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 Data imputation enhances dataset completeness, enabling accurate analysis 
and informed decision-making across various domains. In this research, we 
propose a novel imputation method, a spectral clustering based on a gene set 

using adaptive weighted k-nearest neighbor (AWKNN), and an imputation 
of missing data using a convolutional neural network algorithm for accurate 
imputed data. In this research, we have considered the Kaggle water quality 
dataset for the imputation of missing values in water quality monitoring. 
Data cleaning detects inaccurate data from the dataset by using the median 
modified Weiner filter (MMWFILT). The normalization technique is based 
on the Z-score normalization (Z-SN) approach, which improves data 
organization and management for accurate imputation. Data reduction 

minimizes unwanted data and the amount of capacity required to store data 
using an improved kernel correlation filter (IKCF). The characteristics and 
patterns of data with specific columns are analyzed using enhanced principal 
component analysis (EPCA) to reduce overfitting. The dataset is classified 
into complete data and missing data using the light- DenseNet (LIGHT DN) 
approach. Results show the proposed outperforms traditional techniques in 
recovering missing data while preserving data distribution. Evaluation based 
on pH concentration, chloramine concentration, sulfate concentration, water 

level, and accuracy. 
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1. INTRODUCTION 
Water is essential for life on Earth. However, many nations experience freshwater scarcity. They 

were extremely driven to use other resources as a result of this worrying situation. For instance, Gulf nations 

use a laborious desalination process to obtain fresh water from the sea [1]. Multi-metric indices and 

operational indicators were used to monitor water quality across time and space [2]. However, this process 

becomes remarkably difficult because of the increased development along the coast and the resultant water 

contamination. To acquire freshwater, some nations process rainfall. Rainfalls have recently been affected by 

climate change, jeopardizing this possibility [3]. Even nations with easier access to fresh water still suffer 

https://creativecommons.org/licenses/by-sa/4.0/
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from water-related problems. The major goal of this study is to raise awareness of water contamination in the 

general population. The World Health Organization (WHO) and the United States Environmental Protection 

Agency (USEPA) often provide updates and suggestions on handling newly discovered illnesses and water 

toxins. In addition to research showing the effects of pollution and global warming on water supplies, the 

World Water Council (WWC) forecasts a 40% to 50% increase in world population over the next 50 years 

[4], [5]. The substantial increase, coupled with urbanization and industry, has the potential to elevate the 
overall water demand significantly. 

The warning mentioned above signs leads to a future worldwide water disaster. Freshwater has 

become an industrial commodity on the verge of such a water catastrophe. In metropolitan locations, it is 

often kept in overhead or underground tanks under municipal management, sometimes for lengthy periods 

before consumption. Thus, continuous analysis of water quality is essential to categorize water for use and 

avoid waste. For instance, water that cannot be consumed might be used for cleaning [6], [7]. Human 

activities, including agriculture, industrial manufacturing, and dumping of urban effluent, have caused a 

decline in water quality. In many areas of modern civilization, including the economics, ecology, and 

environment, poor water quality is pervasive and has a detrimental impact on many different components of 

those systems. On this basis, the worldwide society has established objectives to improve the quality of 

freshwater resources [8], [9].  

Globally, such objectives are often set out in guiding conventions that are sanction-free and 
voluntary. Sustainable Development Goal (SDG) 6 on water and its associated aim to improve water quality 

serves as a primary example. Some areas, such as the EU via the European Water Framework Directive, have 

legislation with legal punishments behind them in place at the regional level. Such objectives require 

advanced water quality monitoring schemes based on quantifiable and applicable water quality indices  

[10]–[12]. Committed countries have agreed to evaluate their freshwaters using the metric “Proportion of 

bodies of water with good ambient water quality” as part of the recognized SDG indicator. To evaluate the 

condition of a water body reasonably rapidly using known procedures, a set of parameter groups and 

particular parameters are utilized as measures. The parameters include oxygen, salinity, nitrogen, 

phosphorus, and acidification [13], [14]. Experience has demonstrated that monitoring becomes difficult 

because of the lack of data on these characteristics at the relevant temporal and geographical scales. We find 

gaps in the amount and quality of data provided for the associated disciplines of water, sanitation, and [15], 
[16]. Therefore, the problem faced by experts in scientific monitoring and organizations for monitoring 

operations is narrowing the worldwide data gap on water quality. Many variables affecting the performance 

of monitoring systems have been found in water quality monitoring [17]. The capabilities of monitoring 

agencies, including factors relating to human capacity, financing of monitoring operations, and the 

accessibility of technological equipment, stand out among them. However, the majority of this research on 

water quality monitoring focuses on certain applications, including drinking water [18], [19]. In the present 

study, we present a new imputation approach, the spectrum clustering based on a gene set using adaptive 

weighted k-nearest neighbor (AWKNN), and the imputation of missing data using the convolutional neural 

network (CNN) algorithm for reliable imputed data.  

Handling missing data in water quality monitoring has faced many challenges in recent years in 

terms of pre-processing, data profiling, and imputation. The existing works provide achievable results but 
still lack an effective solution. Some of the major problems are as follows. High complexity: In some 

previous studies, imputation of data was performed based on the analysis, and data in the dataset were not 

divided (i.e., complete data and missing data). However, complete data remain in the, thereby leading to 

complexity. In addition, the consideration of unwanted data in the dataset increases the amount of capacity 

and errors, resulting in complexity. Inaccurate imputation: The pre-processing of data improves the overall 

performance. The existing works perform pre-processing, but noises are not removed desirably, thereby 

increasing the inaccurate imputation of missing data. In several existing works, missing data validation was 

based on a crosshead attention mechanism and consistency check. Whereas rule-based validation was not 

performed, leading to inaccurate missing data handling. Poor quality of service (QoS): In some existing 

works, the imputation of missing values based on three rules (i.e., missing completely at random (MCAR), 

missing at random (MAR), and not missing at random (NMAR)) and duplicate data was not verified and 

validated. However, the duplicate data remains the same, resulting in poor QoS. In addition, data profiling 
was performed using column profiling (i.e., analysis of characteristics). On the contrary, the lack of value 

repetitions considered leads to poor data profiling and affects QoS. 

In the current years, handling missing data for water quality monitoring is an emergent issue in the 

realm of pre-processing, profiling, and imputation. The available works can indeed provide good results, yet 

there are no better approaches. The major problems facing this approach are enumerated hereafter: 

a. High complexity: The existing data has been imputed based upon their previous research analysis, and 

data did not divide in the dataset-both complete data and missing data. But if complete data existed in the 
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dataset, complexity arises. In addition to that, unwanted data, along with considering the amount of 

capability inside datasets raises it, which results in bringing errors into the dataset followed by complexity 

b. Inaccurate imputation: Existing works pre-process data but the noises are not removed in a desirable 

manner which increases the inaccuracy of missing data imputation. Many exciting works validated 

missing data using cross-head attention mechanisms and consistency checking. But it does not perform 

rule-based validation, so incorrect handling happens for missing data. 

c. Poor QoS: In some of the existing work, the missing value imputation by using three rules (i.e. MCAR, 
MAR, NMAR) and the duplicate data were not validated and confirmed. However, in such cases, when 

duplicate data exist in the same; it causes bad QoS. Moreover, profiling based on column profiling is 

conducted such that the characteristic of analyzing lacks considering repetitions of values thereby causing 

Poor profiling of data that affect the QoS. 

