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This work introduces a compact deep learning architecture for depth image
reconstruction from time-resolved single-photon histograms. Unlike most
deep learning approaches that mainly rely on 3D convolutions, our network
is implemented purely with 1D convolutions without assistance from other
sensors or pre-processing. Both synthetic and real datasets were used to
evaluate the accuracy of our model for challenging signal-to-background
ratios (SBRs), ranging from 5:1 to 1:1. Conventional maximum likelihood
(ML) and another photon-efficient optimization-based algorithm were
adopted for performance comparisons. Results from synthetic data show that
our model achieves lower mean absolute error (MAE). Additionally, results
from real data indicate that our model exhibits better reconstruction for
high-ambient effects and provides better spatial information. Unlike existing
3D deep learning models, we process pixel-wise histograms continuously,
rather than splitting the point cloud and stitching them afterward, which

saves memory and computational resources, thereby laying a foundation for
real-world embedded applications.
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1. INTRODUCTION

Single-photon avalanche diodes (SPADs) have been emerging for various applications that rely on
single-photon sensitivity, such as single-photon light detection and ranging (LiDAR) using an optimization-
based reconstruction method [1], deep learning methods [2], [3], and biomedical signal processing for
fluorescence lifetime imaging (FLIM) [4], and non-line-of-sight imaging [5], [6] and cryptography [7], [8].
Researchers proved that using data-driven deep learning (DL) models can accurately reconstruct depth and
reflectivity images from the 3D point cloud cubes that include photons’ time-of-flight information and spatial
information. Further, these DL models are robust for extremely low signal-to-background ratios (SBRs), even
less than one. Reconstructing depth information is crucial in autonomous vehicles that need fast and accurate
response, even in low-visibility environments. Although data-driven methods reconstruct depth images based
on SPAD are emerging, there are still challenges for the DL models. First, most DL models are composed of
3D, consuming enormous computing memory for the computing platform. Even for high-performance
graphics processing units (GPUs), the big point cloud with big spatial resolution should be divided into
several batches for processing and stitched eventually to obtain a high-resolution depth image. Second, the
preparation of training datasets is complex, leveraging image processing tools [9] and large open-source [10],
[11] depth training datasets, also consuming a long time (several hours). This work aims to design a
computationally efficient, pixel-wise DL model with a compact architecture and training pipeline to address
these two bottlenecks.
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The contributions of this study are summarized as follows: i) We leveraged existing open-sourced
depth image datasets to generate pixel-wise histograms using an analytical mathematical model and trained a
deep neural network; ii) We designed a compact 1D U-NET deep neural network for accurate, end-to-end
pixel-wise depth in conditions of low SBRs; and iii) We quantitatively compared our model with existing
photon-efficient pixel-wise algorithms and achieved better accuracy.

The structure of this study is as follows. Section 2 reviews and summarizes the existing work.
Section 3 illustrates the mathematical model of the single-photon LiDAR. Section 4 presents the deep
learning architecture, training synthetic data generation, and training details. Section 5 quantitatively
evaluates the performance of the DL model and compares it with photon-efficient pixel-wise algorithms and
optimization-based methods. Section 6 concludes the study.

2. PRIOR WORK
2.1. Optimization- and statistic-based algorithms

Shin et al. [1] first reported a photon-efficient optimization-based method to reconstruct depth
images from histograms with extremely low SBR ratios. A signal and noise unmixing optimization algorithm
was proposed [12] to accurately split signals from noisy histograms with strong ambient light and accurately
reconstruct depth and reflectivity images. The reversible jump Markov chain Monte Carlo (RJ-MCMC). A
statistical algorithm [13] was used to perform Bayesian inference for depth and intensity reconstruction of 3D
scenes. An improved RI-MCMC enhanced by a point cloud denoising [14] approach was proposed to achieve
real-time 3D reconstruction of moving objects. Koo ef al. [15] combined a statistical Bayesian algorithm with
a deep learning architecture, taking advantage of both accurate inference and model-free properties of
statistics and deep learning. A computationally efficient Bayesian algorithm was also proposed [16] for a
low-photon-count multispectral LiDAR application.

