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 In the current era of vast information availability, the dissemination of 

misleading health information poses a considerable obstacle, jeopardizing 

public health and overall well-being. To tackle this challenge, experts have 

utilized artificial intelligence methods, especially machine learning (ML) 

and deep learning (DL), to create automated systems that can identify 

misleading health-related information. This study thoroughly investigates 

ML and DL techniques for detecting fraudulent health news. The analysis 

delves into distinct methodologies, exploring their unique approaches, 

metrics, and challenges. This study explores various techniques utilized in 

feature engineering, model architecture, and evaluation metrics within the 

realms of machine learning and deep learning methodologies. Additionally, 

we analyze the consequences of our results on enhancing the efficacy of 

systems designed to detect counterfeit health news and propose possible 

avenues for future investigation in this vital area. 
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1. INTRODUCTION 

In today's digital landscape, where information is readily accessible and disseminated at remarkable 

speeds, the rise of misinformation, particularly in health-related matters, has emerged as a critical and 

challenging issue. Inaccurate health information encompasses a wide spectrum of misinformation, ranging 

from exaggerated claims about the efficacy of specific treatments to completely false data related to diseases 

and public health measures. The consumption of disinformation can lead to significant consequences, such as 

making erroneous health choices, endorsing hazardous practices, and eroding confidence in credible sources 

[1]. The rise of social media platforms, online forums, and instant messaging applications has enabled the 

swift spread of misleading health information, frequently outpacing the capacity of fact-checkers and health 

authorities to counter false claims. The coronavirus disease (COVID-19) pandemic has exacerbated the 

situation by facilitating the swift dissemination of misinformation regarding the virus, vaccines, and public 

health measures across digital platforms. This has led to tangible consequences, such as hesitancy towards 

vaccines and non-adherence to preventive strategies [2], [3]. In response to the growing issue of misleading 
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health information, scholars and engineers have been investigating innovative approaches that leverage 

artificial intelligence (AI) techniques. Machine learning (ML) and deep learning (DL) are powerful tools for 

the automatic detection of fraudulent health-related information. Machine learning algorithms, encompassing 

traditional classifiers and ensemble methods, have been employed to analyze the textual, visual, and 

contextual features of health news articles and social media content. At the same time, deep learning 

algorithms, known for their capacity to comprehend complex patterns from large datasets, have shown 

promise in identifying nuanced signs of fake news [4]. This study aims to provide a comprehensive analysis 

of the techniques in ML and DL that are employed for the detection of fake health news. The focus is on 

conducting a comparative analysis of various methodologies, performance indicators, and challenges related 

to this task. By synthesizing and examining current research, we seek to provide a meaningful contribution to 

the advancement of artificial intelligence-driven solutions that could effectively address misinformation in 

the health sector [5]. This comparison study aims to analyze and comprehend the benefits and drawbacks of 

ML and DL techniques. Through this approach, we aim to acquire significant insights that can enhance the 

precision and dependability of systems designed to detect false health news. 

In the following sections, we will review the literature on identifying fake health information. This 

will include an examination of machine learning and deep learning algorithms, training and evaluation 

datasets, feature generation strategies, and model performance indicators. We will also examine the 

difficulties of identifying bogus health information and suggest ways to improve AI-driven solutions to 

combat health misinformation [6]. Computer scientists, information scientists, and public health experts are 

interested in identifying fake health news. This section summarizes ML and DL studies on false health news 

detection. Key approaches, datasets, feature engineering methods, and evaluation measures from earlier 

works are highlighted [7]. Several research has used typical machine learning algorithms to detect fake health 

news. Zihan et al. used language features and user factors to categorize health-related tweets as real or 

deceptive using support vector machine (SVM). Their efforts identified deceptive smoking cessation tweets 

with potential results [8]. Castillo et al. detected health forum misinformation using naive Bayes classifiers. 

Textual attributes and user interaction patterns were used [9]. Along with the above methods, false health 

news detection has used random forests and gradient boosting. Olusola et al. used a random forest algorithm 

to evaluate COVID-19 related news stories as trustworthy or untrustworthy based on language and source 

reliability. Ensemble learning algorithms were accurate in identifying dubious news sources, reducing 

disinformation during public health crises [10]. Deep learning algorithms can find complex patterns in raw 

data, which might reveal fake health news. Text categorization, including fake news detection, is a common 

use of convolutional neural networks (CNNs). Wang et al. used a CNN to identify health-related tweets as 

trustworthy or untrustworthy. Their results showed that their strategy outperformed traditional machine 

learning [11]. 

