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 As digital electronic systems continue to shrink in size, they face increased 

susceptibility to transient errors, especially in critical applications like neural 

networks, which are not inherently error-resilient. Multipliers, fundamental 

components of neural networks, must be both fault tolerant and efficient. 

However, traditional fault free designs consume excessive power and require 

substantial silicon real estate. Among existing multiplier architectures, the 

Dadda multiplier stands out for its speed and efficiency, but it lacks fault 

tolerance needed for robust neural network applications. Therefore, there is 

need to design a power efficient and fault free Dadda multiplier that can 

address these challenges without significantly increasing power consumption 

or hardware complexity. In this paper a solution involving a fault tolerant 

Dadda multiplier optimized for neural network applications is proposed. 

Because of its speed and efficiency when compared to other multipliers 

Dadda multiplier is used as the base architecture which is designed using 

carry select adder (CSA) in conjunction with binary to excess one converter 

to reduce power and complexity. To enhance fault tolerance, self-repairing 

full adder is used to implement the CSA. This allows the system to detect 

and correct errors, ensuring robust operation in the presence of transient 

faults.  This combination achieves a power efficient, fault tolerant multiplier 

with a power consumption of 52.3 mW, reflecting a 3% reduction in power 

compared to existing designs. 
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1. INTRODUCTION 

Fault tolerance can be defined as the property which helps a system to continue operating properly 

even if there are failures in some of the constituent components. Designs which are fault tolerant enable the 

systems to operate at a reduced level rather than failing completely if some part of the system fails. The 

systems must have the ability to detect the failures and repair them in as much less time as possible. 

A significant portion of all hardware defects are transient faults caused by radiation or temperature 

impacts. For any system to be fault tolerant system, self-checking and self-repairing properties are required. 

The most commonly used methods to address faults are redundancy schemes: time redundancy, hardware 

redundancy and information redundancy. Protection from transient fault is proposed using Time redundancy 

in [1] in which, similar operations are carried out by the clone hardware, in addition to the primary hardware, 

https://creativecommons.org/licenses/by-sa/4.0/
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at different time intervals. Difference in time interval to the duplicate hardware is implemented by providing 

delayed clock. Detection of fault is done by comparing the outputs arriving at different intervals. By 

performing similar operations at different time intervals an area overhead and cost can be reduced. In 

Hardware redundancy method more than one hardware is used to produce different outputs. Outputs of the 

redundant and the original are compared to determine the faulty or fault free condition. The major 

disadvantage is the area overhead incurred [1]. To detect real time faults information redundancy could be 

used. Fault detection in combinational logic can be carried out by using error detection codes or predicted 

parity bits. The major drawback of area overhead in hardware redundancy could be overcome by using 

multiple parity groups [1]. Various approaches are used to attain fault tolerance but at the cost of power, area 

and delay. Thus, by incorporating fault tolerance and a low power design strategy for the fundamental 

building blocks, the problem of defective systems and power-hungry redundancy schemes will be reduced.  

Adders and multipliers are the building blocks of digital circuits as well as neural networks. To 

make digital systems fault free it is imperative to use fault tolerant adders and multipliers. The time required 

for execution of the algorithms is dependent on the multiplication process which is where we require high 

speed multipliers. The comparative analysis of delay power performance of various multipliers given in [2] 

shows that there are several architectures to choose balancing power, delay and area. To implement fault free 

circuits, multiplier designs which are fault tolerant should be adopted. This can be achieved using fault 

tolerant adders to design multipliers. The Dadda multiplier, which is known for being faster and more 

efficient, is selected as the base multiplier architecture. To farther enhance the Dadda multiplier, a carry 

select adder (CSA) is proposed. The CSA improves the speed of arithmetic operations by precomputing 

multiple sums in parallel. In this design, the CSA uses a binary to excess one converter, which replaces the 

conventional adders to reduce power consumption and area. This setup allows overall reduction in hardware 

complexity while maintaining performance. To achieve fault tolerance, self-repairing adder is employed in 

the CSA. This design approach helps handle single and double faults effectively thus contributing to the 

reliability of the multiplier and ensuring that errors can be self-corrected. One of the fastest adder in digital 

systems is CSA which performs better arithmetic operations. Using fault tolerant CSA Dadda Multiplier 

design is proposed here. The proposed CSA is built using self-repairing full adder which is fault tolerant. 

