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 Stress impacts both mental and physical health, potentially leading to  

serious conditions like cardiovascular diseases and mental disorders. Early 

detection of stress is crucial for reducing these risks. This study aims to 

improve stress detection by analyzing physiological signals, specifically 

electroencephalography (EEG) and electrocardiogram (ECG). EEG is 

affordable, while ECG provides detailed insights into cardiovascular health. 

Feature selection is a major challenge in analyzing these signals. To address 

this, the research introduces a novel method that combines the Archimedes 

optimization algorithm (AoA) with the analytical hierarchical process (AHP) 

to enhance accuracy in both single and multimodal systems. The proposed 

multimodal system employs a parallel-structured convolutional neural 

network (CNN) with a deep architecture to extract spatial features and uses a 

long short-term memory (LSTM) network to capture temporal dynamics. 

Experimental results show significant improvements: ECG stress detection 

accuracy rises from 88.6% to 91.79%, EEG accuracy increases from 95% to 

96.6%, and multimodal stress detection accuracy reaches 98.6%. These 

results highlight the effectiveness of the AoA-AHP-based feature selection 

technique in boosting stress detection accuracy, contributing to improved 

mental health management and overall well-being. 
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1. INTRODUCTION 

In modern workplaces, high expectations, tight deadlines, and financial concerns often lead to stress, 

contributing to mental health issues like depression and anxiety. These problems result in accidents, reduced 

productivity, poor decision-making, and disrupted sleep. Researchers are exploring stress detection methods 

using audio, video, and physiological sensors. However, audio methods face challenges with mimicry, while 

video methods struggle with facial tracking in low light [1]–[5]. 

Electroencephalography (EEG) and electrocardiogram (ECG) signals are essential for stress 

detection, with EEG offering real-time, cost-effective analysis that improves mental health outcomes [6]–[8]. 

Stress impacts both the brain and cardiovascular system, potentially causing arrhythmias and heart issues. 

Recent studies leverage ECG data with machine learning to improve stress detection accuracy and 

cardiovascular health [9]–[12]. Research evaluates models like support vector machine (SVM), linear 
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discriminant analysis (LDA), and logistic regression (LR) for stress detection using EEG and ECG, 

emphasizing the need for affordable, noise-free multimodal solutions [13]. Another study enhances accuracy 

with adaptive fusion technology for feature extraction and decision-making [14].  

Key challenges include computational complexity and noisy data. This paper introduces the 

Archimedes optimization algorithm-analytical hierarchical process (AoA-AHP) feature selection method and 

a hybrid parallel deep convolutional neural network-long short-term memory (PDCNN-LSTM) model to 

boost accuracy and address signal complexity, offering reliable stress detection solutions. Section 1 reviews 

mental stress detection, section 2 outlines the methods, and section 3 presents the experimental findings, 

comparing them with current approaches. 

 

 

2. MATERIAL AND METHOD 

The multimodal stress detection system enhances accuracy by tackling challenges such as noise, 

complexity, and data integration. Advanced preprocessing methods, including noise removal and artifact 

rejection, improve signal clarity. Robust feature selection combined with deep learning models enables the 

detection of intricate patterns for more reliable stress detection. 

 

2.1.  Dataset 

The proposed multimodal stress detection system integrates EEG signals from the online DEAP 

dataset and ECG signals from the online WESAD dataset. This research conducts experiments across three 

distinct configurations: ECG stress detection, EEG stress detection, and multimodal stress detection.  

EEG and ECG data samples are considered under normal and stress conditions, as listed in Table 1. 

 

 

Table 1. EEG and ECG stress detection sample 
Class EEG samples (DEAP dataset) ECG samples (WESAD dataset) 

Normal 104 283 
Stress 140 165 

Total 244 448 

 

 

Multimodal stress detection utilizes paired EEG and ECG data to examine stress effects on brain and 

heart activity. The dataset comprises 244 samples, with 104 from normal conditions and 140 from stress 

conditions, facilitating analysis of both systems. This approach provides a comprehensive evaluation of stress 

indicators, enhancing detection accuracy and reliability. 

