and stability of the proposed 

methods serving as metrics for evaluating their efficacy. 
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1. INTRODUCTION 

To accelerate the identification of biomarkers during the initial phases and progression of 

Alzheimer’s disease, the Alzheimer’s disease neuroimaging initiative (ADNI) was established by the 

National Institute on Aging. The successful automation and optimization of design processes that utilized 

data from cerebrospinal fluid (CSF), positron emission tomography (PET), and magnetic resonance imaging 

(fMRI) were the primary focus of researchers [1]–[3]. Initially, this project develops machine-learning 

models that incorporate the most critical attributes of the style selection to identify an optimal solution to the 

critical binary classification of VCI to control subjects [4], [5]. The research concludes by identifying the 

components assessed for statistical inter-group variations in all models. As a result, we analyzed 

classification success, which is the degree to which these components accurately represent the severity of a 
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mental illness in a life-threatening manner and the degree to which they facilitate the understanding of the 

progression of Alzheimer’s disease. Our proposed method was shown to be robust across a range of study 

parameters by utilizing a variety of machine learning models that included eigenvectors of feature selection 

procedures, as well as by selecting over 150 ADNI VCI and controlling moderate to medium VCI, gender-

matched peers from the ADNI [6], [7]. 

The potential of machine learning in revolutionizing disease identification is a beacon of hope for 

the future of medical research. This application of automated algorithms, based on historical data, is 

particularly promising in the accurate identification of maladies. The strides in machine learning could 

significantly benefit Alzheimer’s Disease, a condition that poses a significant challenge for clinicians due to 

its varied characteristics and the progression of these characteristics in its initial stage. 

Feature selection is a critical component of data analysis and machine learning, as it enhances the 

interpretability and efficacy of predictive models. By selecting the most relevant features from a dataset, 

feature selection techniques are intended to improve the accuracy of models, prevent overfitting, and reduce 

computational complexity [8], [9]. These techniques can be broadly classified into three categories: filter 

methods, wrapper methods, and embedded methods [10]. Filter methods operate independently of the 

learning algorithm, while statistical measures are implemented to evaluate the relevance of features. The 

most frequently employed filtering techniques are chi-square tests, correlation coefficients, and mutual 

information. These methods are computationally efficient and provide a rapid method for removing irrelevant 

or redundant features before model training [11], [12]. Conversely, wrapper methods evaluate feature subsets 

by the efficacy of a specific learning algorithm. Recursive feature elimination (RFE) and forward or 

backward selection methods are included in this category. Even though wrapper methods are often more 

precise than filter methods, they are computationally intensive because they require multiple model training 

and evaluation phases [13], [14]. 

In addition to conventional feature selection methods, metaheuristic algorithms have gained 

popularity due to their ability to efficiently investigate the feature space and identify optimal feature subsets 

[15]. Metaheuristic algorithms are high-level problem-independent techniques that employ mechanisms to 

investigate the global search space and circumvent local optima. Among the most frequently employed 

metaheuristic algorithms in feature selection are genetic algorithms (GA), particle swarm optimization (PSO) 

[16], [17], ant colony optimization (ACO), and differential evolution (DE) [18], [19]. Applying metaheuristic 

algorithms in conjunction with feature selection techniques provides a powerful approach to managing high-

dimensional data and intricate feature spaces [20]. The flexibility and robustness of these algorithms enable a 

wide range of applications in various domains, including medical diagnosis, image processing, and 

bioinformatics [21], [22]. By leveraging the benefits of both traditional and metaheuristic methodologies, 

researchers and practitioners can develop predictive models that are more precise and efficient. 

The primary contributions of this research are as follows: i) Optimal feature selection was achieved 

by applying four bio-inspired algorithms differential evolution (DE), grey wolf optimizer (GWO), and parrot 

optimization algorithm (POA) to the Alzheimer’s disease dataset. ii) A fitness function designed explicitly 

for a decision tree classifier is employed to reduce the number of features. iii) We have integrated various 

classification algorithms (Decision et al.) with specific features. iv) We investigated parameters, including 

population size and iterations, to identify the most effective configurations. And v) We meticulously 

evaluated the performance of DE, GWO, and POA using the F1-score, precision, recall, and accuracy, 

ensuring a robust analysis. 