2.2. Deep learning algorithms

Deep learning is becoming prevalent in feature extraction in computer vision [17], [18]. Deep neural
networks have been extensively leveraged in depth reconstruction for SPAD arrays equipped with
time-correlated single-photon counting (TCSPC). A sensor fusion [19] 3D deep neural architecture was first
introduced to merge high-resolution intensity and low-resolution depth images to enhance the spatial feature
extraction during the training. The captured raw data in this work was widely adopted for subsequent work in
this field [20], [21]. Another fusion architecture was reported to merge monocular depth images with 3D
point cloud convolution modules to enhance depth image reconstruction. Two different architectures were
investigated for non-fusion architectures that only leverage the point cloud from the SPAD array without
other features from other sensors, where results indicated that the non-fusion architecture could achieve
comparable accuracy to fusion-based architectures. A 3D convolutional architecture with pixel-wise residual
shrinkage [3] was reported to redefine the optimization target as a classification for each histogram,
achieving high reconstruction accuracy. Study [22] presented an edge-enhanced architecture, embedding
attention modules in their 3D convolutional architecture, to improve the edge reconstruction. Sparsity in the
point cloud was investigated [23] to accelerate the inference of a 3D architecture, achieving real-time high-
resolution depth reconstruction. SPAD is also used for sensing through fog [24].

Existing statistical and optimization methods are high-latency and unsuitable for embedded
hardware in single-photon LiDAR systems. Moreover, despite the fast forward propagation of DL models,
3D tensor processing of point clouds remains computationally intensive on hardware. This work bridges the
gap between DL and computationally efficient methods by leveraging 1D histogram processing, resulting in
a compact DL architecture and simplifying the synthetic data generation process.

3.  PROBLEM DEFINITION

The active single-photon imaging systems have been reported in existing studies [1], [3], [12], [21].
SPAD arrays with TCSPC-based LiDAR systems can be well approximated and modelled using known
optical and sensor parameters. We aim to reconstruct depth information from the histogram of each pixel,
which is subject to an inhomogeneous Poisson process [22]. Therefore, the histogram can be estimated as (1).

o(t) =n - (e(t) +np) +ng, M

where 5 € (0, 1), indicating the quantum efficiency of the sensor. n;, and n, are the background noise and
dark-count noise. €(t) is the signal flux reflected from the target, which can be modelled as (2),

ety =a-s(t— %) 2
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where «a is the attenuation factor, D is the distance from the sensor to the target, and c is the speed of light.
Therefore, the histogram represents that the reflected photons of N illuminations can be modelled as (3),

h(t)~Poisson(N)®(t) 3)

By following the equation for analytically generating synthetic training datasets, we employ the datasets to
train a deep neural network, which is discussed in the next section. This pixel-wise processing DL alleviates
computational complexity compared with 3D-based DL architecture, simplifying the feature extraction from
complex 3D latent space to 1D latent space while maintaining accuracy.

4. DEEP LEARNING ARCHITECTURE

Inspired by previous U-NET-like 3D architectures [2], [20], [21], we proposed a similar topology,
but only 1D convolution was used. Batches of histograms were fed into the U-NET for training. Key modules
in the network (down-sampling, concatenation, convolution, up-sampling) are colored in Figure 1 and
indicated in the black dashed box. Batch normalization modules were used to improve the training stability
and convergence speed. The ground truth depth images in the training datasets are from the NYUV2 datasets
[13]. A texture filtering [12] algorithm was used to alleviate the imperfection of depth information due to the
Kinect camera. Histograms were generated using (1), (2), and (3). In the last layer, the multi-channel feature
is processed into a single-channel feature and processed by an argmax (-) to find the peak index, thereby
calculating the distance. Notably, unlike previous training datasets of 3D architecture that generate huge
point clouds (tens of gigabytes) from multiple scenes in the datasets, our model only generates histograms
from one scene, where the training datasets are just 15.1 MB. Similarly, our training speed is approximately
ten of times faster than previous 3D U-NET architectures [2], [20], and [21]. While generating histograms in
the training datasets, we defined optical parameters presented in Tables 1 to 5.
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Figure 1. The inference pipeline of the 1D U-NET architecture for pixel-wise depth image