 

2.2.  Proposed methodology 

The proposed multimodal stress detection methodology involves five key stages: enhancing 

EEG/ECG signals via wavelet packet transform, extracting multiple features, performing feature-level fusion, 

selecting relevant features with the AoA-AHP algorithm, and utilizing PDCNN-LSTM for final detection, as 

shown in Figure 1. Each stage addresses challenges like noise, complexity, and high-dimensional data. The 

wavelet packet transform improves signal clarity by removing noise and retaining essential information, 

while the AoA-AHP algorithm optimizes feature selection to enhance model efficiency and accuracy. 

 

2.2.1. Enhancing EEG/ECG signals via wavelet packet transform 

Raw EEG and ECG signals go through preprocessing to remove noise and artifacts using techniques 

like filtering, artifact rejection. After preprocessing, the signals are enhanced by the wavelet packet 

decomposition method as it divides them into frequency bands and reconstructs them to improve clarity and 

reduce noise, as illustrated in Figure 2. 

This method includes decomposing the EEG/ECG signal using wavelet packet transform (WPT) and 

then applying Donoho's soft thresholds to eliminate noise and artifacts efficiently.  

 

𝑤𝑖,𝑗 = {
𝑥𝑖,𝑗 +

2

𝜋
tan−1( 𝛽

𝑥𝑖,𝑗
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2
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 (1) 

 

In this context, 𝑤𝑖,𝑗 is the threshold wavelet coefficient. 𝑥𝑖,𝑗 is the original wavelet coefficient. 𝛽 and 𝛼 are 

parameters that control the shape and behavior of the threshold. 𝑇ℎ is the threshold value. λ is a value that 

differentiates between two thresholding behaviors. 𝑠𝑔𝑛(𝑤𝑖,𝑗) is returns -1, 0, or 1 based on the sign of 𝑤𝑖,𝑗.  
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Figure 1. Proposed methodology  

 

 

.  

 

Figure 2. Enhancing EEG signals via WPT 

 

 

2.2.2. Extracting multiple EEG/ECG features 

This research integrates 513 EEG features and 72 ECG features to effectively analyze stress levels. 

EEG features encompass statistical measures, temporal patterns, and frequency-domain attributes, capturing 

critical brain signal characteristics linked to stress. ECG features reflect changes in heart activity, offering 

valuable insights into stress-induced cardiovascular responses. Together, these features provide a 

comprehensive analysis, enhancing the accuracy and reliability of the proposed detection system. 

a. Multiple EEG features 

This stress detection study extracts multiple EEG features from both the temporal and frequency 

domains, including variance, mean, local gradient patterns (LGP), local neighbor difference patterns (LNDP), 

local binary patterns (LBP), Hjorth parameters, intensity-weighted mean frequency and bandwidth (IWBF and 

IWBW), and wavelet packet decomposition. These approaches enhance EEG signal representation by 

incorporating various time-domain and frequency-domain components, as detailed in Table 2. 513 EEG features 

capture brain signals' spectral, temporal, and spatial properties, essential for identifying stress-related patterns. 

 

 

Table 2. Extracted multiple EEG features 
Feature group No. Feature group category Features 

1 Statistical measure Mean, SD, variation, median, skewness 

2 Temporal feature Activity, mobility, mobility 

3 Non-linear and energy measure Entropy, nonlinear energy, line length 
4 Pattern based feature extraction LBP, LNDP, LGP 

5 Energy and frequency measure Energy, IWMF, IWBF 

6 Wavelet transform WPT 

Note. IWMF: instantaneous wavelet mean frequency, IWBF: instantaneous wavelet band frequency  
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b. Multiple ECG features 

As listed in Table 3, ECG features are crucial for detecting stress and reflecting heart activity 

changes. Morphological features indicate structural changes. Wavelet transform features and statistical 

parameters provide signal insights. Impulsive metrics highlight sudden changes. Hjorth's parameters capture 

dynamic behaviors, enhancing stress detection and monitoring through ECG. 