This Dadda multiplier can be used in neural network applications. 

 
 

2. RELATED WORK 

Many low power implementations of adders using pass transistor logic, transmission gate [3], [4] 

results in output degradation and consumes more power. Using pass transistor and branch-based logic, full 

adder design [5] can reduce the dynamic power consumed. Reduced power consumption can be obtained 

from hybrid full adder using gate diffusion method [6], [7]. The full adder mentioned in [8] which uses 16 

transistors is a very promising design for the application outlined in this study since it has low power 

dissipation and good output fidelity. To keep the integrity, a hybrid 20-T Full adder that generates full swing 

at both the sum and carry could be used. Compact and low power architecture using shared adder [9] could 

be used in implementing CSA. The CSA adder is regarded as one of the quickest adders for solving 

arithmetic functions in majority of the digital processing systems [10]. The propagation of carry to the 

following step is the primary factor that restricts the speed of addition. Usage of CSA can be seen in a variety 

of processing systems to obtain sum by producing a number of carry from which one carry is chosen and 

hence optimizing the delay issue of carry propagation [11]. However, the major issue here is that the CSA 

uses numerous pairs of ripple carry adders (RCA) by seeing carry as input to construct the carry and the 

respective partial sum. The final sum and carry are chosen by a multiplexer (MUX), and the entire process 

shows that this approach is inefficient use of area. Therefore, a fundamental idea of applying a binary to 

excess-1 converter (BEC-1) is provided to advance the speed of addition [12]. 

Based on the capabilities, the multiplication procedure can help the system to reach a high data rate 

[13]. We need high speed multiplier because the majority of the algorithms’ execution times depend on the 

multiplication operation. A huge volume of data must also be evaluated in a variety of applications of digital 

processing systems and very large-scale integration (VLSI) which calls for high performance processors [14]. 

Multipliers are essential in achieving improved performance outcomes for this goal. Therefore, the 

multiplier’s operating speed is crucial and must be taken into account when developing circuits for digital 

systems specially for general-purpose processing [15]. There have been numerous attempts in recent years to 

create multipliers that offer high speed and low power. In essence, multipliers come in two flavors: serial 

multipliers and parallel multipliers. In general, parallel multipliers operate more quickly than serial 

multipliers [13]–[16]. Several multipliers like array multipliers, Dadda multipliers, Wallace, Booth 

multipliers are studied for their performance in [17]–[19]. Different algorithms and strategies have already 

been developed to achieve the least amount of delay, power consumption, and output through a digital 
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circuit. Merge delay transform [17], [18], genetic evolutionary algorithms are a few of the strategies now in 

use. All of these methods are implemented using complementary metal-oxide-semiconductor (CMOS) 

technology. Low power design approaches for other applications for VLSI implementation discussed in 

[20]–[22] is studied to see whether those can be applied for the application tried here. There are three steps in 

the operation of multipliers: creation of a partial product, its addition, and its final addition. The second stage 

of multiplication often involves the partial product reduction process, which can be bottleneck in terms of 

performance and power consumption. Parallel prefix adders, approximate adders, novel compressors are 

some of the methods reviewed in [23]. Dadda multiplier designed using compressors are discussed in [24] 

shows considerable prospects in reducing area and power and delay. A non-truncated design is used to design 

Wallace multiplier in [25] using approximate compressors which shows increased performance and less 

power consumption. Applications of approximate compressors for multipliers used for image processing 

discussed in [26] is prospective design as the accuracy metric is not compromised and has less power 

consumption. In multiplier design as discussed in [27] uses an and gate to generate a correction term to 

correct errors. Approximation method for multiplication using 4:2 compressors and full adders is discussed 

for image processing applications in [28]. Approximate computing assessment techniques for internet of 

things (IoT) and machine learning applications where requirement for accuracy is not paramount is discussed 

in [29]. Recursive based approximate multipliers for error resilient application is discussed in [30] which is a 

prospective contender in low power applications. In the existing architecture, it is found that different 

multipliers are build using full adder which are not fault free. In order to overcome this problem, Dadda 

multiplier is implemented using CSA which is fault tolerant with low power implementation. 
 

