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 This work introduces a compact deep learning architecture for depth image 

reconstruction from time-resolved single-photon histograms. Unlike most 

deep learning approaches that mainly rely on 3D convolutions, our network 

is implemented purely with 1D convolutions without assistance from other 

sensors or pre-processing. Both synthetic and real datasets were used to 

evaluate the accuracy of our model for challenging signal-to-background 

ratios (SBRs), ranging from 5:1 to 1:1. Conventional maximum likelihood 

(ML) and another photon-efficient optimization-based algorithm were 

adopted for performance comparisons. Results from synthetic data show that 

our model achieves lower mean absolute error (MAE). Additionally, results 

from real data indicate that our model exhibits better reconstruction for  

high-ambient effects and provides better spatial information. Unlike existing 

3D deep learning models, we process pixel-wise histograms continuously, 

rather than splitting the point cloud and stitching them afterward, which 

saves memory and computational resources, thereby laying a foundation for 

real-world embedded applications. 

Keywords: 

Computational imaging 

Computational intelligence 

Deep learning 

Depth reconstruction 

Single-photon LiDAR 

 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Yu Zhang 

Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California 

Los Angeles, CA 90089 

Email: yz324@usc.edu 

 

 

1. INTRODUCTION 

Single-photon avalanche diodes (SPADs) have been emerging for various applications that rely on 

single-photon sensitivity, such as single-photon light detection and ranging (LiDAR) using an optimization-

based reconstruction method [1], deep learning methods [2], [3], and biomedical signal processing for 

fluorescence lifetime imaging (FLIM) [4], and non-line-of-sight imaging [5], [6] and cryptography [7], [8]. 

Researchers proved that using data-driven deep learning (DL) models can accurately reconstruct depth and 

reflectivity images from the 3D point cloud cubes that include photons’ time-of-flight information and spatial 

information. Further, these DL models are robust for extremely low signal-to-background ratios (SBRs), even 

less than one. Reconstructing depth information is crucial in autonomous vehicles that need fast and accurate 

response, even in low-visibility environments. Although data-driven methods reconstruct depth images based 

on SPAD are emerging, there are still challenges for the DL models. First, most DL models are composed of 

3D, consuming enormous computing memory for the computing platform. Even for high-performance 

graphics processing units (GPUs), the big point cloud with big spatial resolution should be divided into 

several batches for processing and stitched eventually to obtain a high-resolution depth image. Second, the 

preparation of training datasets is complex, leveraging image processing tools [9] and large open-source [10], 

[11] depth training datasets, also consuming a long time (several hours). This work aims to design a 

computationally efficient, pixel-wise DL model with a compact architecture and training pipeline to address 

these two bottlenecks. 
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The contributions of this study are summarized as follows: i) We leveraged existing open-sourced 

depth image datasets to generate pixel-wise histograms using an analytical mathematical model and trained a 

deep neural network; ii) We designed a compact 1D U-NET deep neural network for accurate, end-to-end 

pixel-wise depth in conditions of low SBRs; and iii) We quantitatively compared our model with existing 

photon-efficient pixel-wise algorithms and achieved better accuracy. 

The structure of this study is as follows. Section 2 reviews and summarizes the existing work. 

Section 3 illustrates the mathematical model of the single-photon LiDAR. Section 4 presents the deep 

learning architecture, training synthetic data generation, and training details. Section 5 quantitatively 

evaluates the performance of the DL model and compares it with photon-efficient pixel-wise algorithms and 

optimization-based methods. Section 6 concludes the study. 

 

 

2. PRIOR WORK 

2.1.  Optimization- and statistic-based algorithms 

Shin et al. [1] first reported a photon-efficient optimization-based method to reconstruct depth 

images from histograms with extremely low SBR ratios. A signal and noise unmixing optimization algorithm 

was proposed [12] to accurately split signals from noisy histograms with strong ambient light and accurately 

reconstruct depth and reflectivity images. The reversible jump Markov chain Monte Carlo (RJ-MCMC). A 

statistical algorithm [13] was used to perform Bayesian inference for depth and intensity reconstruction of 3D 

scenes. An improved RJ-MCMC enhanced by a point cloud denoising [14] approach was proposed to achieve 

real-time 3D reconstruction of moving objects. Koo et al. [15] combined a statistical Bayesian algorithm with 

a deep learning architecture, taking advantage of both accurate inference and model-free properties of 

statistics and deep learning. A computationally efficient Bayesian algorithm was also proposed [16] for a 

low-photon-count multispectral LiDAR application. 