 

 

2. RELATED WORKS 

Martinez-Murcia et al. [23] employ deep convolutional autoencoders to analyze Alzheimer’s disease 

data. Their method entails the decomposition of magnetic resonance imaging (MRI) images and retrieving 

MRI features correlated with cognitive symptoms, thereby facilitating the comprehension of 

neurodegenerative processes. The impact of the brain on each autoencoder manifold coordinate is determined 

through regression and classification analyses, which involve the examination of the extracted features in 

various combinations. The accuracy of Alzheimer’s disease (AD) diagnosis is greater than 80% when 

imaging-derived markers are used in conjunction with MMSE or ADAS11 scores. 

The classification of AD has been substantially enhanced by applying machine learning (ML) and 

data mining. The classification of Alzheimer’s disease stages using datasets such as the ADNI and the 

TADPOLE challenge has been the subject of numerous studies that have employed algorithms such as 

K-nearest neighbors (K-NN), decision trees, naive Bayes, generalized linear models (GLM), and deep 

learning. These methods have demonstrated promising results, with GLM attaining an 88.24% accuracy in 

classifying AD stages. Nevertheless, the challenges of data sparsity and comprehensive feature selection 

persist. It is imperative to improve the representation of underrepresented classes and enhance feature 
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selection to improve the accuracy and effectiveness of AD classification. Key characteristics include the 

clinical dementia rating sum of boxes (CDRSB) cognitive test, patient age, and overall brain volume [24]. 

The study “early-stage Alzheimer’s disease prediction using machine learning models” was 

conducted by Kavitha et al. [25]. The study utilized datasets from the open access series of imaging studies 

(OASIS) and Kaggle to predict early AD. Using precision, recall, accuracy, and F1-score metrics, they 

assessed the performance of decision tree (DT), random forest (RF), support vector machine (SVM), gradient 

boosting, and voting classifiers. The potential of ML techniques for early AD diagnosis was demonstrated by 

the maximum validation accuracies of 86.92% and 85.92% attained by the RF and extreme gradient boosting 

(XGBoost) models, respectively. The mortality rates of Alzheimer’s disease are reduced as a result of the 

more effective treatment that is facilitated by early detection. The study emphasizes the importance of 

machine learning (ML) in providing clinicians with the necessary tools to enhance patient outcomes and 

implement timely interventions. Future research will concentrate on refining feature selection and exploring 

new features to improve diagnostic accuracy. 

Salvatore et al. [26] employed machine learning techniques to analyze MRI data from the ADNI in 

order to identify early biomarkers for AD. The subjects were categorized as cognitively normal (CN), AD, 

mild cognitive impairment converters (MCIc), and non-converters (MCInc) using principal component 

analysis (PCA) for feature extraction and support vector machines (SVM) for classification. We found 

significant MRI biomarkers in the following areas: The hippocampus, basal ganglia, entorhinal cortex, and 

cerebellum were all identified as sites of substantial MRI biomarkers. 76% for AD vs. CN, 72% for MCIc vs. 

CN, and 66% for MCIc vs. MCInc were the classification accuracies. The potential of ML to improve the 

early diagnosis and management of Alzheimer’s disease is underscored by these findings, which will enable 

the development of more effective treatments and reduce the duration and cost of clinical trials. 

In the detection and classification of AD, Kishore et al. [27] examined the efficacy of a diverse 

array of machine learning algorithms, including logistic regression, DT, RF, naive Bayes (NB), and SVM. 

Cross-validation, feature selection, and data preprocessing were implemented using clinical data and MRI 

scans to surmount the constraints of conventional methods. The SVM with a linear kernel (C=2) achieves the 

highest accuracy of 95%, followed by naive Bayes and logistic regression with 93%. These results 

underscore the significant potential of these algorithms to improve the early detection of Alzheimer’s disease 

and to provide the requisite interventions. 

Sivakani and Ansari [28] utilized the OASIS longitudinal MRI dataset to examine the effectiveness 

of machine learning algorithms in the early identification and classification of Alzheimer’s disease. Their 

research underscored the significance of feature extraction and selection in enhancing the accuracy of 

Alzheimer’s disease predictions. The expectation-maximization (EM) technique was utilized for clustering, 

best-first search was performed for feature selection, and the dataset was preprocessed to address missing 

values. To do classification, linear regression and Gaussian process models were employed. The Gaussian 

process approach exhibited high efficiency and accuracy in Alzheimer’s disease classification, with a 

receiver operating characteristic (ROC) accuracy of 94.65%. The research finds that the effectiveness of 

machine learning models in identifying Alzheimer’s disease is significantly improved with the application of 

efficient feature extraction and selection techniques 

 

 

3. BACKGROUND 

3.1.   Overview of metaheuristic optimization 

Metaheuristic optimization is one of the numerous methods for resolving intricate optimization 

problems. It is divided into three categories: evolutionary computation, nature-inspired algorithms, and 

swarm intelligence [29]. Even when unscheduled phenomena occur during the search, metaheuristic 

algorithms can search for dispersed solution spaces and focus logic to achieve a global minimum solution 

[30]. 