Table 1. Pre-defined parameters to generate synthetic histograms

Parameter Value
Number of time bins 1024
Temporal resolution 19.53 ps

Spatial resolution 64x64
SBRs [0.01, 5]
Laser FWHM 117.18 ps
Laser FWHM peak index 5
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Table 2. Downsample the details of the deep neural network
Down sample

Layer name Output shape Activation function
Conv-down sample, K (9), S (2), P (4) + Batch normalization (256, 1, 1, 512) ReLU
Conv-down sample, K (7), S (2), P (3) + Batch normalization (256, 1, 1, 256) ReLU
Conv-down sample, K (5), S (2), P (2) + Batch normalization (256, 1, 1, 128) ReLU

Table 3. Convolutional layers details of the deep neural network
Conv-same spatial dimension

Layer name Output shape Activation function
Conv, K (9), S (1), P (4) + Batch normalization (256, 1, 4, 1024) ReLU
Conv, K (9), S (1), P (4) + Batch normalization (256, 1, 4, 1024) ReLU
Conv, K (9), S (1), P (4) + Batch normalization (256, 1, 6, 512) ReLU
Conv, K (9), S (1), P (4) + Batch normalization (256, 1, 6, 512) ReLU
Conv, K (7), S (1), P (3) + Batch normalization (256, 1, 8, 256) ReLU
Conv, K (7), S (1), P (3) + Batch normalization (256, 1, 8, 256) ReLU
Conv, K (5), S (1), P (2) + Batch normalization (256, 1, 10, 128) ReLU
Conv, K (5), S (1), P (2) + Batch normalization _ (256, 1, 10, 128) ReLU

Table 4. De-convolutional layers details of the deep neural network

Up sample
Layer name Output shape Activation function
ConvTrans., K (9), S (2), P (4) + Batch normalization (256, 1, 5, 256) ReLU
ConvTrans, K (9), S (2), P (4) + Batch normalization (256, 1,5,512) ReLU
ConvTrans, K (9), S (2), P (4) + Batch normalization (256, 1, 5, 1024) ReLU
ConvTrans, K (9), S (2), P (4) + Batch normalization (256, 1, 5, 1024) ReLU

Table 5. De-convolutional layers details of the deep neural network
Refine
Layer name Output shape Activation function
Conv, K (9), S (2), P (4) + Batch normalization (256, 1, 1, 1024) -

The deep learning model is implemented using PyTorch and runs on an NVIDIA RTX A1000 GPU.
The learning rate is set to 10-3, and RMSprop is the optimizer. Kullback-Leibler (KL) divergence is employed
as the loss function to evaluate the model's performance. An early stopping mechanism is incorporated with a
patience of 20 epochs to prevent overfitting. The dataset comprises 50,000 histograms for training, with an
additional 5,000 for validation during training. Signal-to-background ratios (SBRs) for the training datasets
are set to 5, 2.5, 1, 0.5, 0.2, 0.1, 0.05, and 0.01, consistent with other photon-efficient architectures [2], [4],
[22]. The training and validation losses are shown in Figure 2. This setup ensures robust training and
evaluation of the deep learning model, leveraging PyTorch's capabilities and harnessing the computational
power of the NVIDIA RTX A1000 GPU for efficient processing.
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Figure 2. KL divergence loss curve of training and validation
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5. QUANTITATIVE EVALUATION

This section assesses the precision of depth reconstruction achieved by our deep learning architecture.
It juxtaposes it with conventional maximum likelihood (ML) methods and Shin et al. optimization-based
algorithm. Synthetic datasets are meticulously simulated, ensuring a comprehensive evaluation framework.