 

2.2.  Deep learning algorithms 

Deep learning is becoming prevalent in feature extraction in computer vision [17], [18]. Deep neural 

networks have been extensively leveraged in depth reconstruction for SPAD arrays equipped with  

time-correlated single-photon counting (TCSPC). A sensor fusion [19] 3D deep neural architecture was first 

introduced to merge high-resolution intensity and low-resolution depth images to enhance the spatial feature 

extraction during the training. The captured raw data in this work was widely adopted for subsequent work in 

this field [20], [21]. Another fusion architecture was reported to merge monocular depth images with 3D 

point cloud convolution modules to enhance depth image reconstruction. Two different architectures were 

investigated for non-fusion architectures that only leverage the point cloud from the SPAD array without 

other features from other sensors, where results indicated that the non-fusion architecture could achieve 

comparable accuracy to fusion-based architectures. A 3D convolutional architecture with pixel-wise residual 

shrinkage [3] was reported to redefine the optimization target as a classification for each histogram, 

achieving high reconstruction accuracy. Study [22] presented an edge-enhanced architecture, embedding 

attention modules in their 3D convolutional architecture, to improve the edge reconstruction. Sparsity in the 

point cloud was investigated [23] to accelerate the inference of a 3D architecture, achieving real-time high-

resolution depth reconstruction. SPAD is also used for sensing through fog [24]. 

Existing statistical and optimization methods are high-latency and unsuitable for embedded 

hardware in single-photon LiDAR systems. Moreover, despite the fast forward propagation of DL models, 

3D tensor processing of point clouds remains computationally intensive on hardware. This work bridges the 

gap between DL and computationally efficient methods by leveraging 1D histogram processing, resulting in 

a compact DL architecture and simplifying the synthetic data generation process. 

 

 

3. PROBLEM DEFINITION 

The active single-photon imaging systems have been reported in existing studies [1], [3], [12], [21]. 

SPAD arrays with TCSPC-based LiDAR systems can be well approximated and modelled using known 

optical and sensor parameters. We aim to reconstruct depth information from the histogram of each pixel, 

which is subject to an inhomogeneous Poisson process [22]. Therefore, the histogram can be estimated as (1). 
 

𝛷(𝑡) = 𝜂 · (𝜖(𝑡) + 𝑛𝑏) + 𝑛𝑑,  (1) 
 

where η ∈ (0, 1), indicating the quantum efficiency of the sensor. 𝑛𝑏 and 𝑛𝑑 are the background noise and 

dark-count noise. 𝜖(𝑡) is the signal flux reflected from the target, which can be modelled as (2), 
 

𝜖(𝑡) = 𝛼 · 𝑠(𝑡 −
2𝐷

𝑐
)  (2) 
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where 𝛼 is the attenuation factor, 𝐷 is the distance from the sensor to the target, and 𝑐 is the speed of light. 

Therefore, the histogram represents that the reflected photons of 𝑁 illuminations can be modelled as (3), 

 

ℎ(𝑡)~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑁)𝛷(𝑡)  (3) 

 

By following the equation for analytically generating synthetic training datasets, we employ the datasets to 

train a deep neural network, which is discussed in the next section. This pixel-wise processing DL alleviates 

computational complexity compared with 3D-based DL architecture, simplifying the feature extraction from 

complex 3D latent space to 1D latent space while maintaining accuracy. 

 

 

4. DEEP LEARNING ARCHITECTURE 

Inspired by previous U-NET-like 3D architectures [2], [20], [21], we proposed a similar topology, 

but only 1D convolution was used. Batches of histograms were fed into the U-NET for training. Key modules 

in the network (down-sampling, concatenation, convolution, up-sampling) are colored in Figure 1 and 

indicated in the black dashed box. Batch normalization modules were used to improve the training stability 

and convergence speed. The ground truth depth images in the training datasets are from the NYUV2 datasets 

[13]. A texture filtering [12] algorithm was used to alleviate the imperfection of depth information due to the 

Kinect camera. Histograms were generated using (1), (2), and (3). In the last layer, the multi-channel feature 

is processed into a single-channel feature and processed by an argmax (·) to find the peak index, thereby 

calculating the distance. Notably, unlike previous training datasets of 3D architecture that generate huge 

point clouds (tens of gigabytes) from multiple scenes in the datasets, our model only generates histograms 

from one scene, where the training datasets are just 15.1 MB. Similarly, our training speed is approximately 

ten of times faster than previous 3D U-NET architectures [2], [20], and [21]. While generating histograms in 

the training datasets, we defined optical parameters presented in Tables 1 to 5. 