 

3.1.1. Differential evolution 

Differential evolution is a population-based metaheuristic process that initializes its population in 

the search space and updates this population with the best offspring from the competition between a 

population member and a synthesized mutant vector generation after generation (or iteration after iteration) 

based on the three principles described here [31]. A continuous ring-switching differential evolution 

algorithm (DE jDE) that is collectively determined by the alternative dispute resolution main clause (ADM) 

or optimizing control and intelligence (OCI) in order to synthesize a mutant vector controls the population 

strategy. DENN ensembles have developed a variety of evolutionary strategies to achieve this. The strategy 

for evolving the new parameters for the forthcoming denotation of DE may be determined by the dynamics 

of those rings [32], [33]. The rings of DENN that will be employed are then determined by a meta-analysis. 
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The fundamental concepts that DE deals with include: 

a. Population-Based Search: DE operates on a population of potential solutions. Each member of the 

population has the potential to solve the optimization problem. 

b. Selection: The objective function serves as a guiding light in DE. It assesses the trial vector and if the 

experimental vector produces a superior objective function value it replaces the target vector in the 

population for the next generation. 

c. Crossover: DE values diversity and this is evident in its crossover operation. This operation involves the 

combination of elements from the mutant vector and the target vector to generate an experimental vector. 

d. Mutation: Mutation is the fundamental mechanism of DE in which new candidate solutions (mutant 

vectors) are generated by combining existing solutions. 

 

3.1.2. Grey wolf optimizer 

To resolve global optimization issues the GWO emulates the social hierarchy and predatory behavior 

of grey wolves. It assigns wolves to alpha, beta, and omega roles with alphas being the leaders of the pursuit. 

The algorithm is recognized for its competitive performance and rapid convergence distinguishing it from 

other optimization algorithms. It is effective for both constrained and unconstrained problems [34]. 

The fundamental concepts that GWO deals with include: 

a. Leadership hierarchy: GWO models the social hierarchy of grey wolves dividing them into four categories: 

− Alpha: The best solution in the population representing the leader. 

− Beta: The second-best solution assisting the alpha in decision-making. 

− Delta: The third-best solution following the alpha and beta. 

− Omega: The remaining wolves following the leaders. 

b. Hunting mechanism: The hunting process of grey wolves is mathematically modeled to guide the search 

for optimal solutions. This process includes three main phases: encircling prey, hunting, and attacking 

prey (exploitation). 

 

𝐷 = |𝐶 𝑋𝑝𝑟𝑒𝑦 − 𝑋|  (1) 

 

𝑋(𝑡 + 1) =
𝑋1+𝑋2+𝑋3

3
 (2) 

 

3.1.3. Parrot optimization 

Parrot optimization is a literature-based algorithm predicated on parrots’ exceptional learning 

capabilities [35]. PO is a population-based optimization algorithm of exceptional quality that seeks the 

optimal solution in a real-valued search space. Parrots’ learning is governed by their action orientation which 

motivates this algorithm to track the search movements by maintaining a balance between exploration and 

exploitation to identify the optimal location. 

Algorithm Steps: 

a. Initialization: Generate an initial population of candidate solutions randomly. Evaluate the fitness of each 

individual using the objective function. 

b. Leader selection: Identify a subset of the best individuals in the population as leaders. These leaders 

influence the movement of other individuals. 

c. Communication and movement: The position of each individual is updated in accordance with the 

information it receives from leaders and neighboring parrots. 

 

𝑋𝑖(𝑡 +  1) =  𝑋𝑖(𝑡) +  𝑟1(𝑋𝑙𝑒𝑎𝑑𝑒𝑟– 𝑋𝑖(𝑡)) +  𝑟2 (𝑋𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 − 𝑋𝑖(𝑡)) (3) 

 

3.2.  Overview of classification 

3.2.1. Decision tree 

A decision tree (DT) is a non-parametric supervised learning algorithm for classification and 

regression tasks. It generates a tree structure of decisions and their potential repercussions by recursively 

dividing the dataset into subsets based on the most significant attribute [36]. Each internal node in 

classification represents a “test” on an attribute, each branch represents the test result, and each leaf node 

represents a class label or a continuous value in regression. The dividing process continues until a halting 

criterion is met, such as completing all samples in a node that belongs to the same class, attaining a maximal 

tree depth, or lacking any additional information gain. Decision trees are simple to understand and interpret, 

require minimal data preprocessing, and can be employed to analyze numerical and categorical data [37]. 

