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 In this work, we propose a new system to improve the performance of 

classification models by applying data-centric principles. The system 

optimizes datasets by removing poor-quality samples and generating  

high-quality synthetic data. We tested the system on various classification 

models and datasets, measuring its performance with accuracy, precision, 

recall, and F1-score. The results showed significant improvements in 

classification performance, highlighting the effectiveness of this data-centric 

approach. While the scalability to large-scale datasets is still an open 

question, it offers great potential for future research. This approach could be 

valuable in critical areas like healthcare, finance, and autonomous systems, 

where high-quality data is crucial. Future work could explore advanced data 

augmentation, adapting the system for different data types like text and  

time-series, and extending it to semi-supervised and unsupervised learning. 

Our findings emphasize the importance of data quality in achieving better 

model performance, often overlooked in favor of model architecture. By 

advancing data-centric artificial intelligence (AI), this work offers a practical 

framework for researchers and practitioners to optimize datasets and 

improve machine learning systems. 
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1. INTRODUCTION 

Deep learning has revolutionized artificial intelligence (AI), driving advancements in domains such 

as medical diagnosis, autonomous systems, and large-scale decision-making [1]. These developments have 

significantly improved efficiency, accuracy, and innovation across various industries. However, challenges 

remain, particularly regarding the availability and quality of datasets crucial for training effective models 

[2]–[4]. The scarcity of reliable labeled data and the high acquisition costs continue to hinder AI 

development. For example, medical imaging datasets often contain mislabeled samples, low-resolution 

images, or insufficient representations of rare diseases, all of which degrade model performance [5]. 

Although data augmentation techniques, such as flipping and noise injection, are commonly applied, they 

often introduce biases or fail to fully address dataset deficiencies [6], [7]. As models become more complex, 

their performance increasingly depends on high-quality datasets rather than solely on architectural 

innovations [3], [4]. This shift has given rise to data-centric AI, which focuses on optimizing datasets rather 

than exclusively enhancing model architectures [2], [3]. Data-centric methodologies prioritize refining 

datasets by addressing label noise, class imbalance, and irrelevant data points [4]–[8]. 

https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 3, June 2025: 2951-2964 

2952 

Andrew Ng's data-centric AI competition underscored the importance of dataset quality in achieving 

superior model performance, even with smaller datasets [1]. By systematically enhancing data quality, 

researchers have demonstrated notable improvements in model robustness, generalization, and efficiency 

across diverse applications [2]–[7]. This competition highlighted the often-overlooked role of high-quality 

data in driving performance gains, even when using simpler or smaller models, reinforcing the shift toward 

data-centric AI practices. Building upon these insights, this study introduces a data-centric algorithm 

designed to improve datasets for training robust deep neural networks (DNNs). The algorithm employs 

techniques to identify and remove noisy or mislabeled samples, which can distort model learning and reduce 

performance. Additionally, it incorporates high-quality synthetic data generated using generative models 

such as generative adversarial networks (GANs) [9]. These GAN-generated samples address issues like class 

imbalance and dataset sparsity, providing the model with a more comprehensive and representative training 

set. This approach proves particularly valuable in high-stakes domains like healthcare and finance, where the 

accuracy and reliability of predictive models are critical for informed decision-making [4]–[8], [10]. By 

demonstrating that prioritizing dataset quality can significantly improve performance, this research 

contributes to the growing body of evidence supporting data-centric AI as a complementary methodology to 

model-centric approaches. The findings suggest that an effective balance between these two paradigms leads 

to better performance and more stable outcomes. The proposed framework, therefore, emphasizes the 

importance of integrating both perspectives to advance machine learning systems, ensuring that models can 

learn from cleaner, more meaningful data while leveraging optimized architectures for enhanced 

performance. 

 

 

2. RELATED WORKS  

Significant prior research has advanced data-centric AI by addressing dataset quality issues. 

Study [1] demonstrated that variations in dataset size, labeling quality, and train-test splits substantially impact 

model performance, underscoring the importance of data-centric methodologies. Similarly, Sambasivan et al. 

[2] emphasized the ripple effects of labeling errors, advocating for systematic data quality improvements. 

Northcutt et al. [11] identified pervasive labeling errors in widely used datasets, reinforcing the need 

for data-centric strategies. Polyzotis and Zaharia [4] proposed end-to-end version tracking and actionable 

monitoring for managing dynamic. datasets in production systems. Hamid [12] highlighted the applicability 

of data-centric AI in Industry 4.0 by enhancing data quality for robust industrial automation. 

In natural language processing (NLP), Xu et al. [3] introduced the data CLUE benchmark, showing 

simple yet effective strategies for improving data quality. Seedat et al. [13] proposed DC-check, a checklist 

for systematically evaluating data-centric reliability. Seedat et al. [14] also emphasized dataset transparency 

with datasheets for datasets, a foundational tool in high-stakes applications. 