 

 

 
 

Figure 1. The inference pipeline of the 1D U-NET architecture for pixel-wise depth image 

 

 

Table 1. Pre-defined parameters to generate synthetic histograms 
Parameter Value 

Number of time bins 1024 

Temporal resolution 19.53 ps 

Spatial resolution 64×64 
SBRs [0.01, 5] 

Laser FWHM 117.18 ps 

Laser FWHM peak index 5 
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Table 2. Downsample the details of the deep neural network 
Down sample 

Layer name Output shape Activation function 

Conv-down sample, K (9), S (2), P (4) + Batch normalization (256, 1, 1, 512) ReLU 

Conv-down sample, K (7), S (2), P (3) + Batch normalization (256, 1, 1, 256) ReLU 

Conv-down sample, K (5), S (2), P (2) + Batch normalization (256, 1, 1, 128) ReLU 

 

 

Table 3. Convolutional layers details of the deep neural network 
Conv-same spatial dimension 

Layer name Output shape Activation function 

Conv, K (9), S (1), P (4) + Batch normalization (256, 1, 4, 1024) ReLU 
Conv, K (9), S (1), P (4) + Batch normalization (256, 1, 4, 1024) ReLU 

Conv, K (9), S (1), P (4) + Batch normalization (256, 1, 6, 512) ReLU 

Conv, K (9), S (1), P (4) + Batch normalization (256, 1, 6, 512) ReLU 
Conv, K (7), S (1), P (3) + Batch normalization (256, 1, 8, 256) ReLU 

Conv, K (7), S (1), P (3) + Batch normalization (256, 1, 8, 256) ReLU 

Conv, K (5), S (1), P (2) + Batch normalization (256, 1, 10, 128) ReLU 
Conv, K (5), S (1), P (2) + Batch normalization (256, 1, 10, 128) ReLU 

 

 

Table 4. De-convolutional layers details of the deep neural network 
Up sample 

Layer name Output shape Activation function 

ConvTrans., K (9), S (2), P (4) + Batch normalization (256, 1, 5, 256) ReLU 

ConvTrans, K (9), S (2), P (4) + Batch normalization (256, 1, 5, 512) ReLU 
ConvTrans, K (9), S (2), P (4) + Batch normalization (256, 1, 5, 1024) ReLU 

ConvTrans, K (9), S (2), P (4) + Batch normalization (256, 1, 5, 1024) ReLU 

 

 

Table 5. De-convolutional layers details of the deep neural network 
Refine 

Layer name Output shape Activation function 

Conv, K (9), S (2), P (4) + Batch normalization (256, 1, 1, 1024) - 

 

 

The deep learning model is implemented using PyTorch and runs on an NVIDIA RTX A1000 GPU. 

The learning rate is set to 10-5, and RMSprop is the optimizer. Kullback-Leibler (KL) divergence is employed 

as the loss function to evaluate the model's performance. An early stopping mechanism is incorporated with a 

patience of 20 epochs to prevent overfitting. The dataset comprises 50,000 histograms for training, with an 

additional 5,000 for validation during training. Signal-to-background ratios (SBRs) for the training datasets 

are set to 5, 2.5, 1, 0.5, 0.2, 0.1, 0.05, and 0.01, consistent with other photon-efficient architectures [2], [4], 

[22]. The training and validation losses are shown in Figure 2. This setup ensures robust training and 

evaluation of the deep learning model, leveraging PyTorch's capabilities and harnessing the computational 

power of the NVIDIA RTX A1000 GPU for efficient processing. 

 

 

 
 

Figure 2. KL divergence loss curve of training and validation 
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5. QUANTITATIVE EVALUATION 

This section assesses the precision of depth reconstruction achieved by our deep learning architecture. 

It juxtaposes it with conventional maximum likelihood (ML) methods and Shin et al. optimization-based 

algorithm. Synthetic datasets are meticulously simulated, ensuring a comprehensive evaluation framework. 