Nevertheless, they are prone to overfitting if not pruned, and they may be unstable due to the potential for a 

completely different tree to emerge from modest data changes. 
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3.2.2. Random forest 

Random forest is an ensemble learning method that determines the class based on the mode of the 

classes (classification) or the mean prediction (regression) of the individual trees during training [38]. 

It constructs a decision tree for each subset and generates numerous subdivisions of the original dataset 

through bootstrap sampling (random sampling with replacement). A random subset of features is chosen at 

each node, and the most appropriate feature from this subset is used to divide the node [39]. The correlation 

between trees is diminished as a result of this variability. The predictions from all individual trees are 

combined to produce the final prediction. Compared to individual decision trees, random forests are more 

accurate, can handle large datasets efficiently, and can handle thousands of input variables without variable 

deletion, all of which reduce overfitting [40]. However, they are more computationally intensive, complex, 

and less interpretable than individual decision trees. The optimization of engineering designs, the training of 

neural networks, the clustering and data mining of data, the processing of images and signals, the 

development of control systems, and the simulation of financial data are all areas in which they are 

extensively employed. 

 

3.2.3. Gradient boosting 

Gradient Boosting is a valuable machine-learning technique for solving regression and classification 

problems. It entails the incremental development of a model from an ensemble of poor learners, typically 

decision trees [41]. It functions by initiating with an initial prediction, often the mean of the objective 

variable in regression problems, and subsequently incorporating decision trees into the model. Each new tree 

predicts the previous model’s residual errors (differences between actual and predicted values) [42]. The 

algorithm minimizes the loss function through gradient descent, which ensures that the new model is in 

alignment with the negative gradient of the loss function about the predictions of the current model. The 

learning rate reduces the contribution of each new tree, thereby accelerating the learning process and 

improving generalization. Regularization techniques such as subsampling, L1/L2 regularization, and tree 

pruning are implemented [43] to prevent overfitting. Gradient boosting is a highly accurate and robust 

method that can perform regression and classification tasks. It is capable of accommodating a wide variety of 

loss functions. However, it is prone to overfitting if scrupulously calibrated, and training can be efficient for 

large datasets. It is widely used in optimizing engineering designs, neural network training, clustering and 

data mining, image and signal processing, control systems, and financial modeling. 

 

3.2.4. XGBoost 

Extreme gradient boosting is a sophisticated machine learning algorithm based on the gradient 

boosting framework and engineered to achieve high efficiency and performance [44]. It sequentially 

constructs an ensemble of decision trees, with each subsequent tree rectifying the errors of the preceding 

trees. Additionally, it implements L1 and L2 regularization to prevent overfitting. XGBoost is efficient with 

sparse data, supports parallel processing for performance, and internally manages missing values [45]. It can 

scale to large datasets, employs pruning to prevent overfitting, and permits the use of custom objective 

functions and evaluation metrics. The high accuracy and scalability of XGBoost have made it a preferred 

choice in fields such as finance and biology, and it is widely used in various machine learning competitions 

and applications. 

 

 

4. METHOD 

4.1.   Approach 

Figure 1 depicts the primary stages of the proposed approach implemented in this investigation. This 

methodology includes three phases. Four bio-inspired algorithms were implemented to identify the most 

advantageous attributes during the initial phase. Four machine learning classifiers were implemented for 

training during the second phase. Ultimately, the algorithms were validated using the performance metrics. 

 

4.1.1. Dataset 

A single dataset was used to assess the proposed characteristic-choice set of rules: the Alzheimer’s 

disease dataset [46]. This dataset is frequently utilized to analyze factors associated with Alzheimer’s, 

construct predictive models, and conduct statistical analyses. It is publicly accessible. The Alzheimer’s 

Disease dataset contains the comprehensive health statistics of 2,149 patients, each individually identified by 

an ID number between 4751 and 6900. Demographic information, lifestyle factors, scientific records, and 

medical, cognitive, and functional variables comprise the Alzheimer’s disease dataset. 
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Figure 1. Proposed approach 

 

 

4.1.2. Feature selection 

Various attributes and features are incorporated into a copious increase in medical data. Most 

attributes do not contribute to predictive application outcomes, increasing computation time and resources. 