 

3. PROPOSED DESIGN  

3.1.  Proposed fault tolerant carry select adder 

The multiply accumulate unit (MAC) consists of adders, multipliers and accumulators where the 

multiplier is the heart of every MAC unit. The reduction and generation of partial product in multipliers has 

large contribution to power consumption. A regular CSA includes two RCA which produces sum and carry. 

One RCA generates ‘Carry 0’ and the second RCA generates ‘Carry 1’. Multiplexers are used for the 

selection of any one carry pin output. But the carry select adder-based Radix-multiplier consumes larger area 

and more number of transistors. To avoid more power consumption fault tolerant CSA using binary to excess 

one converter (BEC-1) is implemented. The constituent fault tolerant self-repairing full adder [8] block as 

shown in Figure 1 is used in CSA in turn making the CSA fault free. For the sake of brevity 4-bit adder 

design is considered here. Figure 2 represents the block diagram of fault tolerant CSA. Here carry 1 operates 

the same as that of regular CSA but carry 0 makes use of BEC-1 that adds 1 carry in the sum. Finally, MUX 

used to select the end result based on actual carry Cin. Equations (1) and (2) represent the sum and the carry 

out for the fault tolerant 4-bit carry select adder. 

 

𝑆𝑖 = (𝑋𝑖 ∗ 𝐶𝑖𝑛 ) + (𝑋𝑥𝑖 ∗ 𝐶𝑖𝑛)                      (1) 

 

𝐶𝑜𝑢𝑡 = (𝐶4 ∗ 𝐶𝑖𝑛 ) + (𝑋𝑥3 ∗ 𝐶𝑖𝑛)                (2) 

 

 

 
 

Figure 1. Block diagram of self-repairing full adder consisting of self-checking full adder which identifies 

fault and a decision-making MUX [8] 
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Figure 2. Block representation of 4-bit carry select adder using binary to excess 1 converter, full adder and 

2:1 MUX [23] 

 

 

3.2.  Proposed Dadda multiplier 

Dadda multiplier works similar to that of Wallace tree multiplier, but the difference is it is much 

faster and requires fewer gates. The proposed carry select adder is implemented in Dadda multiplier to obtain 

low power. Figure 3 represents the dot diagram of 8-bit Dadda multiplier where the height of each stage 

depends on the working principle of the final stage. The final stage includes two partial product rows. Each 

stage has a height of order 2, 3, 4,6,9,13,19,28,42,63. The complete 8-bit dot diagram includes six stages. 

This stage includes 16 number of rows.  

 

 

 

 
 

Figure 3. Dot diagram of Dadda multiplier for N=8 

 

 

The first stage involves simple multiplication of multiplicand and multiplier which is termed as 

partial product stage. The first column in first row represents the least significant bit. 2nd row stage is being 

obtained from 3rd row stage, and 3rd row stage is obtained from 4th row stage with the help of (3, 2) and (2, 2) 

counters from the dot diagram. S indicated the number of stages used to implement the multiplier. In the 
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(S-2) stage,6th row stage helps in deriving the 4th row stage. The 6th row can be obtained from 9th row stage. 

This can be (S-3)th stage. In the (S-4) stage, the 9th row stage is gained by 13th row and it can be obtained 

from partial product stage. The needed number of full adders in this Dadda implementation is N2-4N+3, and 

required number of half adders is N-1. Figure 3 shows the total number of reduced stages to design Dadda 

architecture. For clarity 4-bit multiplier operation is shown here. 8-bit operation can be obtained by using two 

of such 4-bit blocks. Figure 4 represents the block diagram of 4-bit Dadda multiplier. 