5.1. Synthetic datasets evaluation

We used depth images in the Middlebury datasets [11] as the ground truth (GT) depth image and
generated synthetic histograms using known optical parameters for our network’s evaluation. The datasets
were also leveraged by other SPAD-based depth image reconstruction using deep learning [2], [3], [21]. As
shown in Figure 3, our network is robust for low SBRs. We also compared our network with ML and Shin
et al. methods, which are also pixel-wise. Shin et al. algorithm also used a pixel-averaging method to
enhance the accuracy of spatial dimensions. The comparison across seven different SBRs from seven scenes.
The results are shown in Table 6.

Reindeer

Figure 3. Synthetic datasets. The point cloud is simulated using pre-defined optical parameters. Different
SBRs are 1, 2.5, and 2. MAEs of each reconstructed image versus the GT images are indicated in each image

Table 6. Accuracy comparisons among three pixel-wise reconstruction algorithms
in synthetic training datasets
Algorithm SBR  Book Art Bowling Doll Moebius Reindeer

ML 5 2.59 252 2.13 2.55 2.48 2.56
25 4.78  4.66 432 4.70 4.53 4.57

1 6.87 6.79 6.32 6.73 6.54 6.69

Shin et al. 5 225 214 2.07 221 2.11 2.54
25 4.53 444 4.03 4.58 4.46 4.53

1 6.44 623 6.02 6.57 6.52 6.45

1D UNET 5 0.03 0.03 0.02 0.01 0.02 0.12
25 026 034 0.21 0.21 0.18 0.44

1 1.12  1.03 0.32 1.23 1.22 131
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5.2. Captured datasets evaluation

Apart from the evaluation of synthetic datasets, we also investigated the performance of captured
datasets [20]. We also compared our deep neural network with ML and Shin et al. method. As shown in
Figure 4, we present the reflectivity images to reference spatial information. The intensity images were
retrieved from the scanned point cloud, and all histograms were taken at the temporal dimension. Regarding
ML’s performance, the reconstruction depth images contain numerous NaN values represented by white
pixels in the depth images due to the low photon counts. Our approach achieved a comparable reconstruction
to Shin’s method. Notably, Shin’s method is sometimes susceptible to intense ambient light. For example, the
bulb was not reconstructed robustly in the lamp scene. And our method achieved better visualization of the
bulb. Also, as Shin’s algorithms involve a spatial averaging process, the spatial depth might be worse if
pixel-wise depth information is not recovered accurately. Future work can employ more advanced neural
networks, such as a graph neural network (GNN) [25] for point cloud analysis [23].
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Figure 4. Reconstructed depth images of the captured point cloud. There are five scenes: an elephant doll, a
hallway, a lamp, a ball on a staircase, and stuff on a table. Images of reflectivity, intensity, and reconstruction
are depicted

6. CONCLUSION

This work presents a compact and accurate 1D depth image reconstruction from histograms of
SPAD arrays with low SRBs. Compared with the previous 3D deep neural networks that require tens of
gigabytes of training datasets of point clouds, our network only requires a 15.1 MB histogram training
dataset. Additionally, the 3D networks consume hours to finish training, whereas our 1D architecture only
requires 12 minutes. Similarly, for inference, the high spatial resolution point cloud for 3D networks should
be divided into small portions, for example, 1/8 spatial resolution, to infer partial depth images in multiple
batches and stitch the depth images afterwards. 3D convolutions consume huge GPU memory and cannot be
processed in one batch. However, our 1D pixel-wise architecture does not have the memory overflow issue
due to lightweight 1D convolutions, making it easier to implement on embedded hardware in vehicles or
drones for practical applications. Compared with conventional machine learning and other photon-efficient
algorithms, our methods show higher accuracy for synthetic datasets. As for the evaluation of captured
datasets, our network is more robust against ambient light. The limitation of this work is that no spatial
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information is extracted during DL training due to the pixel-wise processing nature. A potential approach to
address this could involve incorporating a low-cost RGB image to provide 2D spatial structural details during
training, compensating for the lack of spatial resolution.
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