Therefore, to attain high accuracy rates, selecting a subset of features is necessary. Differential evolution 

(DE), grey wolf optimizer (GWO), and parrot optimization algorithm (POA) were employed in this study to 

identify the optimal subset of features based on the Alzheimer’s disease dataset. By employing a fitness 

function that was developed explicitly for a decision tree classifier, the dataset’s features were diminished in 

order to optimize the model’s accuracy. 

In order to assess each subset of features, the fitness function trains a decision tree classifier on the 

training set (70% of the data) and calculates the accuracy on the test set (30% of the data). Accuracy is the 

proportion of correct predictions the classifier makes, and the fitness score is calculated as 1 − accuracy. The 

fitness function can be mathematically represented as (4): 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑆) =  1 −
1

𝑁𝑡𝑒𝑠𝑡
 ∑ 𝛿(𝑦𝑖 , 𝑦ˆ𝑖)𝑁𝑡𝑒𝑠𝑡

𝑖=1   (4) 

  

where S is the subset of selected features, 𝑁𝑡𝑒𝑠𝑡 is the number of test samples, 𝑦𝑖  is the true label of the i-th 

test sample, 𝑦ˆ𝑖 is the predicted label of the i-th test sample, and 𝛿(𝑦𝑖 , 𝑦ˆ𝑖) is the Kronecker delta function, 

which is 1 if 𝑦𝑖 =  𝑦ˆ𝑖 and 0 otherwise. For the Alzheimer’s disease dataset, DE, GWO, and POA were 

applied to the training set. 

 

4.1.3. Classification 

The subsequent step is to commence the classification process, which entails training the set of 

features using a variety of classifiers. This is because we have successfully identified the most suitable 

features in the Alzheimer’s disease dataset and have purified all potentially noisy data as a result of the 

feature selection process in the previous step. We conducted experiments with a variety of parameters in DE, 
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GWO, and POA, such as the number of iterations (the replication of a process to produce an outcome) and 

population size (the arbitrary construction of populations to determine the optimal population size based on 

the problem). We conducted experiments on populations of 30 and 60 and iterations of 5, 15, and 30 to 

determine the most effective configuration for feature selection and classification. 

 

4.1.4. Evaluation 

Four performance metrics were employed to assess the parrot optimization (PO), differential 

evolution (DE), and grey wolf optimizer (GWO) algorithms: precision, recall, F-score, and accuracy. 

Accuracy is a statistical bias metric that quantifies the percentage of a test’s success rate. Low accuracy 

values suggest a discrepancy between the actual and result sets. Table 1 illustrates the confusion matrix for 

classification, which represents the classification of the potential outcome of recommending an item to a 

user. Accuracy employs four test measures. 

 

 

Table 1. Confusion matrix for classification 
 Recommended Not recommended 

Preferred True positive (TP) False negative (FN) 

Not preferred False positive (FP) True negative (TN) 

 

 

4.1.5. The F-score 

The F-score, a solitary digit, concisely evaluates a system or model’s ability to generate precise 

optimistic predictions and identify every positive instance. The algorithm integrates two fundamental metrics, 

namely recall (the capacity to identify all positive cases) and precision (the accuracy of optimistic 

predictions). By achieving an equilibrium between these two variables, the F1-score offers a unified metric 

for evaluating performance. Elevated values on a scale of 0 to 1 indicate superior performance. It serves as a 

practical instrument for assessing the efficacy of classification systems. Defined by this formula is the 

F-score: 

 

𝐹 1 =  2 ·  
Precision · Recall

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (5) 

  

4.1.6. Precision 

Indicates the proportion of positive cases predicted by the model that turned out to be true. 

It quantifies the precision with which the model generates affirmative predictions. The formula for precision 

is: 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃 

𝑇𝑃 + 𝐹𝑃
   (6) 

 

4.1.7. Recall 

As with sensitivity, recall quantifies the accuracy with which the model detects true positives. It 

provides the number of accurate optimistic predictions the model makes relative to the total number of 

positive cases. The formula for recall is: 

 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (7) 

 

 

5. RESULTS AND DISCUSSION 

The Alzheimer’s disease dataset was employed to evaluate the DE, GWO, and POA algorithms. 