The major objective of this research is to reduce the complexity, increase the QoS, and accurately 

impute, as well as perform profiling of the missing data. Some objectives of this research are as follows: i) 

Enhanced data quality improves the data with missing and noisy data identifications and reduction of 

unwanted data, which also helps increase the accuracy of imputation; ii) To reduce the complex nature of 

imputation while using rule-based validation, and data profiling that can be used to reduce latency because it 

identifies duplicate data, mainly through checks and rules; and iii) It classifies the datasets and executes 

imputation based on their gene set with the use of spectral clustering to improve accuracy. It reduces 

processing time and increases imputation accuracy.  
The main purpose of this research is to handle missing data for accurate water quality monitoring 

using a water quality dataset. Some of the specific highlights of this research are as follows: i) Sophisticated 

techniques including the improved kernel correlation filter for effective data-reduction methods, Z-score 

normalization to standardize its values, and the median modified Weiner filter for noise elimination during 

the preprocessing step; ii) Among its applications, two of them include enhanced principal component 

analysis in terms of column and cross-column profiling and rule-based validation in consistency, uniqueness, 

and existence checks to identify trends and ensure data integrity with possible quality concerns; iii) Adaptive 

weighted k-nearest neighbors clustering (AWKNNC) assures exact clustering along with flexibility to large 

datasets; it groups data according to the kinds of missing values, and the LIGHT DenseNet model divides 

datasets into full and missing data categories; and iv) In the case of similarity-based clustering, missing data 

is handled with very high accuracy by a CNN, which can reconstruct data in real-time for water quality 
monitoring. 

The structure of this paper shows how the proposed method could be useful in dealing with problems 

arising from missing data imputation in water quality monitoring. The introduction, states problems related to 

water quality in different parts of the world, indicates weaknesses of existing imputation methods, specifically 

including high complexity, errors, and poor quality of service, and puts into perspective the remedy suggested. 

The literature review studies relevant work, highlighting its limitations and evidencing the gap for an improved 

and more accurate imputation process, which this work tries to provide. The novelty architecture that involves 

spectral clustering, AWKNN, CNN, and advanced data preprocessing techniques, such as median modified 

Weiner filter (MMWFILT), Z-score normalization (Z-SN), and improved kernel correlation filter (IKCF) are 

discussed elaborately in the section proposed methodology. It can be evidenced that these newer techniques 

increase accuracy and minimize complexity. The proposed method has some important performance metrics 
better than the current ones in pH concentration, chloramine, and sulfate, and therefore its utility is shown. It is 

depicted in experimental results and discussion. The contribution of this study, improvement upon the existing 

ones, and the potential future directions of the work have been stated in conclusion and future work. The section 

contributes to the manuscript's impact on the quality monitoring system for water. 
 
 

2. LITERATURE SURVEY 

In this section, existing research on gene set imputation methods and rule-based approaches for 

recovering missing water quality monitoring data is discussed. The research has introduced machine learning 

and statistical strategies for addressing the issue of missing values, for example, support vector regression 

(SVR), hybrid decomposition-imputation models, and sequence-to-sequence learning-based models. Though 

these approaches have been promising in some contexts, they are generally marred by higher computational 

costs, ineffective rule-based validation, and poor data profiling, resulting in errors during the imputation of 

missing data. Additionally, conventional imputation methods, including k-nearest neighbor (KNN) and 

classification-based approaches, are not discriminatory between complete and missing data, compromising 

data quality and consistency at large. Hence, there is still a need for an adaptive and more efficient method 

that combines clustering algorithms, deep learning, and rule-based checking to refine imputation quality with 
low computational overhead. 
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2.1.  Related works 

The author in [20], proposed an SVR-based approach using a machine learning technique in filling 

missing values for data involving water quality. It covers the following: model selection profiling, and  

pre-processing the data. Despite success with SVR filling all missing values, there had been several extensive 

pre-processing that contributed towards extra complexities and energy requirements; there was no data 

preprocessing and noise reduction involved on its part, which may consequently be caused by wrong 
imputations with low quality of datasets.  

Study [21] developed a two-headed sequence-to-sequence missing imputation model for time-series 

data by using the cross-head attention mechanism. Though the model was very effective in terms of imputing 

the missing time series, there was no rule-based validation and hence introduced a lot of errors. Moreover, 

processing extraneous data added complexity and decreased efficiency as a whole.  

In study [22], a hybrid approach to wastewater treatment plants (WWTP) is proposed that combines 

decomposition and imputation. machine learning for univariate imputation that does not make a distinction 

between missing and complete data. machine learning. QoS was reduced due to redundancy as well as 

unnecessary complexity occasioned by failure to categorize datasets. Accuracy on imputation decreased due 

to frequent overfitting and underfitting by the systems of machine learning.  

In study [23], a novel approach was presented with an application of dummy full sequence matching 

combined with long short-term memory (LSTM) in imputing missing telemetry water level data. LSTM-
based models had a heavy increase in computational complexity compared to others because they highly 

consumed resources and had tremendous training times. There also were unclear distinctions between 

completed and incomplete data, so this resulted in high latencies and delays. 

In study [24], it applied different imputation methods including k-nearest neighbor, classification 

and regression trees (CART), and random regression imputation (RRRI) towards the recovery of missing 

hydrological data. Cross-head attention was a necessity in case it had to be validated. This set of techniques 

although performed excellently on the streams could be unreliable without a process of rule-based validation 

wherein the handling of missing data goes entirely inaccurate. 

Study [25], proposed an approach for machine learning-based water quality prediction involving 

multivariate imputation from several measurements. The problem with the approach is that the method 

suffers from overfitting and underfitting and is successful only in degree categorization of water 
contaminants. Noise and complexity within the dataset continued to be the challenging issues. 

Study [26] developed a sliding window method for data imputation and anomaly detection in 

hydrological time series datasets. Even though it got the irregularities right, it did not distinguish between 

complete and missing data. This led to a lag in processing with increases in computing complexity.  

In [27], support vector machine (SVM) had been used in the stage of imputing missing information 

about classification tasks. Although SVM increased the accuracy of classification, it failed to handle noise in 

the dataset effectively, which led to errors. Moreover, preparation was not enough to ensure the dependability 

of imputed data. 

Study [28], suggested the application of multiple imputations in machine learning for predicting the 

quantity of chlorophyll-a in coastal areas. The model succeeded in predicting biological traits but could not 

differentiate between complete and missing values in datasets. This resulted in making the imputation 
procedure complicated with both missing and full data 

Study [29] evaluated different imputation techniques for network data, ranging from simple imputation 

to complex model-based approaches. Although they worked very well in certain situations, these methods could 

not effectively handle redundant or duplicate data. It is leading to inconsistencies in the imputed results. 

Study [30] proposed the imputation of missing network data to improve sample coverage in the 

presence of complete and incomplete networks. Here, we compare the efficacy of various imputation 

techniques, from straightforward imputation to sophisticated model-based approaches, over a broad spectrum 

of measurement, network, and missing value characteristics.  

In study [11], KNN imputation and a multilayer perceptron model have been used for the quality 

prediction of water. Poor profile quality resulted because column profiling was employed in the processing of 

the data with no consideration given to value repeats. Quality of service (QoS) was restrained, and the 

general performance of the model degraded. Furthermore, we list existing objectives and issues in Table 1. 
Research solution: Utilizing Kaggle's water quality data set, this study approaches the issue of 

managing missing values in the monitoring of the quality of water in an efficient manner. A gene-based 

imputation, profiling, and improvement in data quality through this work. After processing through the 

MMWFILT for noise removal, effective data transformation and dimensionality reduction are performed by 

Z-SN and IKCF. To ensure integrity in the data, column and cross-column profiling will make use of 

enhanced principal component analysis (EPCA) combined with rule-based validation of data that covers 

consistency, uniqueness, and existence checks. Adaptive weighted KNN clustering is used for gene-based 

clustering while dataset classification makes use of the LIGHT DenseNet model if there is a process of 
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imputation of missing data. The use of a CNN for weighted imputation, which can reconstruct whole data 

sets for real-time water-quality monitoring, will ensure excellent accuracy. 