EEG features complement ECG by capturing neural activity patterns linked to stress. These features 

provide insights into brain dynamics across temporal and frequency domains, enabling the detection of 

stress-induced neural changes. Using EEG and ECG data, the system identifies both neural and 

cardiovascular patterns, providing a reliable and inclusive approach to stress detection. 

 

 

Table 3. Extracted multiple ECG features 
Feature group No. Feature group category Features 

1 Morphological features QRS duration, ST. segment elevation, T wave amplitude 

2 Wavelet transform features Mean, Kurtosis, SD, variance of 3rd level WPT 

3 Statistical features Mean, Kurtosis, shape factor, and skewness 

4 Impulsive metrics features Crest factor, peak value, impulse factor, clearance factor 

5 Hjorth’s parameters Activity, mobility, and complexity 

 

 

2.2.3. EEG and ECG feature level fusion 

Fusion technologies like concatenation, PCA, LDA, and Min-Max fusion enhance model performance 

by integrating diverse data sources. These methods ensure a comprehensive representation of patterns in the 

data. As shown in Figure 3, concatenation fusion directly merges raw feature vectors, preserving all information 

without transformation. 

This approach simplifies implementation and prevents the loss of critical information. The proposed 

system uses concatenation fusion to combine EEG and ECG feature vectors into a unified vector, preserving 

the original data. This method aims to enhance model accuracy and robustness in stress detection by retaining 

all relevant features and allowing for the learning of intricate patterns and interactions among the EEG and 

ECG signals. 

 

 

 
 

Figure 3. Concatenation feature level fusion 

 

 

2.2.4. Identification of relevant features using AoA-AHP algorithm 

Feature selection is essential for analyzing high-dimensional EEG and ECG data. While PCA 

reduces dimensionality, it often loses important features. Genetic algorithms (GA) and recursive feature 

elimination (RFE) identify features effectively but are computationally expensive. The AoA efficiently 

selects key features by balancing exploration and exploitation through a strong fitness function, ensuring 

optimal convergence and avoiding local minima. To enhance feature selection, AoA integrates the AHP, 

using weighted metrics to prevent disruptions in the fitness landscape caused by random weight assignments. 
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a. Archimedes optimization algorithm 

The Archimedes optimization algorithm (AoA) enhances EEG and ECG feature selection for stress 

detection by initializing variables and random constants, as illustrated in Figure 4. It generates a population 

of feature subsets with random volumes, positions, and densities. This algorithm balances exploration and 

exploitation using a transfer operator to adjust feature densities and volumes. During exploration, feature 

subsets interact, while in exploitation, they do not. The algorithm continuously updates positions to refine 

key EEG features through iterative fitness computations, ultimately selecting the subset with the best fitness 

for optimal stress detection. 

b. Analytical hierarchy process 

The analytical hierarchy process (AHP) aids in selecting the most relevant features for stress 

detection through EEG and ECG signals by structuring the decision-making process hierarchically, as 

illustrated in Figure 5. The AHP evaluates criteria such as covariance, entropy, and the ratio of inter-class to 

intra-class variability through pairwise comparisons, generating priority weights that rank each feature's 

importance. A consistency check ensures that the comparisons remain reliable and logical, helping to 

determine the most significant features for stress detection. 

 

 

 
 

Figure 4. Archimedes optimization algorithm 

 

 

 
 

Figure 5. Hierarchically flowchart of analytical hierarchy process 
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2.2.5. Stress detection through PDCNN-LSTM 

The AoA-AHP approach generates a 1D feature vector, passing through PDCNN convolutional 

layers. Batch normalization and rectified linear unit (ReLU) activation enhance nonlinearity. Pooling layers 

reduce spatial dimensions while retaining critical information. Subsequently, the LSTM network captures 

temporal dependencies using memory cells and gates with Sigmoid and Tanh activations. By combining 

spatial feature extraction with sequential processing, the PDCNN-LSTM effectively analyses spatially 

dependent data. This model optimizes layer sizes, dropout rates, and learning rates during training, making it 

suitable for detecting complex patterns like stress. 

 

 

3. EXPERIMENTAL RESULTS AND DISCUSSION 

Experimental results show that various algorithms detect stress from EEG and ECG data effectively. 