In this context, these metaheuristic algorithms have not been extensively compared for feature selection, to 

the best of our knowledge. Four classifiers were employed to evaluate the feature selection algorithms: 

gradient boosting, XGBoost, RF, and DT. In order to guarantee the impartiality of the outcomes, the 

algorithms were trained with identical methodologies. The scikit-learn library in Python, which includes 

built-in libraries for feature selection algorithms, had the classifiers available. Tables 2 to 4 list numerous 

input parameters that are employed in the execution of these feature selection algorithms. The parameters’ 

values were determined through experimentation and are contingent upon the unique characteristics of each 

algorithm. 
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Table 2. Input parameters for parrot optimizer 
Parameter Description 

lb Lower bound for the search space 
ub Upper bound for the search space 

dim Dimensionality of the search space 

N Population size 
Max_iter Maximum number of iterations 

 

 

Table 3. Input parameters for differential evolution (DE) 
Parameter Description 

lb Lower bound for the search space 
ub Upper bound for the search space 

dim Dimensionality of the search space 

PopSize Population size 
iters Number of iterations 

mutation factor Mutation factor (controls the amplification of the differential variation). Default is 0.5. crossover ratio 

crossover ratio Crossover ratio (controls the probability of crossover). Default is 0.7 

 

 

Table 4. Input parameters for grey wolf optimizer (GWO) 
Parameter Description 

lb Lower bound for the search space 
ub Upper bound for the search space 

dim Dimensionality of the search space 

SearchAgents no Number of search agents 
Max iter Maximum number of iterations 

 

 

6. DISCUSSION 

Two tables, Tables 5 and 6, present the DE algorithm’s evaluation results on the Alzheimer’s 

disease dataset. The tables evaluate population sizes of 30 and 60 across various iterations (5, 15, and 30). 

The gradient boosting classifier consistently achieved the highest accuracy for a population size of 30, as 

depicted in Table 5, with a maximum of 0.935866 at five iterations. XGBoost also demonstrated satisfactory 

performance, attaining its maximum accuracy of 0.935556 after 30 iterations. In contrast, the DT and RF 

classifiers exhibited lower accuracy but were still dependable. The DT achieved 0.897468 after 30 iterations, 

while the RF reached 0.923204 after five iterations. 

 

 

Table 5. DE algorithm using 30 population 
Iterations Classifier Accuracy Precision Recall F1-score 

5 Decision tree 0.89 0.88 0.84 0.85  
Gradient boosting 0.93 0.94 0.88 0.9  

Random forest 0.92 0.95 0.84 0.89  
XGBoost 0.94 0.95 0.88 0.91 

15 Decision tree 0.9 0.88 0.84 0.85  
Gradient boosting 0.93 0.94 0.88 0.91  

Random forest 0.92 0.95 0.84 0.88  
XGBoost 0.94 0.94 0.88 0.9 

30 Decision tree 0.9 0.89 0.84 0.87  
Gradient boosting 0.93 0.93 0.88 0.91  

Random forest 0.92 0.95 0.84 0.89  
XGBoost 0.94 0.95 0.88 0.91 

 

 

The gradient boosting classifier again attained the highest accuracy of 0.936693 at 30 iterations 

when the population size was increased to 60 in Table 6. XGBoost closely matched this result. The DT and 

RF classifiers yielded reliable outcomes, with the DT attaining an accuracy of 0.898036 after 30 iterations 

and the RF reaching 0.923721 after 30 iterations. These findings indicate that the gradient boosting classifier 

consistently outperformed others in accuracy, particularly at higher iterations and larger population sizes. 

Additionally, XGBoost exhibited high accuracy and robustness across various configurations. When 

combined with robust classifiers such as gradient boosting and XGBoost, the DE algorithm demonstrated 

efficacy in improving predictive accuracy for Alzheimer’s disease diagnosis. The gradient boosting classifier 

achieved the highest accuracy of 0.936693 at 30 iterations and a population size of 60. 
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Table 6. DE algorithm using 60 population 
Iterations Classifier Accuracy Precision Recall F1-score 

5 Decision tree 0.89 0.87 0.84 0.86  
Gradient boosting 0.93 0.94 0.88 0.91  

Random forest 0.91 0.95 0.83 0.88  
XGBoost 0.93 0.95 0.88 0.91 

15 Decision tree 0.9 0.88 0.84 0.86  
Gradient boosting 0.93 0.94 0.88 0.9  

Random forest 0.92 0.95 0.84 0.89  
XGBoost 0.94 0.95 0.88 0.91 

30 Decision tree 0.9 0.88 0.84 0.86  
Gradient boosting 0.93 0.94 0.88 0.9  

Random forest 0.92 0.95 0.84 0.89  
XGBoost 0.94 0.95 0.88 0.91 

 