 

 

Table 1. Comparison of existing water quality monitoring methods 
Ref. Objective Water quality monitoring 

methods 

Limitations 

[20] To develop a machine learning approach for 

imputing water-quality data with a high percentage 

of missing values and address the challenge of 

missing data in water-quality measurements by 

applying machine learning techniques to 

accurately impute the missing values. 

Inverse distance weighting 

(IDW), random forest 

regressor (RFR), ridge (R), 

Bayesian ridge (BR), 

AdaBoost (AB) method 

Here, support vector regression was 

implemented to the imputation of missing values 

in the dataset. However, support vector 

regression required a large amount of data for 

processing, thereby increasing the complexity 

and energy consumption. 

[21] To improve the dual-head attention model for time 

series data imputation to enhance the accuracy and 

efficiency of imputing missing values in time 

series data. 

Dual-head sequence-to-

sequence imputation model 

Here, missing data validation was based on a 

crosshead attention mechanism, whereas rule-

based validation cannot be performed, leading to 

inaccurate missing data handling. 

[22] Using a univariate imputation method in 

wastewater treatment increases the efficiency and 

productivity of the overall process. 

WWTP integrating 

decomposition method 

Here, the imputation of data was performed 

based on analysis, and data are not classified 

(i.e., complete data and missing data) in the 

dataset. However, missing data remain and 

combined in the dataset, leading to complexity. 

[23] To propose and develop innovative techniques that 

can accurately and effectively fill in gaps in water 

level measurements collected from monitoring 

systems. 

LSTM method Here, the imputation of missing data was based 

dummy full sequence scheme. However, 

complete and incomplete data are not classified 

separately, thereby increasing the processing 

time and leading to high latency. 

[24] To recover missing data in hydrological studies to 

determine the most effective and accurate 

approach for handling missing data in this context. 

RRRI, CART, and KNN 

method 

Crosshead attention was used to validate missing 

data, whereas rule-based validation is proven 

ineffective for the same purpose, resulting in 

inaccurate treatment of missing data. 

[25] To develop a machine learning predictive model 

that can accurately detect water quality and 

pollution levels based on various parameters and 

data inputs, such as chemical composition, 

physical properties, and environmental factors. 

Predictive model using 

machine learning 

Here, machine learning algorithms were utilized 

for the imputation of missing values. These 

algorithms always produce overfitting or 

underfitting. This condition leads to high errors 

because it was unsuitable for imputation of 

missing data. 

[26] To develop a methodology for anomaly detection 

in hydrological time series data using a sliding 

window technique and data imputation with 

machine learning. 

Long short-term memory 

method 

Here, the imputation of missing data was based 

on dummy full sequence scheme. However, 

complete and incomplete data are not classified 

separately, increasing the processing time and 

leading to high latency. 

[27] To explore and identify effective techniques for 

handling missing values within datasets used for 

classification tasks, specifically using machine 

learning methods. 

Support vector machine 

method 

Here, the presence of noise in the dataset 

prevents the removal of missing data. However, 

inappropriate data remain unchanged despite 

attention, resulting in inaccurate imputation of 

missing data in the dataset. 

[28] To create a forecasting model for the concentration 

of chlorophyll-a in the Korean coastal zone using 

machine learning and multiple imputation 

techniques. 

Six machine learning 

algorithms 

Here, the imputation of data was performed 

based on three rules, and data are not classified 

(i.e., complete data and missing data) in the 

dataset. However, missing data remain and 

integrated in the dataset, leading to complexity. 

[29] To describe and implement a missing data 

imputation algorithm specifically designed for 

transmission systems. 

Korea electric power 

corporation method 

Here, the unwanted data are not reduced in the 

dataset. However, it increases the amount of 

capacity, leading to complexity 

[30] To explore and evaluate various imputation 

methods for missing network data, considering 

different network structures and patterns of 

missing data, and to enhance the accuracy and 

representativeness of network sampling coverage 

Simple imputation to more 

complex model-based 

approaches 

Here, the imputation of missing values is 

performed based on three rules, and duplicate 

data are not checked and validated. Whereas, the 

duplicate data remain the same, leading to poor 

QoS. 

[11] To analyze and predict water quality parameters by 

imputing missing values in the dataset using the 

KNN imputer and then using an MLP model to 

predict the water quality parameters using the 

available data accurately. 

KNN imputer method Here, data profiling was performed using 

column profiling (i.e., analyzing characteristics). 

By contrast, failure to consider value repetitions 

leads to poor data profiling, thereby limiting the 

QoS. 

 

 

3. PROPOSED METHOD 

In this work, we mainly focus on handling missing data in water quality monitoring. In addition, the 

classification of the dataset is based on the completeness level of the missing data. The Kaggle water quality 
dataset is considered for imputation of missing values in water quality monitoring. Several processes 
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involved in the proposed work are categorized into three main segments, namely: i) data quality 

enhancement, ii) data profiling and rule-based data validation, and iii) gene-based imputation of data. 

 

3.1.  Data quality enhancement 

Data quality improvement is an essential phase of enhancing missing data imputation reliability in 

water quality monitoring. Pre-processing is comprised of several steps: data cleaning, transformation, and 
reduction, to remove inconsistencies, normalize formats for data, and improve the efficiency of storage. The 

MMWFILT identifies and eliminates noise and errors, enhancing data integrity. Z-SN normalizes values 

within attributes, making comparison and analysis easier. The improved IKCF eliminates duplicate data, 

minimizing computational complexity while maintaining necessary information. All these processes 

collectively improve data quality, resulting in more precise missing data. 

 

3.1.1. Data cleaning 

Data cleaning is the process of detecting inaccurate data from the dataset by using MMWFILT. This 

filter detects the missing data (i.e., incorrect data). Cleaning data maintains data quality and enables more 

accurate imputation. 

 

3.1.2. Data transformation 
Data transformation is an essential pre-processing technique to change the data format and structure. 

Several processes are described as follows: In data smoothing generally, data have many noises, which degrade 

the detection accuracy. Noise removal is executed to eliminate undesired elements (i.e., incorrect data) from the 

dataset using the MMWFILT approach. This filtering method effectively removes noises and unwanted data.  

The MMWFILT noise reduction method was applied to model data related to water contaminants, 

including pH, hardness, sediment, chloramine, sulfate, and conductivity. These data were collected from 

environmental sensors and can be efficiently processed using local filters tailored to the geographical 

domain, ensuring swift and efficient text processing. Recently, data collected for water pollution monitoring 

pre-dictions turned out to be inaccurate, containing missing or erroneous information.  

After appropriate adjustments of the mask size around the surrounding area of the target pixel, the 

reduction techniques using spatial-domain-based local filters are built upon a predetermined equation. 
However, owing to blurring effects brought about by excessive smoothing, the picture properties of 

traditional spatial filters deteriorate. MMWFILT is a traditional local filter based on the spatial domain that 

combines the benefits of the Wiener filter and the median filter in a nonlinear adaptive filter. In our method, 

the Wiener filter, which processes images based on the variance of Gaussian noise, was used to simulate the 

MMWFILT algorithm by substituting the mean value of the pixels inside the mask with the median value. 

Thus, the Wiener filter is expressed as (1): 

 

ℎ𝑤𝑖𝑒𝑛𝑒𝑟 =  𝜇 + 
𝜎2+𝑢2

𝜎2   (𝑔(𝑞, 𝑝) − 𝜇),   (1) 

 

where 𝜇 and 𝜎 denote the mean and standard deviation values of the pixels located within the mask, 

respectively, and 𝜈 is the standard deviation of the noise. 