Motamedi et al. [6] demonstrated data quality enhancements with GAN-generated samples, achieving 

improved accuracy while reducing dataset size. Ma et al. [15] reviewed data-centric AI’s role in addressing 

labeling errors and class imbalances. Shankar and Evans [16] identified pitfalls in dataset construction, 

proposing best practices for reliability and fairness.  

Zha et al. [5] introduced a framework integrating statistical measures to ensure dataset reliability. 

These studies highlight the transformative potential of data-centric AI in addressing data quality issues, 

forming. The foundation for the dataset optimization approach presented in this work. 

 

 

3. METHOD  

In machine learning, classification refers to a predictive modeling problem where a class label is 

predicted for a given input data example. To construct such a predictive model, we define loss functions, set 

hyperparameters for the model, and, given a training dataset, optimize the model parameters to minimize the 

loss function, as expressed in (1). 
 

𝑚𝑖𝑛
𝜙,𝛾,𝜃

loss (𝑓(𝑋, 𝑌)) (1) 

 

The targeted loss function, denoted as loss, plays a crucial role in model optimization, where f is the mapping 

model, φ represents the hyperparameters, θ the model parameters, and γ the given dataset. Recent 

advancements in deep learning have established it as a powerful tool for learning hierarchical representations 

from large datasets, driving breakthroughs in domains like image recognition, natural language processing, 

and autonomous systems [1]–[8], [10]–[17]. To optimize performance, various loss functions have been 

developed based on task requirements, such as mean squared error for regression and cross-entropy loss for 

classification [18], [19]. 
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3.1.  Regression losses  

Regression losses quantify discrepancies between predicted and actual continuous values: 

a. Mean squared error (MSE): Penalizes large errors more heavily, making it sensitive to outliers [20]. 

 

𝐿MSE =
1

𝑛
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1  (2) 

b. Mean absolute error (L1): Measures absolute differences, less sensitive to outliers [1]. 

 

 𝐿L1 =
1

𝑛
∑ |𝑦𝑖 − 𝑦�̂�|

𝑛
𝑖=1       (3) 

 

c. Huber loss: Combines MSE for small errors and L1 for large errors, offering robustness [21]. 

 

𝐿𝐻𝑢𝑏𝑒𝑟 = {

1

2
(𝑦𝑖 − �̂�𝑖)

2,       𝑖𝑓|𝑦𝑖 − �̂�𝑖| ≤ 𝛿,

𝛿|𝑦𝑖 − �̂�𝑖|,                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (4) 

 

3.2.  Classification losses 

Classification losses evaluate model performance in classification tasks by measuring discrepancies 

between predicted and actual class labels: 

a. Binary cross-entropy (BCE): Used for binary classification by measuring the difference between 

probability distributions [20]. 

 

𝐿BCE = − ∑ [𝑦𝑖 log(𝑦�̂�) + (1 − 𝑦𝑖) log(1 − 𝑦�̂�)]𝑛
𝑖=1    (5) 

 

b. Categorical cross-entropy (CCE): Extends BCE to multi-class classification by summing the cross-entropy 

for all classes [20]. 

 

𝐿CCE = − ∑ ∑ 𝑦𝑖𝑐
𝐶
𝑐=1 log(𝑦𝑖�̂�)𝑛

𝑖=1   (6) 

 

c. Focal loss (FL): Addresses class imbalance by down-weighting easy examples and emphasizing hard ones 

[22]. 

 

𝐿FL = −𝛼(1 − 𝑦�̂�)
𝛾 log(𝑦�̂�)  (7) 

 

3.3.  Other losses  

Specialized loss functions address unique challenges in training models: 

a. Kullback-Leibler divergence (KL): Measures the divergence between two probability distributions, 

commonly used in probabilistic models [17]. 

 

𝐿KL = ∑ 𝑦𝑖
𝑛
𝑖=1 log

𝑦𝑖

𝑦�̂�
  (8) 

 

b. Hinge loss: Used in support vector machines (SVMs) to maximize class margins [23]. 

 

 𝐿Hinge = max(0,1 − 𝑦𝑖𝑦�̂�)   (9) 

 

c. Total variation (TV): Promotes smoothness in images or signals, reducing noise [7]. 

 

𝐿TV = ∑ (||𝑥𝑖+1,𝑗 − 𝑥𝑖,𝑗|| + ||𝑥𝑖,𝑗+1 − 𝑥𝑖,𝑗||)𝑖,𝑗  (10) 

 

3.4.  Hyperparameters 

Hyperparameters are predefined parameters critical to the performance of machine learning models. 

Their selection significantly impacts model training and outcomes. 

a. Learning rate (η): Determines the step size for gradient descent. Smaller η ensures convergence but slows 

training, while larger η may cause instability [17]. 