 

Tables 7 and 8 illustrate the accuracy, precision, recall, and F1-score evaluation results of the GWO 

algorithm on the Alzheimer’s disease dataset. In a series of iterations (5, 15, and 30), the GWO algorithm 

was assessed with population sizes of 30 and 60. At 30 iterations, the gradient boosting classifier consistently 

demonstrated superior accuracy for the GWO algorithm with a population size of 30 in Table 7, with a 

maximal accuracy of 0.935142. XGBoost also exhibited satisfactory performance, achieving the highest 

accuracy of 0.935039 after five iterations. Conversely, the DT and RF classifiers maintained their 

consistency while exhibiting a marginally lower level of accuracy. At 30 iterations, the DT obtained its 

highest accuracy of 0.896021, while the RF achieved 0.923979 during the same period. The efficacy of the 

GWO algorithm with a population size of 30 is demonstrated in Table 7. This table compares the efficacy of 

the algorithm at different iterations and classifiers. The gradient boosting classifier attained a high accuracy 

of 0.934057 at 30 iterations when a population size of 60 was used, closely following XGBoost’s 0.935659 

accuracy at 15 iterations Table 8. Both the DT and RF classifiers produced findings that were fairly 

remarkable in their respective categories. When compared to the RF, which was able to reach an accuracy of 

0.924961 in the same length of time, the DT was able to attain an accuracy of 0.897519 over the course of 

thirty iterations. According to the data, it would appear that the Gradient Boosting and XGBoost classifiers 

consistently beat other approaches in terms of accuracy. This was especially true when the number of 

iterations was raised and the population size was increased. The GWO algorithm’s ability to improve the 

expected accuracy of Alzheimer’s disease diagnosis is notably apparent when it is applied in conjunction 

with these effective classifiers. This is because the GWO algorithm is able to improve predicted accuracy. 

The XGBoost classifier attained the highest accuracy for the GWO method with a population size of 60 and 

15 iterations (accuracy = 0.935659). Table 8 demonstrates the effectiveness of the GWO method with a 

population size of 60 across various classifiers and iterations. 

Tables 9 and 10 illustrate the evaluation results of the PO algorithm on the Alzheimer’s disease 

dataset in terms of precision, recall, accuracy, and F1-score. The PO algorithm was evaluated with population 

sizes of 30 and 60 in various iterations (5, 15, and 30). The gradient boosting and XGBoost classifiers 

consistently achieved higher accuracy for the PO algorithm with a population size of 30 in Table 9. At 30 

iterations, gradient boosting attained a maximal accuracy of 0.928062, while XGBoost achieved 0.929199. 

On the other hand, the DT and RF classifiers demonstrated slightly lower accuracy but continued to operate 

consistently. The DT achieved its highest accuracy of 0.883618 at 30 iterations, while the RF achieved 

0.917313 at 15. The performance of the PO algorithm with a population size of 30 across various classifiers 

and iterations is illustrated in Table 9. 

 

 

Table 7. GWO algorithm using 30 Population 
Iterations Classifier Accuracy Precision Recall F1-score 

5 Decision tree 0.89 0.87 0.84 0.86  
Gradient boosting 0.93 0.94 0.88 0.91  

Random forest 0.92 0.95 0.84 0.89  
XGBoost 0.94 0.94 0.88 0.91 

15 Decision tree 0.89 0.87 0.84 0.86  
Gradient boosting 0.93 0.94 0.88 0.91  

Random forest 0.92 0.95 0.84 0.89  
XGBoost 0.93 0.94 0.88 0.91 

30 Decision tree 0.9 0.88 0.84 0.86  
Gradient boosting 0.93 0.94 0.88 0.91  

Random forest 0.92 0.95 0.84 0.89  
XGBoost 0.94 0.95 0.88 0.91 
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Table 8. GWO algorithm using 60 population 
Iterations Classifier Accuracy Precision Recall F1-score 

5 Decision tree 0.89 0.87 0.84 0.86  
Gradient boosting 0.93 0.94 0.88 0.91  

Random forest 0.92 0.95 0.84 0.89  
XGBoost 0.93 0.94 0.88 0.91 

15 Decision tree 0.9 0.88 0.84 0.86  
Gradient boosting 0.93 0.94 0.88 0.91  

Random forest 0.92 0.95 0.84 0.89  
XGBoost 0.94 0.95 0.88 0.91 

30 Decision tree 0.9 0.88 0.84 0.86  
Gradient boosting 0.93 0.94 0.88 0.91  

Random forest 0.92 0.95 0.85 0.9  
XGBoost 0.93 0.94 0.88 0.91 

 