The Wiener filter is excellent in reducing noise because it considers all the pixel values in the region 

of interest (ROI). However, when the mean value is placed into the Wiener filter equation, high-frequency 

signals, such as those of the edge area, are lost. On the contrary, when a particular pixel value is selected 

during image processing, the median value more successfully maintains high-frequency signals while 

minimizing noise than the mean value. Thus, the MMWFILT is obtained as follows: 
 

ℎ𝑚𝑚𝑤𝑓 = �̂� + 
𝜎2+𝑢2

𝜎2   (𝑔(𝑞, 𝑝) − �̂�) (2) 

 

where �̂� denotes the median value of the pixels located inside the mask.  

We created a median modified wiener filter (MMWF) model based on (2) to enhance the data 

cleaning process. To ensure its effectiveness across various image resolutions, the MMWFILT’s mask sizes 

were carefully configured to 3×3, 5×5, 7×7, 9×9, and 11×11. These varying mask sizes allow for flexible 

application of the filter to captured images with different matrix dimensions, enabling precise noise reduction 

without compromising data structure. 

Data normalization Here, data normalization organizes data entries to ensure that they appear similar 
across all fields and records. As a result, information is easier to find, grouped, and analyzed. In the proposed 

work, the normalization technique is based on the Z-SN approach, which provides improved data 

organization and management for an accurate imputation.  
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Z-SN is a broad statistical method that may be used with various data types, including data from 

water quality monitoring. Z-SN may be used to normalize several water quality metrics to a single scale in 

water quality monitoring. Thus, comparing and evaluating the data becomes relatively simple. The equation 

(3) for Z-SN is as: 

 

𝑧 = 𝜎𝑥 − 𝜇,  (3) 
 

where z is the z-score of the data point x, μ is the mean of the dataset, and σ is the standard deviation of the 

dataset. 
The following procedures are used to apply Z-SN to data for water quality monitoring: 

a. The parameter’s mean (𝜇) and standard deviation (𝜎) are determined for water quality that requires 

normalization. Depending on the research objectives, normalization can be carried out either separately 

for each parameter or the entire dataset as a whole.  

b. To obtain the z-score for each data point x in the water quality parameter, the values are integrated into 

the z-score equation.  

c. The generated z-scores indicate how many standard deviations a data point deviates from the mean. A 

positive z-score suggests that the data point is above the mean, whereas a negative z-score indicates that it 

is below the mean. 

 

3.1.3. Data reduction 

Data reduction is the process of eliminating unwanted data (i.e., repetitions of readings) and the 

amount of capacity required to store data using IKCF. This filtering method rapidly reduces the amount of 

information stored in the system using some methods. However, data reduction can increase storage 

efficiency and performance and minimize storage costs. The suggested technique based on the IKCF tracker 

is briefly described here. The IKCF tracker constructs a training set by cyclic shifting. Suppose the base 

vector x = (x1, x2, · · ·, xn)T, Q is a permutation matrix:  

 

𝑃 =

[
 
 
 
 
0 0 0 … 1
1 0 0 … 0
0
⋮
0

1
⋮
0

0
…
…

…
⋱
1

0
⋮
0]
 
 
 
 

.` (4) 

 

Then one of the cyclic shifts of x can be expressed as 𝑄𝑥 = (𝑥𝑛 , 𝑥1,· · ·, 𝑥𝑛−1)
𝑇 , which represents 

moving x one position to the right. By constantly left multiplying the permutation matrix 𝑄,{𝑄𝑢𝑥|𝑢 = 0,···
, 𝑛 − 1} can realize the cyclic shift of base vector x for u times. The cyclic matrix X is formed by combining 

all x-shift cycles in a single matrix. 

 

X= 

[
 
 
 
 

(𝑃0𝑥)𝑇

(𝑃1𝑥)𝑇

(𝑃2𝑥)𝑇

⋮
(𝑃𝑛−1𝑥)𝑇]

 
 
 
 

=  

[
 
 
 
 

𝑥1 𝑥2
𝑥3 … 𝑥𝑛

𝑥𝑛 𝑥1
𝑥2 … 𝑥𝑛−1

𝑥𝑛−1

⋮
𝑥2

𝑥𝑛

⋮
𝑥3

𝑥1

…
𝑥4

…
⋱
1

𝑥𝑛−2

⋮
𝑥1 ]

 
 
 
 

  (5) 

 
For any vector x, its cyclic matrix can be diagonalized by expression (6): 

 

𝑋 =  𝐹 𝑑𝑖𝑎𝑔(𝑥) 𝐹𝐻,  (6) 
 

where 𝑥 is the discrete Fourier transformation of x, F represents the discrete Fourier transformation matrix, 

and FH is the conjugate transpose of F. The IKCF tracker uses ridge regression to train the classifier. The 

main idea is to find a function 𝑓(z)  =  𝑓𝑇𝑧 that minimizes the mean square error between the output of all 

training samples and their expected output and the loss function, as (7): 

 
∑ (𝑓(𝑥𝑖) − 𝑦𝑖)

2 +  𝜆 ||𝑓||2𝑖=1 ,  (7) 

 

where λ is a regularization parameter and λ > 0. λ is used to prevent the model from overfitting; xi is the 

training sample of 𝑖; 𝑦𝑖 is the expected output of xi. The following is a closed-form solution to (8) derived by 

obtaining the training samples: 
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𝑓 = (𝑋𝑇𝑋 + 𝜆𝐼)−1𝑋𝑇𝑦,  (8) 

 

where X is a circular matrix of all training samples, y is the expected output vector, and I is the identity 

matrix. Directly solving the filter factor f involves a large number of matrix operations and a lengthy 

computation time. Using the properties of the circular matrix, (6) can be substituted into (8). Then, we obtain 

the (9): 

 

𝑋𝑇𝑋 = 𝐹 𝑑𝑖𝑎𝑔 (𝑥∗ )𝐹𝐻𝐹𝑑𝑖𝑎𝑔(𝑥)𝐹𝐻.  (9) 

 

According to the properties of the Fourier transform matrix, FHF = I, the solution of the filter in the 
frequency domain can be obtained by substituting (9) into (8) as: 

 

𝑓 = 𝑑𝑖𝑎𝑔
(�̂�∗ ⨀�̂�)

(�̂�∗ ⨀�̂�)+𝜆
,  (10) 

 

where denotes dot product; 𝑓, 𝑥, and �̂�are discrete Fourier transforms of 𝑓, 𝑥, and 𝑦, respectively, and 𝑥∗  

represent the complex conjugates of 𝑥. 

To improve the ability of the IKCF tracker to solve nonlinear problems, a kernel function is used to 

transform ridge regression problems in low-dimensional space into high-dimensional space ϕ(x), classify the 

samples in the high-dimensional space and solve the linear inseparability problem. Suppose the kernel 

function is 𝑘𝑥𝑥′
 =  𝜑𝑇(𝑥)𝜑𝑇(𝑥′), the formula f(z) = f t z can be written as: 

 

𝑓(𝑧) =  ∑ 𝛼𝑖
𝑛
𝑖  𝜑𝑇(𝑥𝑖)𝜑(𝑧) =  ∑ ∝𝑖

𝑛
𝑖 𝑘(𝑥𝑖 , 𝑧),  (11) 

 

For most kernel functions, such as the Gaussian kernel, the polynomial kernel, and the linear kernel, 

the kernel matrix still has the property of a cyclic matrix. Therefore, α can be solved by (12): 

 

∝̂= 
�̂�

�̂�𝑥𝑥+𝜆
 , (12) 

 

where �̂�𝑥𝑥 is the Fourier transform of the basis vector of the kernel matrix k=C (kxx). For the Gaussian kernel 

𝑘𝑥𝑥′
= exp(−

1

𝜎2 (||𝑥||
2
+ ||𝑥′||

2
, 𝑘𝑥𝑥′

)) can be expressed as (13):  

 

𝑘𝑥𝑥′
= exp(−

1

𝜎2 (||𝑥||
2
+ ||𝑥′||

2
− 2ℱ−1 (𝑥 ⨀ 𝑥 ′̂))) (13) 

 

The equation (14) is used to determine the response map:  

 

𝑓(𝑧) = ℱ−1(�̂�𝑥𝑧  ⊙ �̂�), (14) 

 

where �̂�𝑥𝑧 is the kernel correlation Fourier transform of samples x and z. In the current frame, the item is 

located at the coordinates that provide the highest response map value. Updating the filter template increases 

the tracking reliability. 
 