Recurrent neural networks (RNNs), including long short-term memory (LSTM) and gated recurrent 

unit (GRU), have been used to predict sequences and detect false health news. Chen et al. used textual and 

contextual data to categorize health articles as trustworthy or untrustworthy using an LSTM-based model. 

Their method identified counterfeit health news stories better than machine learning methods, showing that 

deep learning can recognize temporal linkages and complex linguistic clues. Multi-dataset models have been 

trained and evaluated to identify bogus health news. The datasets include publicly available collections like 

HealthMisinfo and proprietary datasets based on online forum and social media data. Models that recognize 

bogus health news are evaluated using accuracy, precision, recall, and F1-score. In these jobs, eliminating 

false positives and negatives must be balanced [12]. Identifying fraudulent health information has improved, 

but many obstacles remain. The growth of disinformation across various platforms, malicious actors' ever-

changing methods, and the lack of labeled data for exact detection models are major hurdles in this sector. 

Scholars, professionals, and decision-makers from different fields must collaborate to solve these problems. 

Additionally, breakthrough AI-powered solutions that can adapt to changing information environments and 

stop the spread of incorrect health information are needed. The following sections will compare ML and DL 

methods for detecting bogus health news [13], [14]. Their strengths, shortcomings, and performance 

measures will be analyzed using standard datasets. We will also examine how our findings may affect future 

health sector misinformation studies and applications. 

 

 

2. METHOD 

Identifying false health news can be achieved through machine learning by employing a range of 

algorithms and feature engineering methods. This discussion focuses on various performance metrics, feature 

engineering strategies, and machine learning techniques aimed at identifying fraudulent health news articles 

[15]. One method to detect misleading health information involves the application of support vector 

machines, naive bayes, decision trees, or random forests. Given its strong performance in high-dimensional 
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feature spaces, SVM has been utilized to classify health-related text by taking into account lexical, syntactic, 

and semantic factors. Naive Bayes classifiers demonstrate an impressive capability to differentiate between 

authentic and fraudulent health records, even with minimal training data, highlighting their effectiveness 

despite an appearance of simplicity [16]. Decision trees and random forests excel at managing nonlinear 

relationships and feature interactions, enabling them to identify nuanced signs of misleading health 

information. Ensemble methods like random forests improve generalization and reduce overfitting by 

combining the predictions of multiple base learners [17]. Feature engineering transforms raw text into 

significant representations for classification, helping machine learning identify bogus health news. Term 

frequency-inverse document frequency (TF-IDF) weights, word embeddings, bag-of-words representations, 

and syntactic or semantic linguistic analysis features are used [18]. Bag-of-words approaches ignore text 

structure and order when estimating word frequency. TF-IDF weighting highlights valuable traits while 

downplaying common phrases by boosting discriminative terms throughout documents. Word2Vec and 

GloVe use continuous vector space to densely represent words, capturing contextual nuances and semantic 

commonalities [19]. Machine learning algorithms leverage user engagement indicators like likes, shares, and 

comments, publication timeliness, and source credibility to detect fake health news. These metadata 

characteristics improve classification model discrimination using contextual information [20].  

Machine learning systems that recognize bogus health news are evaluated using accuracy, precision, 

recall, and F1-score. The ratio of correctly categorized occurrences determines model accuracy [21]. 

Precision measures the percentage of real positives to total positives, while recall measures model accuracy. 

In imbalanced class distributions, the F1-score—the harmonic mean of recall and precision—improves model 

performance [22]. Area under the receiver operating characteristic curve (AUC-ROC) and area under the 

precision-recall curve (AUC-PR) are used to evaluate machine learning models' discriminative capability and 

robustness at different classification thresholds [23]. Machine learning evaluates health news stories using 

algorithms, feature engineering, and performance indicators. These algorithms are effective, but they may 

struggle to recognize minor language variations and adapt to evil people's deception. The pros and cons of 

using machine learning and deep learning to identify fake health news will be examined [24]. Deep learning 

systems can automatically understand complex patterns in sequential, visual, and textual data, identifying 

bogus health news. Techniques, model designs, and performance measures for recognizing fake health 

information are covered here. Advanced techniques use sequential or textual neural network designs to 

recognize deceptive health information. Text categorization often uses CNNs. Convolutional neural networks 

build hierarchical text representations using convolutional and pooling layers. CNN-based models can 

capture local and global text trends using word embeddings as dense vectors [25]. Figure 1 shows how deep 

learning and machine learning are used to create models using material and recommended attributes. False 

news models are produced only from content, while feature-based models are built using content and 

readability features. We compare their performance. 