 

Table 9. PO algorithm using 30 population 
Iterations Classifier Accuracy Precision Recall F1-score 

5 Decision tree 0.87 0.84 0.82 0.83 
 Gradient boosting 0.92 0.94 0.85 0.89 
 Random forest 0.91 0.95 0.81 0.88 

  XGBoost 0.92 0.94 0.85 0.89 

15 Decision tree 0.88 0.86 0.83 0.84 
 Gradient boosting 0.93 0.94 0.87 0.9 
 Random forest 0.92 0.95 0.83 0.88 

  XGBoost 0.93 0.94 0.86 0.9 
30 Decision tree 0.88 0.86 0.83 0.84 
 Gradient boosting 0.93 0.94 0.87 0.9 
 Random forest 0.92 0.95 0.82 0.88 

  XGBoost 0.93 0.94 0.87 0.9 

 

 

Table 10. PO algorithm using 60 population 
Iterations Classifier Accuracy Precision Recall F1-score 

5 Decision tree 0.89 0.87 0.84 0.85  
Gradient boosting 0.93 0.94 0.88 0.91  

Random forest 0.92 0.95 0.82 0.88  
XGBoost 0.94 0.95 0.88 0.91 

15 Decision tree 0.89 0.87 0.84 0.85  
Gradient boosting 0.93 0.94 0.88 0.91  

Random forest 0.92 0.95 0.82 0.88  
XGBoost 0.94 0.95 0.88 0.91 

30 Decision tree 0.89 0.87 0.84 0.85  
Gradient boosting 0.93 0.94 0.88 0.91  

Random forest 0.92 0.95 0.83 0.88  
XGBoost 0.93 0.94 0.88 0.91 

 

 

With a population size of sixty, the gradient boosting and XGBoost classifiers achieved a substantial 

level of accuracy, as shown in Table 10. Gradient boosting was able to achieve a maximum accuracy of 

0.934935 after 15 iterations, whilst XGBoost was able to achieve an accuracy of 0.935556 after the same 

number of rounds. A great performance was displayed by both the RF and DT classifiers. The RF classifier 

attained an accuracy of 0.918398 after 30 iterations, while the DT classifier reached an accuracy of 0.890698 

under the same conditions. The results of the study reveal that the gradient boosting and XGBoost classifiers 

displayed consistently higher accuracy, particularly when the population sizes were raised, and the number of 

iterations was increased. When combined with reliable classifiers, the PO method results in a considerable 

improvement in the predicted accuracy of Alzheimer’s disease diagnosis. With a population size of sixty and 

fifteen iterations, the XGBoost classifier was able to achieve an accuracy of 0.935556 for the PO method. 

Table 10 provides a comprehensive analysis of the performance of the PO method, which utilizes a 

population size of sixty with a number of different classifiers and iterations included. 

 

 

7. CONCLUSION 

This study highlights the significant enhancement of predictive accuracy in classifiers applied to the 

Alzheimer’s disease dataset through the critical role of feature selection. This highlights the effectiveness of 

employing metaheuristic optimization algorithms, specifically PO, GWO, and DE, to attain this objective. 

The gradient boosting and XGBoost classifiers demonstrated enhanced accuracy, precision, recall, and 
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F1-scores across various population sizes and iterations, as supported by the research findings. The DE 

algorithm, combined with Gradient Boosting, attained a maximum accuracy of 0.935866 following five 

iterations with a population size of 30. This is particularly significant. Similarly, GWO achieved an optimal 

accuracy of 0.935659 using XGBoost after 15 iterations with a population size of 60. Following 15 iterations, 

the PO algorithm achieved an accuracy of 0.94 with a population size of 60. This study underscores the 

significance of feature selection in enhancing diagnostic models for Alzheimer’s disease. The study 

underscores the efficacy and robustness of metaheuristic algorithms in this context. Future research may 

investigate the incorporation of additional classifiers to enhance diagnostic accuracy and the application of 

these algorithms across various medical datasets. A potential approach to enhance the detection of 

Alzheimer’s disease and other complex medical disorders involves the integration of metaheuristic 

optimization algorithms with robust classifiers. Examples of these classifiers include Gradient Boosting and 

XGBoost. 
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