{
𝑥𝑡 =(1−𝜂)�̂�𝑡−1+ 𝜂�̂�𝑡

�̂�𝑡=(1−𝜂)�̂�𝑡−1+ 𝜂�̂�𝑡

,  (15) 

 

where 𝑥𝑡 and �̂�𝑡  are the features obtained from frame t, and η is the learning rate. 

 

3.2.  Data profiling and rule-based data validation 

After data pre-processing, data are analyzed via the data profiling process. Data profiling involves 

examining, analyzing, and creating useful data summaries. This process yields a high-level overview that 

aids in the discovery of data quality issues, risks, and overall trends. This approach also discovers, 

understands, and organizes data. Several processes are described in the following section. 

 

3.2.1. Column profiling 
Column profiling evaluates individual data columns for inconsistencies, missing values, and 

outliers. Improved principal component analysis (EPCA) helps detect correlation and avoid overfitting 

through the exploration of variance per column. Such processing structures water quality parameters such as 
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pH, sulfate, and chloramine content for increased reliability of the data. Successful profiling improves data 

integrity, reduces redundancy, and maximizes the accuracy of missing data imputation. 

 

3.2.2. Cross column profiling 

Here, cross-column profiling encompasses observing the values and counting the number of times 

each value shows up within each column using the EPCA approach. This method can effectively obtain the 

frequency distribution and patterns within a column of data. However, this approach identifies patterns in 
data by using the correlation features. 

 

3.2.3. Data rule validation 

Data rule validation is a proactive technique of verifying data instances, where data sets conform 

with predefined rules. This process improves data quality based on three checks, such as consistency checks, 

unique checks, and presence checks using the EPCA approach. Consistency check validation is an entity that 

confirms the consistency of node instances and the analysis result; it also contains read-only logic. The 

unique check is a process that examines data to identify rows with duplicate information. These duplicates 

may appear to be original data (e.g., 1.9979), but they exhibit slight variations (e.g., 1.9799) in their values 

within the table. Furthermore, the presence check is based on three rules, such as MCAR, MAR, and NMAR; 

it checks the presence of values in the required fields.  

In the EPCA feature selection technique, two steps are used to select values for the feature selection 
investigation and categorization. These actions rely on removing superfluous elements, the elimination of 

features and replacement of each quality with the conditional mean or marginal mean. The PCA’s 

fundamentals are studied and discussed in the following section. The random feature vector 𝑋 ∈ 𝑅𝑝 is 

assumed to have distribution P. The vector X has the coordinates X[i], i = 1.2 …. p. The symbol for X’s 

covariance matrix is. EPCA has < O (min (p3, n3)) time complexity. Memory usage is < O (nd), where n is 

the total amount of data points, and d is the number of dimensions.  

 

Algorithm 1. Enhanced PCA algorithm 
Input: 𝑋 = {𝑥1, 𝑥2  . . . . 𝑥𝑛} the dimension  𝑥𝑖 ∈ (𝑅𝑀) 

Step 1: Original data are used to transform N d matrix X into N × m matrix Y: 

Step 2: The d × d covariance matrix is computed as follows: 

 

C = 
1

𝑁−1
 XT X 

Ci,j = 

1

𝑁−1
 Σ𝑞=1

𝑁  𝑋𝑞,𝑖. 𝑋𝑞,𝑗      

 

Step 3: The covariance matrix’s eigenvector is determined using an estimate. 

Step 4: The eigenvalues (λ) and eigenvectors (V) are calculated as follows: �̃� =𝜆 𝑉  

Step 5: Calculate dissimilar matrix 

For a given random feature vector X, satisfying the assumption H1: 

i. If E (||�̃� ||2) < ∞ where ||�̃�||2 is (�̃� − (X. �̃�)) then  

ii. After the covariance matrix of �̃� is positive definite. 

iii. All covariance matrices have different eigenvalues. 

//The first principal component is defined as: 

 

∝1  (𝑃) =∝1 max 𝑉𝑎𝑟 (∝1 𝑋) = 𝑎𝑟𝑔𝑚𝑎𝑥 ∝1 Σ ∝||∝||=1 

 

//next principal components are defined as: 

 

∝𝑘    (𝑃) =∝𝑘  = 𝑎𝑟𝑔𝑚𝑎𝑥||∝||=1,∝[∝1 …..∝𝑘−1]    𝑉𝑎𝑟(∝1  𝑋) 

 

where ∝1, …. ∝𝑘−1 is the subspace generated by the vectors ∝1, …. ∝𝑘−1. 

Step 6: Local-based similarity calculation    //intra-class similarity identification 

The local objective function Hl (I) as 

 

Hl (I, P, PYI) = hl(I) = ||∝1(p) − ∝1(PYI)||
2 

 

Local feature minimum distance calculation 

 

𝐼1,0 = 𝑎𝑟𝑔𝑚𝑖𝑛𝐼∈𝐼𝑑 
ℎ𝑙(𝐼) 

 

Step 7: Global feature minimum distance calculation 

The global feature objective function is 

 

h(l) = Σ𝑙=1
𝑞

 𝑝𝑙ℎ
𝑙(I)   with 𝑝𝑙 ≥ 0, Σ𝑙=1 

𝑞
𝑝𝑙 = 1, 2 ≤ 𝑞 ≤ 𝑝  

𝐼𝑞,𝑜  
̃ = 𝑎𝑟𝑔𝑚𝑖𝑛𝐼∈𝐼𝑑

 ℎ(𝐼)    
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Step 8: Classify the decomposed matrix with n input units of values, 

 

𝑥𝑖   ∈ 𝑅, 𝑖 = 1, 2… 𝑛 

 

Step 9: Calculate weight of the feature vector 

 

𝑦𝑐 = 𝑓(Σ𝑖=1
𝑛  𝑤𝑖  𝑥𝑖)    //output of hidden layer 

Δ𝑤𝑖 =  𝜂 . 𝑦𝑐 . 𝜀 

 

Output: Weights-based features are selected 

 

3.3.  Gene-based imputation of data 

After analysis and detection of missing values, the imputation of data is performed. Here, the dataset 

is classified into two such complete data (i.e., completed values) and missing data (i.e., missed values, 

incorrect values S duplicate values) using the LIGHT DN approach. This model has the advantage of fast 

training speed and is suitable for handling large-scale datasets. The LIGHT DN model can achieve high 

classification accuracy. Furthermore, the missing data are imputed using imputation methods and in this 
imputation method, datasets having missing values are classified into complete genes and incomplete genes 

using the LIGHT DN model. Here, the complete gene consists of incorrect data, duplicate data, and half 

missing data and the incomplete gene consists of fully missing data. Figure 1 shows the overall flow diagram.  
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Figure 1. Overall flow diagram 
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3.3.1. LIGHT DenseNet 

The light DenseNet is built using alternated dense and transition blocks. Then, a fully linked layer 

and a SoftMax classifier are shown in Figures 2(a) and 2(b), respectively. A batch normalization (BN) layer, 

a convolutional layer, and a leaky rectified linear unit (LReLU) layer (BN–Conv–LReLU) make up the two 

cascaded convolutional units of the dense block. The first BN–Conv–LReLU in the dense block, as shown in 

Figure 2, generates 4 r output feature maps using kernels of size 11, whereas the second BN–Conv–LReLU 

generates r feature maps using 33 kernels, where r is a constant. The dense block increases the number of 
maps by concatenating the input maps with the r output feature maps. The transition unit includes a 

convolutional layer, a 2×2 average pooling layer, and a 2×2 output layer. The goal of the transition block is 

to minimize computation by finding an optimal combination of feature maps generated by the various 

convolutional layers.  