 

 

 
 

Figure 4. Block diagram representation of Dadda multiplier using carry select adder implemented using the 

design mentioned in Figure 2 

 

 

4. RESULTS AND DISCUSSION  

The proposed Dadda multiplier is designed using ISE Xilinx software and the waveform is 

simulated using Xilinx simulator. Figure 5 represents the simulation results of fault tolerant self-repairing full 

adder. The faults occurred in the full-added circuit is repaired by the self-repairing process. 

Figure 6 represent schematic diagram of 4-bit fault tolerant carry select adder using excess 1 

convertor where there are 4 bits of input ‘A’ and 4 bits of input ‘B’ along with C𝑖𝑛 and C𝑖𝑛 0. It produces an 

output of sum S0 – S3 and carryout C𝑜𝑢𝑡. Figure 7 represents RTL schematics view of 4-bit fault tolerant 

carry select adder obtained after synthesizing the code. Figure 8 shows simulation waveform of 4-bit fault 

tolerant carry select adder. The inputs are Ao – A3 and Bo – B3. Outputs Sum is represented as S0 – S3 

while the carry is represented as Cout.  

 

 

 
 

Figure 5. Simulation results of self-repairing full adder 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 3, June 2025: 1-1x 

6 

 
 

Figure 6. Top level schematic diagram of 4-bit fault tolerant carry select adder 
 

 

 
 

Figure 7. RTL Schematic view of 4-bit fault tolerant carry select adder 
 

 

 
 

Figure 8. Simulation result of 4-bit fault tolerant carry select adder 
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8-bit Dadda multiplier can be made by extending the 4-bit design discussed previously. The 8-bit 

Dadda multiplier which is implemented using fault tolerant CSA with BEC. It includes 8 bits input of A and 

B and produces a final output of 16-bit.  

Figure 9 shows the RTL Schematic view and Figure 10 represents simulated waveform of 8-bit Dadda 

multiplier. For different values inputs the results are verified. Table 1 shows comparative result for power and 

delay of 8-bit Wallace, Array and Dadda multiplier. The comparison results show that among all the multipliers 

Dadda multiplier with CSA using excess one converter in its carry propagation path is more efficient. The 

power is reduced by 3% when compared to Wallace Tree multiplier and the delay is reduced by 2.8%. 
 

 

 
 

Figure 9. RTL schematic view of 8-bit Dadda multiplier 
 

 

 
 

Figure 10. Simulation result of 8-bit Dadda multiplier 

 

 

Table 1. Comparison of different multipliers based on delay and power dissipation 
Multipliers (8 by 8) Delay (ns) Power (mW) 

Array multiplier 3.02 5.16 

Wallace multiplier 2.81 5.39 

Dadda multiplier 2.73 5.23 

 

 

5. CONCLUSION  

Neural networks are not inherently fault tolerant. It has to be made fault free. Implementations of 

fault free carry select adder and multiplier can result in the constituents of a neural network fault free. The 

Self-Repairing full adder design can identify and repair both single and double faults at a time. The aim of 

fault-tolerant circuits is to reduce the probability of failures. The constituent self-repairing full adder which is 

used for CSA is fault tolerant in nature. Since this is used for building CSA, in turn making it fault free. 8-bit 

Dadda multiplier which has low power dissipation is implemented using this CSA. The desired output 

waveforms are obtained. In this paper, an implementation of the Dadda multiplier is carried out. The Power 

consumed by the proposed Dadda multiplier is 5.23 mW. The power comparison results show that the 

proposed design reduces the power by 3% than array multiplier and wallace multiplier. CSA with BEC that is 

fault tolerant is designed and implemented in the proposed multiplier. From all the comparison results it is 

evident that the Dadda multiplier using fault tolerant CSA with BEC more efficient. The proposed 8-bit 

Dadda tree multiplier which uses the fault-tolerant CSA using BEC-1 reduces power significantly more than 

several other existing multipliers. These multipliers, though, are also fairly quick compared to other 

multipliers. 
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