LSTM and GRU excel at sequential data modeling and long-range relationships. Traditional RNNs 

struggle with vanishing gradients, whereas LSTM and GRU variations preserve text sequence context and 

temporal dynamics [26]. The context and word order of online discussions, news stories, and social media 

updates greatly affect believability. These models help evaluate such content. Transformer-based models like 

bidirectional encoder representations from transformers (BERT) and its variants have identified fake health 

news. BERT models use self-attention processes to gather bidirectional contextual information from input 

sequences to understand complicated textual representations without sequential processing. Pre-trained 

BERT embeddings fine-tuned using domain-specific datasets perform well at identifying bogus health news. 

Deep learning algorithms emphasize linguistic nuances, contextual signals, and semantic links to identify 

deceptive health news. Word2Vec, GloVe, and FastText capture contextual nuances and semantic similarities 

by representing words as dense vectors using continuous vector spaces. Dynamic relevance focusing uses 

word embeddings and attention mechanisms to reduce irrelevant data and emphasize relevant input 

sequences in deep learning models. Giving informative words and phrases more weight helps the computer 

discern factual from false content. Deep learning models that recognize bogus health news are assessed using 

accuracy, precision, recall, and F1-score. AUC-ROC and AUC-PR are additional measures for assessing 

deep learning models' discriminative power and robustness across classification criteria. Deep learning 

models are trained on large labeled datasets and evaluated on distinct test sets to ensure generalization. By 

dividing data into smaller sets, cross-validation can check model stability and variability. DL-based false 

health news detection systems can be assessed qualitatively for error analysis and model interpretability [27]. 

Deep learning uses transformers, RNNs, and CNNs to detect health news misinformation in textual or 

sequential data. These models generate complex representations of incoming information via assimilation of 

semantic links and contextual cues of dishonesty. Traditional metrics and qualitative assessments are used to 

evaluate deep learning models. Following sections will examine the pros and cons of using deep learning and 

machine learning to detect fake health news. 
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Figure 1. Methodology proposed 

 

 

2.1.  Comparative analysis 

A comparison of machine learning and deep learning methods for identifying false health news is 

presented, including an analysis of their performance measures and associated challenges. An analysis of the 

advantages and limitations of both techniques is conducted to assess their effectiveness in mitigating health 

misinformation. In machine learning techniques, handcrafted characteristics and classical algorithms are 

employed to classify health content as either authentic or false. These methods require significant feature 

engineering and domain knowledge to derive valuable features from unprocessed textual data. Machine 

learning models have the potential to rival well-constructed features and ensemble methods; however, they 

often face challenges in identifying intricate patterns and advanced linguistic cues associated with misleading 

health news [28]. Rather than relying on feature engineering, deep learning techniques employ neural 

network architectures to autonomously learn representations of input data. Deep learning models, particularly 

those based on transformer architectures such as BERT, are capable of capturing intricate semantic 

connections and contextual details from textual data, thereby enhancing the detection of false health news. 

Deep learning models often require extensive labeled datasets and significant computational power for 

training, which can limit their use in environments with limited resources. Metrics such as accuracy, 

precision, recall, and F1-score are employed to assess machine learning and deep learning models in the 

context of identifying fake health news. With carefully crafted features and finely tuned hyperparameters, 

machine learning models can perform competitively on benchmark datasets. There is a possibility that they 

will not be able to generalize to new information or adjust to the deceptive strategies employed by adversarial 

entities. Deep learning models have the capability to identify intricate patterns within unprocessed data, 

surpassing traditional machine learning approaches in the detection of false health news. Transformer 

architectures leverage pre-trained embeddings and self-attention mechanisms to identify subtle linguistic cues 

associated with fraudulent or deceptive content, demonstrating strong performance on benchmark datasets. 