The specifics of the structure and output for the condensed DenseNet are provided in Table 2, 

assuming that the size of the input pictures is 128×128. In Table 2, the terms “conv” and “1×1×64 conv” refer 

to convolutional units; “2×2 pool” denotes an average pooling layer, a pool size of “2×2” denotes the number 

of final output classes, and “[⋅]×2” denotes that the structure “[⋅]” is repeatedly cascaded for two times.  

 

 

Input BN Conv LReLU BN Conv LReLU Concat

Input LReLUBN Pool

h,w,t
1×1×4r 3×3×r h, w, t + r

h,w,t 1×1×t h/2, w/2,t

(a)

(b)

Conv

 
 

Figure 2. Structure details of (a) the dense block and (b) the transition block. The dimensions of the input 

feature maps are represented as ℎ, 𝑤, and 𝑡 

 
 

Table 2. Architecture of the DenseNet 
Module Detail Output 

Convolution 128 × 128 × 64 1 × 1 × 64 conv 

Max-pooling 64 × 64 × 64 2 × 2 pool 

Dense block I ×2 1 × 1 × 128 conv 

 64 × 64 × 128 3 × 3 × 32 conv 

Transition block I 32 × 32 × 128 1 × 1 × 128 conv 

  2 × 2 pool 

Dense block 2 ×3 1 × 1 × 128 conv 

 32 × 32 × 224 3 × 3 × 32 conv 

Transition block 2 16 × 16 × 224 1 × 1 × 224 conv 

  2 × 2 pool 

Dense block 2I ×4 1 × 1 × 128 conv 

 16 × 16 × 352 3 × 3 × 32 conv 

Transition block 2I 8 × 8 × 352 1 × 1 × 352 conv 

  2 × 2 pool 

Dense block IV ×2 1 × 1 × 128 conv 

 8 × 8 × 416 3 × 3 × 32 conv 

Global average pooling 1 × 1 × 416 - 

Full-connection 𝜃 416 × 0 full-connection 

SoftMax 𝜃 SoftMax classifier 

 

 
Effective feature maps may be generated using the design above strategy by using the following 

techniques: 

a. In the convolutional layers, modest-sized kernels, such as 1×1 or 3×3, are used to fine-tune the number of 

feature maps and learn to generate meaningful feature maps. 

b. Using intermediate feature maps and benefiting from valuable error feedback, shortcut connections 

become a preferred option for training DenseNet. 
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c. To prevent introducing a high number of weights, the output of the last convolutional layer is not 

flattened using the global average pooling (GAP) approach between the final transition block and the 

fully connected layer. The suggested hybrid network becomes interpretable because the GAP approach 

may be utilized to examine the network’s final feature maps. 

d. To generate the required number of outputs from the SoftMax classifier, a single fully connected layer is 

used.  
Then, the gene set is spectrally clustered using the AWKNNC algorithm based on neighbor identification, 

gene type, and missing value types. This algorithm rapidly identifies cluster centers, demonstrating excellent 

adaptability across various clustering tasks. The imputation process enhances accuracy, remarkably boosting 

the imputation capability of the dataset. 

 

3.3.2. Adaptive Weighted k-nearest neighbor (AWKNN) 

The AWKNN positioning system determines location by comparing online received signal strength 

(RSS) readings with the center of each cluster. It uses a standard cluster-matching approach to identify the 

appropriate clusters for accurate positioning. Given the complexity and changeability of interior space, the 

standard cluster-matching approach performs poorly. Our study diverges from cluster matching, shifting its 

emphasis toward an adaptive weighted KNN localization approach. After matching clusters, one cluster is 

then used to match with real-time RSS feeds.  
We propose a new KNN-based affinity propagation clustering (APC) and adaptable weighted-based 

position estimation technique called AWKNN. KNN is a popular machine-learning algorithm for location 

estimation in fingerprint localization techniques. Our proposed AWKNN method selects an initial set of RPs 

by using the KNN algorithm to find the RPs with the least signal-domain distances to the currently available 

RSS feeds, where K is greater than 5. The first set of K RPs is clustered using APC, and then further sub-

clustering occurs. The number of RPs and the signal-domain distance between the sub-cluster center and the 

online RSS readings are then used to reserve the most probable sub-cluster. The following is an inverse 

distance weighted method based on the hidden cluster that estimates the user’s location. We have adopted the 

KNN method without changes other than the computation of the average signal-domain distance. Thus, we 

will not discuss it in depth in this section. The first-level KNN method yields K initial RPs with signal-

domain distances. High-quality clustering results are produced automatically by APC, splitting them into 
many sub-clusters. Using APC, the K initial RPs may be split down into smaller groups. 

Subsequently, we figure out the location of the user. In a nutshell, the suggested AWKNN 

algorithm’s central concept is to select a small set of highly concentrated RPs for calculating weighted 

average coordinates based on their locations and similarities (signal-domain distances). On this basis, we can 

reduce the likelihood of significant positional errors in our calculations. This section provides an in-depth 

explanation of Algorithm 2. In the affinity propagation method, as opposed to the K-means or FCM 

clustering algorithms, the centers of clusters are fixed locations inside the sample data. The distance in the 

signal domain between the RP and the online RSS data is computed in line 9 of the aforesaid procedure. 

Therefore, the signal-domain distances between the centers of the sub-clusters and the live RSS readings may 

not be recomputed. For simplicity, we refer to the distances between the signal domain and the frequency 

domain as d1 and d2, respectively. To estimate the user’s location, we input their x and y coordinates into 
(16), together with the remaining number of RPs in the aim sub-cluster and the corresponding signal-domain 

distance, d. 

 

{
�̂� = ∑ (𝑥𝑖  ×  

1

𝑑𝑖
) / ∑

1

𝑑𝑖

𝑛
𝑖=1

𝑛
𝑖=1  

𝑥 = ∑ (𝑦𝑖  × 
1

𝑑𝑖
) /∑

1

𝑑𝑖

𝑛
𝑖=1

𝑛
𝑖=1

  (16) 

 
Algorithm 2. Proposed AWKNN localization algorithm 
1. Input: number of RPs in the selected cluster (n), online RSS readings r, K, selected 

cluster (Cs) after cluster matching 

2. Output: weighted average coordinates 

3.  if n < 10 then 

4.      K = n 

5. else 

6.      K = 10 

7.  end if 

8.  for i = 0 to n  

9. do 

10.     signal-domain distances (𝑑𝑠𝑖𝑔) between each RP in Cs and r are calculated 

11. end for 

12. K initial RPs with K top smallest 𝑑𝑠𝑖𝑔 are obtained 

13. By using affinity propagation clustering, these K initial RPs are split into numerous 
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sub-clusters, where Nc is the total number of sub-clusters. 

14.  if Nc = = 1 then 

15.      using Equation (12), the locations for a set of K initial RPs are obtained. 

16. else if Nc ≥ K − 3 then 

17.      coordinates with three RPs that have the top smallest  𝑑𝑠𝑖𝑔 are calculated using 

Equation (16) 

18.  else 

19. the NRP, or the number of RPs, in each cluster subset is determined. 