 

5.1.  Synthetic datasets evaluation 

We used depth images in the Middlebury datasets [11] as the ground truth (GT) depth image and 

generated synthetic histograms using known optical parameters for our network’s evaluation. The datasets 

were also leveraged by other SPAD-based depth image reconstruction using deep learning [2], [3], [21]. As 

shown in Figure 3, our network is robust for low SBRs. We also compared our network with ML and Shin  

et al. methods, which are also pixel-wise. Shin et al. algorithm also used a pixel-averaging method to 

enhance the accuracy of spatial dimensions. The comparison across seven different SBRs from seven scenes. 

The results are shown in Table 6. 

 

 

 
 

Figure 3. Synthetic datasets. The point cloud is simulated using pre-defined optical parameters. Different 

SBRs are 1, 2.5, and 2. MAEs of each reconstructed image versus the GT images are indicated in each image 

 

 

Table 6. Accuracy comparisons among three pixel-wise reconstruction algorithms  

in synthetic training datasets 
Algorithm SBR Book Art Bowling Doll Moebius Reindeer 

ML 5 2.59 2.52 2.13 2.55 2.48 2.56 
2.5 4.78 4.66 4.32 4.70 4.53 4.57 

1 6.87 6.79 6.32 6.73 6.54 6.69 

Shin et al. 5 2.25 2.14 2.07 2.21 2.11 2.54 
2.5 4.53 4.44 4.03 4.58 4.46 4.53 

1 6.44 6.23 6.02 6.57 6.52 6.45 

1D UNET 5 0.03 0.03 0.02 0.01 0.02 0.12 
2.5 0.26 0.34 0.21 0.21 0.18 0.44 

1 1.12 1.03 0.32 1.23 1.22 1.31 
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5.2.  Captured datasets evaluation 

Apart from the evaluation of synthetic datasets, we also investigated the performance of captured 

datasets [20]. We also compared our deep neural network with ML and Shin et al. method. As shown in 

Figure 4, we present the reflectivity images to reference spatial information. The intensity images were 

retrieved from the scanned point cloud, and all histograms were taken at the temporal dimension. Regarding 

ML’s performance, the reconstruction depth images contain numerous NaN values represented by white 

pixels in the depth images due to the low photon counts. Our approach achieved a comparable reconstruction 

to Shin’s method. Notably, Shin’s method is sometimes susceptible to intense ambient light. For example, the 

bulb was not reconstructed robustly in the lamp scene. And our method achieved better visualization of the 

bulb. Also, as Shin’s algorithms involve a spatial averaging process, the spatial depth might be worse if 

pixel-wise depth information is not recovered accurately. Future work can employ more advanced neural 

networks, such as a graph neural network (GNN) [25] for point cloud analysis [23]. 

 

 

 
 

Figure 4. Reconstructed depth images of the captured point cloud. There are five scenes: an elephant doll, a 

hallway, a lamp, a ball on a staircase, and stuff on a table. Images of reflectivity, intensity, and reconstruction 

are depicted 

 

 

6. CONCLUSION 

This work presents a compact and accurate 1D depth image reconstruction from histograms of 

SPAD arrays with low SRBs. Compared with the previous 3D deep neural networks that require tens of 

gigabytes of training datasets of point clouds, our network only requires a 15.1 MB histogram training 

dataset. Additionally, the 3D networks consume hours to finish training, whereas our 1D architecture only 

requires 12 minutes. Similarly, for inference, the high spatial resolution point cloud for 3D networks should 

be divided into small portions, for example, 1/8 spatial resolution, to infer partial depth images in multiple 

batches and stitch the depth images afterwards. 3D convolutions consume huge GPU memory and cannot be 

processed in one batch. However, our 1D pixel-wise architecture does not have the memory overflow issue 

due to lightweight 1D convolutions, making it easier to implement on embedded hardware in vehicles or 

drones for practical applications. Compared with conventional machine learning and other photon-efficient 

algorithms, our methods show higher accuracy for synthetic datasets. As for the evaluation of captured 

datasets, our network is more robust against ambient light. The limitation of this work is that no spatial 
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information is extracted during DL training due to the pixel-wise processing nature. A potential approach to 

address this could involve incorporating a low-cost RGB image to provide 2D spatial structural details during 

training, compensating for the lack of spatial resolution.  
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