Traditional methods like decision trees (CT) and k-nearest neighbors (KNN) struggle with complex patterns, 

while SVM, especially the radial basis function (RBF) variant, handles non-linearity better. Ensemble 

methods improve accuracy but lag behind deep learning models.  

Figure 6 highlights PDCNN-LSTM as a top performer, achieving 97.3% accuracy and 100% 

precision by combining spatial and temporal features for effective stress detection. The research tests the 

PDCNN-LSTM algorithm for stress detection using EEG-only, ECG-only, and multimodal (EEG+ECG) 

configurations. It highlights this algorithm's performance, and Table 4 compares its accuracy with leading 

methods and confirms its effectiveness for stress recognition in each setup. 

 

 

 
 

Figure 6. Comparative analysis of algorithms  

 

 

Table 4. Performance evaluation of the proposed stress detection systems against state-of-the-art 
Author  Bio signal used   Deep learning model Accuracy 

[15] EEG CNN 60.21% 

[16] EEG  Deep CNN 64.20% 

[17] EEG CNN 77.90% 

[18] EEG  EEG-Conv 82.95% 
[19] EEG 3-D AlexNet CNN 86.12% 

[20] EEG Symmetric DCAN 87.62% 

[21] EEG 2-D CNN 93.00% 
[22] EEG Two-layer LSTM 93.27% 

[23] EEG  ConNet+LSTM 84.48% 

[24] EEG GWO+BLSTM 82.57% 
[25] ECG, EDA FDA 87.5% 

[26] ECG, EDA, BVP ANN 79% 

[27] EEG, ECG PCA, SVM 79.54% 
[28] EEG, ECG, EMG LDA 86.0% 

[29] EEG, ECG, EDA PCA, SVM 86.0% 

Proposed modal ECG  
PDCNN+LSTM 

88.6 
EEG 95 

EEG+ECG 97.3  

Note. EDA: electrodermal activity, BVP: blood volume pulse, EMG: electromyography,  

GWO: grey wolf optimizer, FDA: functional data analysis, ANN: artificial neural network 
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3.1.  Architecture design of the proposed multimodal stress detection  

This study improves accuracy by integrating the optimized AoA-AHP feature selection technique 

with a novel multimodal stress detection architecture, as shown in Figure 7. The process begins by denoising 

EEG and ECG signals to enhance data quality. AoA-AHP then selects the most relevant features, boosting 

model performance. The experiments evaluate how AoA-AHP impacts accuracy across three configurations. 

In ECG stress detection, AoA-AHP selects 50 features and raises accuracy to 91.79%, compared to 88.6% 

with all 72 features using PDCNN+LSTM. In EEG stress detection, AoA-AHP with 350 features increases 

accuracy to 96.5%, up from 95% with all 513 features. For multimodal stress detection, AoA-AHP with 350 

features boosts accuracy to 98.6%, surpassing the 97.3% achieved with all 586 features. Overall, AoA-AHP 

significantly enhances accuracy by optimizing feature selection, reducing dimensionality, and preserving 

essential information. 

 

 

 
 

Figure 7. Architecture design of multimodal stress detection 

 

 

4. CONCLUSION  

This research improves stress detection by employing a hybrid architecture that combines a LSTM 

model with a PDCNN to analyze EEG and ECG signals. It enhances feature selection by integrating the AoA 

with the AHP. This proposed system effectively addresses noise and high dimensionality, achieving 

significant accuracy improvements: ECG stress detection rises from 88.6% to 91.79%, EEG detection 

improves from 95% to 96.6%, and the multimodal approach reaches 98.6% accuracy. 

These advancements have substantial implications for clinical practice and industrial settings. 

Clinically, the system enables earlier and more precise identification of stress-related conditions, leading to 

timely intervention and better mental health management. In industrial contexts, it supports real-time stress 

monitoring and helps improve employee well-being and productivity by identifying stress early and 

implementing effective strategies. This research highlights the advantages of a multimodal approach and 

advanced feature selection, suggesting potential for further enhancement with additional modalities and 

refined methods. 
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