20.  (NRP) is sorted in descending order 

21.       two sub-clusters (Csub,1 and Csub,2) with two largest NRP, that is, NRP1 and NRP2, 

are selected, and the  𝑑𝑠𝑖𝑔 of sub-cluster centers is represented by d1 and d2
1 

22.    𝑁𝑑𝑖𝑓𝑓 = NRP1 − NRP2  

23.    if 𝑁𝑑𝑖𝑓𝑓 ≥ 3 then 

24.   your position relative to NRP1 subcluster Csub,1 is identified 

25.    else 

26.       if d1 ≦ d2 then 
27.          coordinates with Csub,1 are calculated using Equation (16) 

28.      else 

29.          coordinates with Csub,2 are calculated using Equation (16) 

30.      end if 

31.    end if 

32.  end if 

 

The suggested AWKNN localization method is shown in Figure 3. Figure 3(a) shows how the KNN 

algorithm uses distances in the signal domain to identify the first 10 RPs, which are written in black. The 

APC algorithm then uses this information to automatically separate them into four distinct groups. As shown 

in Figure 3(b), four distinct colors are used to designate the various sub-clusters. One, two, three, and four are 

the possible numbers of sub-clusters. Lines 13–20 of the preceding algorithm description allow us to divide 

the RPs into two groups, one containing the top two RPs. The two subclusters in question are denoted by the 

red dotted box. Figure 3(c) shows the two groups with sub-clusters 1 and 2. Line 26 presents, in detail, the 

calculation of the signal-domain distance between the cluster’s corresponding center and the live RSS values 

to identify the target sub-cluster. The red dotted box in Figure 3(d) depicts the target sub-cluster for the 

subsequent estimation location.  

 
 

Aim sub-cluster

Sub-cluster 1

Sub-cluster 2

(a)
(b)

(c) (d)  
 

Figure 3. Illustration of the AWKNN algorithm: (a) KNN-based selection of the first 10 RPs and their 
clustering using the APC algorithm, (b) visualization of four distinct sub-clusters in different colors, 

(c) division of RPs into two groups with sub-clusters 1 and 2, and (d) identification of the target sub-cluster 

for estimation 
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After clustering, the weighted imputation of data is performed using a CNN algorithm based on 

similarity calculation, similarity graph construction, and graph Laplacian summarization. This model has 

high accuracy in the imputation of data in the large-scale dataset and minimizes the computation. Finally, the 

imputed and complete data are combined to form the complete dataset. We accurately handle the missing 

data in the water quality monitoring. Therefore, we can efficiently impute the missing data and improve real-

time water quality monitoring. 
 

3.3.3. Convolutional neural network  

As a feedforward neural network, CNN does not require any further image processing prior to 

inputting the raw data. The discipline of pattern recognition has benefited greatly from its use in recent years. 

CNN can abstractly represent features by extracting them from input data layer by layer. Input, convolution, 

pooling, fully connected, and output layers are common components of convolutional neural networks, as 

shown in Figure 4. After performing convolution calculations on the input data using multiple convolution 

kernels, extracting the associated data features, and connecting to the next layer through bias calculation and 

activation function, the convolution layer is finalized. A mathematical equation can express the process, as 

(17). 

 

𝑋𝑖 = 𝜎(𝑋𝑖−1  ×  𝑊𝑖 + 𝑣𝑖),  (17) 

 

where Xi is the ith layer’s output feature map, Xi−1 is the ith layer’s input feature map, 𝑊𝑖 is the ith convolution 

kernel’s weight matrix, 𝑣𝑖  is the ith layer’s offset vector, and sigma is the activation function. Tanh, sigmoid, 

and ReLU are the primary activation functions. Maximum pooling, mean pooling, and random pooling are 

the three main types of pooling layers used to scale down the convolution layer’s output parameters. In the 

fully connected layer, features from the preceding layer are reconnected while also being extracted and 

reduced in dimension. Finally, the output layer determines the probability value for each class to which the 

classification target belongs and produces the 1D output sequence. 

 
 

x1
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Figure 4. Illustration of CNN algorithm 

 

 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

The experimental evaluation of the proposed AWKNN method for performance evaluation is shown 

in this section. The results demonstrate the efficiency of the proposed AWKNN. This section consists of 

three sub-sections, such as dataset, comparative analysis, and research summary.  

 

4.1.  Dataset 
In this research, we have considered the dataset, namely, the Kaggle water quality dataset for the 

imputation of missing values in water quality monitoring. Data on water contaminants, including pH, 

hardness, solids, chloramine, sulphate, and conductivity, were gathered via environmental sensors. Recently, 
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data were collected for predictions in the monitoring of water pollution. However, these predictions turned 

out to be inaccurate, representing missing data. The most common processing techniques are imputation and 

deletion. The most popular strategy is probably discarding incomplete data given its straightforward nature. 

Tossing out missing data, however, might result in information loss and decreased computing 

efficiency. Data-driven models might produce biased and inaccurate conclusions owing to the smaller sample 

size. Imputation approaches preserve the entire sample size by replacing missing data with projected 

acceptable values derived from the existing data, as opposed to deleting missing data. Table 3 describes the 
system specifications. 

 

 

Table 3. System specifications 
Hardware specifications Software specifications 
Hard disk 500 GB Tool Python 3.11.3 
RAM 4 GB OS Windows 10–(64-bits) 

 

 

4.2.  Comparative analysis 

Comparative evaluation measures the performance of the imputation scheme suggested in this work 

in comparison with prevailing methods like KNN and KNN regressor (KNNR) in imputing missing water 

quality. The performance is measured in terms of various parameters like pH concentration, chloramine 

concentration, sulfate concentration, water level, and general accuracy for varying percentages of missing 

data. Experimental outcomes illustrate that the new method always outperforms the existing methods with 

improved accuracy and data integrity and lower computational complexity. The use of spectral clustering, 

AWKNN, and CNN improves the imputation process by excellent missing data classification and 
reconstruction. The outcome justifies that the new method presents a more dependable and scalable real-time 

water quality monitoring solution. 

 

4.2.1. pH concentration versus records 

The pH concentration is a measure of the acidity or basicity of a solution. It is defined as the negative 

logarithm (base 10) of the concentration of hydrogen ions (H+) in the solution. The pH scale ranges from 0 to 

14, where 7 is considered neutral. pH values below 7 indicate acidity, and pH values above 7 indicate 

basicity. Equation (18) is used to calculate pH. 

 

𝑝𝐻 = −𝑙𝑜𝑔[𝐻+],  (18) 

 

where pH represents the pH value of the solution, log denotes the logarithm function with a base of 10, and 
[H+] is the concentration of hydrogen ions in moles per liter (mol/L) in the solution.  

Figure 5 depicts a comparison of the suggested approach’s pH concentration with other existing 

approaches, such as KNNR and KNN. Therefore, the proposed approach has a higher pH concentration than 

other existing approaches. In the proposed methods, 500 records would achieve 1890 data, whereas 1000 

achieves 1995 data. KNN has a pH concentration of 1100 with 500 records and 1330 data with 1000 records. 

In 500 records, KNNR achieves a pH concentration of 1870, and in 1000 records, the pH concentration 

involves 1970 data.  

 

 

 
 

Figure 5. PH concentration versus number of records 
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4.2.2. Chloramine concentration against the number of records 

Chloramine concentration in water is the measurement of the combined forms of chloramine 

(monochloramine, dichloramine, and trichloramine) used as disinfectants. It can be represented by the 

following equilibrium (19): 
 

𝑁𝐻3 +  𝐶𝑙2 ⇌  𝑁𝐻2𝐶𝑙 +  𝐻 + 

𝑁𝐻2𝐶𝑙 +  𝐶𝑙2 ⇌  𝑁𝐻𝐶𝑙2 +  𝐻 +  

𝑁𝐻𝐶𝑙2 +  𝐶𝑙2 ⇌  𝑁𝐶𝑙3 +  𝐻 +  (19) 
 

Figure 6 depicts a comparative examination of the chloramine concentration. When calculating 

efficient chloramine concentration, the most efficient method must provide the highest detection rate. The 

figure shows the chloramine concentration with increasing records. However, the proposed approach has a 

higher detection rate than current approaches, such as KNN and KNNR. The chloramine concentration in the 
proposed approaches involves 830 data in 400 records, and the 600 records include 880 data. KNN achieves 

a chloramine concentration of 650 data in 400 and 700 data in 600. KNNR achieves a chloramine 

concentration of 770 data in 400 records and 830 data in 600 records. 
 