Deep learning models can exhibit overfitting tendencies, particularly when trained on limited datasets, 

necessitating fine-tuning with domain-specific data to achieve optimal performance. 
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3. RESULTS AND DISCUSSION 

The accessibility of GPUs for intensive computations enables condition-based maintenance (CBM) 

and failure-based maintenance (FBM) to implement machine learning and deep learning techniques within 

the Google Colab framework. The code was developed using several Python packages, including Matplotlib, 

Scikit-learn, NumPy, pandas, and Keras. The deep learning models employed a 100-dimensional GloVe 

word embedding. A sequential model featuring multiple layers of neurons, available in Keras, was utilized to 

build the models that depend on deep learning. To evaluate the precision of false news classification, CBM 

employed five machine learning algorithms: decision tree, random forest, support vector machine, AdaBoost-

decision tree, and AdaBoost-random forest. The results are illustrated in Figure 2. We conducted an analysis 

of the performances of five machine learning algorithms using FBM. Figure 3 presents the results, 

incorporating the readability features in conjunction with the content. The performances of CNN-LSTM and 

CNN-BiLSTM were analyzed for both the CBM and the proposed FBM. The materials are analyzed through 

a sophisticated methodology for the FBM, utilizing state-of-the-art techniques including the GloVe 

embedding approach, SMOG score, and TTR. These techniques are utilized to produce exact and reliable 

input vectors. Figures 4 and 5 illustrate a comparative analysis of the performance between CNN-LSTM and 

CNN-BiLSTM for both CBM and FBM. The figures are organized according to their performance metrics. 

 

 

 
 

Figure 2. An evaluation of the efficacy of conventional machine learning models in comparison to  

content-based models 

 

 

 
 

Figure 3. A comparison of how well traditional machine learning models work in the area of  

feature-based learning 

 

 

The F1-score serves as an important metric for assessing the performance of the model, as it takes 

into account both Precision and Recall. The model's capability to predict and identify genuine instances is 

crucial for recognizing false news. The top-performing model in each category was identified according to its 

F1-score. Figure 6 presents the top model in each category, accompanied by its performance metrics. The 

experiments indicate that feature-based models demonstrate superior performance compared to traditional 
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models. The findings indicate that AdaBoost-RF stands out as the leading performer among the content and 

feature based models. Upon examination of both groups, it is clear that AdaBoost-RF attained the highest  

F1-score. In the comparison between AdaBoost-RF and feature based AdaBoost-RF, it is notable that the 

former reaches an F1-score of 98.5% in CBM, whereas the latter surpasses this with a score of 98.9%. The 

AdaBoost-random forest model, well-respected in its domain, is affiliated with the FBM group and is 

frequently employed for the classification of false news. 

 

 

 
 

Figure 4. The proposed deep learning models' performance is compared under the content-based category 

 

 

 
 

Figure 5. Feature-based performance comparison of suggested deep learning models 

 

 

 
 

Figure 6. The top models in each category are compared 
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4. CONCLUSION  

The spread of inaccurate health information occurs swiftly on social media and online platforms, 

presenting a significant risk to public health. Experts have utilized machine learning and deep learning 

techniques to create automated systems capable of identifying and addressing misleading health 

information. This investigation examines the approaches, obstacles, and prospective concepts for 

identifying fraudulent health information. In resource-constrained environments, it is possible to achieve 

interpretable machine learning solutions by employing traditional methodologies and handcrafted features. 

These methods might face challenges in identifying complex patterns and nuanced linguistic signals 

associated with deceptive health news. Nonetheless, advanced methodologies like convolutional neural 

networks, recurrent neural networks, and transformer-based models demonstrate exceptional capability in 

uncovering subtle semantic relationships and contextual details from raw textual data. Deep learning models 

demonstrate considerable effectiveness; however, their application is often limited by the requirement for 

large labeled datasets and substantial computational resources during the training process. Recognizing 

misleading health information moving forward necessitates cooperation among various fields, the 

application of cutting-edge research techniques, and the establishment of stringent assessment frameworks. 

Future studies should concentrate on creating models that withstand adversarial attacks, with the ability to 

identify and counteract these threats. Furthermore, it is essential to investigate the application of multimodal 

content analysis for assessing various forms of information. Additionally, it is essential to improve the 

clarity and understanding of detection models. The compilation of comprehensive collections of categorized 

datasets from various fabricated health news sources will facilitate the advancement of scalable, efficient, 

and real-time detection algorithms. 
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