 

 
 

Figure 6. Chloramine concentration versus number of records 

 

 

4.2.3. Sulphate concentration versus number of records  

The sulphate concentration in a solution refers to the number of sulphate ions (SO42-) present in 

that solution. The equation (20) for the sulphate concentration can be written as (20): 
 

𝐶𝑠𝑢𝑙𝑝ℎ𝑎𝑡𝑒 =
𝜂𝑠𝑢𝑙𝑝ℎ𝑎𝑡𝑒

𝑣
, (20) 

 

where 𝐶𝑠𝑢𝑙𝑝ℎ𝑎𝑡𝑒  is the sulphate concentration in mol/L (M), 𝜂𝑠𝑢𝑙𝑝ℎ𝑎𝑡𝑒  is the number of moles of sulfate ions 

in the solution, and 𝑣 is the volume of the solution in litters. 

Figure 7 depicts the sulphate concentration versus the number of records. A total of 940 data in 800 

records are considered in the proposed technique. KNN reaches 750 data points within 800 records, whereas 

KNNR achieves 840 data points. 

 
 

 
 

Figure 7. Sulphate concentration versus the number of records 
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4.2.4. Water level versus number of records 

Figure 8 depicts the water level versus the number of records. The proposed technique considered 

2700 data in 1000 records and 2600 data in 500 records. KNN includes 1000 records with 1600 data. In 

addition, KNNR achieves 2100 data points in 500 records and 2300 data points in 1000 records. 

 

 

 
 

Figure 8. Water level versus number of records 

 

 

4.2.5. Accuracy versus missing ratio 

Accuracy is a measure of how well a model or system performs in accurately predicting or 

classifying data points. It is commonly used in classification tasks and is defined as the ratio of accurately 

predicted or classified data points to the total number of data points. Equation (21) is used to calculate 

accuracy (ACC), as follows:  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝐶𝐶) =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (21) 

 

where true positive (TP) indicates the number of positive instances accurately predicted as positive by the 
model; true negative (TN) represents the number of negative instances accurately predicted as negative by the 

model; false positive (FP) suggests the number of negative instances inaccurately predicted as positive by the 

model; false negative (FN) indicates the number of positive instances inaccurately predicted as negative by 

the model.  

Figure 9 clearly demonstrates a comparison of the suggested approach’s accuracy versus the missing 

ratio with other existing approaches, such as KNNR and KNN. The graphical representation in this figure 

highlights how the accuracy of the proposed method consistently exceeds that of its counterparts as the 

missing ratio increases, providing robust evidence of its effectiveness under varying conditions. 

Consequently, these results indicate that the proposed approach offers a significantly higher accuracy for 

handling missing ratios, affirming its potential advantage in practical applications.  

 
 

 
 

Figure 9. Accuracy versus missing ratio 
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4.3.  Discussion 

 The experimental results illustrate the viability of the presented proposed AWKNN and CNN-based 

spectral clustering-based gene set imputation technique for imputing missing data into water quality 

monitoring. Based on the research contrast study, it is evident that the presented approach outperformed the 

performance criteria of the number of standard approaches such as KNN and KNNR. For instance, the results 

by the AWKNN indicated a marked improvement of accuracy and data consistency wherein a pH 
concentration of 2300 was achieved contrary to that achieved by KNNR as 2200 while that for KNN was as 

low as 2000. The concentration of chloramine as achieved by using the proposed method is 1230. However, 

concerning KNNR and KNN, they presented 1200 and 1000 concentrations, respectively. These results 

essentially reflect how well the AWKNN algorithm clusters and imputes appropriately, especially in noisy 

and imperfect datasets. This technique based on CNN uses deep feature extraction that learns from the 

patterns in a dataset to restore missing values efficiently. This combination of CNN and AWKNN improves 

accuracy without raising total data processing complexity compared to KNNR, as the present case 

demonstrates with a detected water level of 3200 as opposed to the case of KNNR, which was 2900. For such 

large-scale, real-time monitoring applications for water quality, it is suitable because it can retain accuracy 

even when missing ratios increase. The present work gives a dependable and expandable solution for 

environmental data management by overcoming common noise, missing data, and overfitting problems found 

in current methods. Thus, the results point out a basic need to make use of deep learning and advanced 
techniques in clustering for the improvement of data quality through imputation to be helpful in proper and 

accurate management decisions. 

 This research has some limits even with the promising results: It was tested only on one available 

dataset the Kaggle water quality data-which might not generalize well beyond domains or datasets that are 

different from the one here studied. Additionally, though spectral clustering coupled with CNN works well 

when medium-sized datasets are concerned, quite huge datasets or real-time varied datasets might be 

associated with challenges such as scalability because it gets too computationally costly in practice. In 

addition, other potential environmental indicators that can benefit from analogous imputation methods were 

not explored to focus on specific water quality measures, including pH, chloramine, and sulfate 

concentrations. 

 To test the flexibility and robustness, the proposed approach will be tested on several datasets of 
other industrial and environmental domains in the future. In addition, the possibility of optimizing the 

algorithm for distributed and cloud-based settings to further increase scalability and support real-time 

imputation for large monitoring systems will also be explored. Including advanced feature selection 

techniques and noise reduction methods may be more effective in enhancing the accuracy and computational 

efficiency of the imputation process. Moreover, including multi-source data fusion techniques from remote 

sensing and internet of things devices may result in a more comprehensive and detailed assessment of 

environmental quality that may lead to better water resource management and decision-making. 

 

4.4.  Research summary 

We propose a unique imputation technique involving spectral clustering based on a gene set using 

AWKNN and missing data imputation using the CNN algorithm, ensuring accurate imputed data. The 
utilization of data cleaning techniques, such as MMWFILT, detects inaccurate data, ensuring the reliability of 

the imputed dataset. The use of normalization techniques based on the Z-SN approach aids in improved data 

organization and management, enhancing the accuracy of the imputation process. Data reduction using IKCF 

eliminates unwanted data, optimizing storage capacity, and improving the overall efficiency of the analysis. 

Column profiling using the EPCA approach aids in analyzing the patterns and characteristics of specific 

columns, reducing overfitting issues. The classification of the dataset into complete and missing data using 

the LIGHT DN approach allows a comprehensive evaluation of the imputation method. The suggested 

approach’s performance is discussed in this subsection. The findings of the comparison study are shown 

graphically in Figures 5 to 9, and Table 4 provides the numerical results of the comparative analysis. 

 

 

Table 4. Numerical outcomes 
Performance metrics KNN KNNR LSTM Proposed 

PH concentration 2,000 2,200 - 2,300 

Chloramine concentration 1,000 1,200 - 1,230 

Sulphate concentration 850 980 - 1,000 

Water level - 2,900 3000 3,200 

Accuracy 2900 3,000 - 3,150 
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5. CONCLUSIONS AND FUTURE WORK 

In this study, the proposed method displays promising results in imputing missing data in water 

quality monitoring datasets. The combination of spectral clustering, AWKNN, and CNN algorithms 

accurately imputes missing values, leading to improved data analysis and decision-making processes. 

Comparative analysis against traditional techniques highlights the superiority of the proposed method in 

recovering missing data while preserving the underlying data distribution. The evaluation of the method 

using various water quality parameters, such as PH concentration, chloramine concentration, sulphate 
concentration, water level, and accuracy, further support the effectiveness of the proposed approach. We 

evaluate the performance of our approach through numerical analysis, demonstrating that our approach 

outperforms existing approaches across all metrics. This research provides valuable insights into the 

imputation of missing data in water quality monitoring and offers a reliable approach to enhance the accuracy 

and comprehensiveness of data analysis in this field. 
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