 

𝜃 ≔ 𝜃 − 𝜂∇𝜃𝐽(𝜃)  (11) 

 

b. Batch size: Specifies the number of training examples per iteration. Smaller batches reduce overfitting but 

increase gradient noise [17]–[25]. 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 3, June 2025: 2951-2964 

2954 

c. Depth and width: The number of layers and neurons per layer impact the model’s representational capacity.  

d. Excessive layers or neurons may lead to overfitting and inefficiencies [17]–[25], [26] [27]. 

e. Activation functions: Add non-linearity to networks, enabling complex pattern learning. Common choices 

include ReLU, sigmoid, and tanh [17]–[25], [26]–[30].  

f. Regularization parameters: Prevent overfitting by penalizing large weights. L1 promotes sparsity; L2 

reduces variance [28]–[32]. 

 

3.5.  Dataset optimization  

Optimizing the dataset is a critical aspect of this work. Operations such as pruning training points, 

inserting newly generated data points, and weighting specific points in the loss function are performed to 

enhance dataset quality. These optimizations aim to improve the representativeness, balance, and cleanliness 

of the training dataset, leading to more robust and accurate machine learning models. 

Before implementing dataset optimization, diagnosing potential issues within the dataset is 

necessary to identify appropriate remedies. A straightforward approach to diagnosing dataset problems 

involves training a basic model on the dataset and analyzing its performance to detect noisy or mislabeled 

samples. Once identified, these problematic samples can either be corrected or removed. 

The dataset optimization process includes two primary operations: 

a. Sample pruning: Removing noisy or mislabeled samples from the dataset. 

b. Sample insertion: Augmenting the dataset with high-quality synthetic samples to address class imbalance 

or under-represented feature. 

We begin by training a baseline model on the original dataset, and based on its outputs, we apply these 

enhancement operations. 

 

3.5.1. Sample pruning  

Sample pruning involves identifying and removing noisy or problematic samples from the dataset, as 

shown in Figure 1, These issues may include mislabeled examples, ambiguous data points, or samples with 

conflicting features. This process typically relies on techniques such as confident learning, which estimates the 

joint distribution of noisy and clean labels to detect and address errors systematically. The steps involved in 

sample pruning are as follows: i) collect or select a representative dataset; ii) train a baseline model on the 

dataset to establish a performance benchmark; iii) use cross-validation on the training data to identify noisy 

samples; iv) apply techniques such as label errors and confident learning to detect mislabeled or ambiguous 

data points; and v) remove or reweight the problematic samples to obtain a clean dataset for training. 

 

3.5.2. Sample insertion 

Following the pruning of noisy samples, as shown in Figure 2, new samples are generated to enrich 

the dataset. This process involves identifying weak classes, addressing naming errors, and training a GAN to 

generate new instances for the underrepresented class. This step ensures better class representation and helps 

the model learn more effectively from the available data. The steps for implementing sample insertion are as 

follows: i) Collect or select a representative dataset to serve as the foundation for training; ii) Train the 

dataset on a baseline model and calculate the initial accuracy to establish performance benchmarks;  

iii) Identify the weak class by analyzing the accuracy results and determining which classes underperform; 

iv) Train a GAN model specifically for the weak class to generate high-quality synthetic instances that 

improve class balance and overall model performance [32]; and v) Add the generated instances to the 

existing dataset to improve representation and classification accuracy. 

After  noisy samples are pruned in Phase 1, the remaining dataset is enriched by generating new 

synthetic samples. Weak classes are identified and addressed by generating instances using clean data to train 

a GAN model. These new samples enhance the dataset's representation and classification accuracy. The GAN 

model's optimization problem is defined as [32]. 

 

min
𝐺

max
𝐷

𝑉 (𝐷, 𝐺) = 𝐸𝑥∼𝑝dt(𝑥)[log 𝐷 (𝑥)] + 𝐸𝑧∼𝑝𝑧(𝑧) [log (1 − 𝐷(𝐺(𝑧)))]  (12) 

 

The generator's loss function minimizes the maximum value of the discriminator's value function by 

generating samples likely to be misclassified by the discriminator [32]. 

 

min
𝐷

max
𝐺

𝑉 (𝐷, 𝐺) = 𝐸𝑥∼𝑝dt(𝑥)[log 𝐷 (𝑥)] + 𝐸𝑧∼𝑝𝑧(𝑧) [log (1 − 𝐷(𝐺(𝑧)))]  (13) 

 

The discriminator's loss function maximizes its value function while minimizing the generator's value 

function, enabling it to correctly classify both real and generated samples. The resulting enhanced dataset is: 
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�̂� = 𝜙selected ∪ 𝜙generated (14) 

 

Here, 𝜙selected represents the pruned dataset, and 𝜙generated represents newly generated samples. The 

optimization ensures that a model f trained on �̂� outperforms the original dataset 𝜙. 

 

 

  
  

Figure 1. Sample pruning subsystem Figure 2. Sample insertion workflow 

 

 

3.6.  Experimental setup 

We validated the proposed data-centric methods using the CIFAR-10 dataset [9], which includes 

60,000 32×32 color images across 10 classes (50,000 for training and 10,000 for testing). Preprocessing 

addressed label noise and low-resolution samples via pruning and GAN-based augmentation. 

a. Baseline models: 

− ResNet-18 [33]: An 18-layer CNN leveraging residual connections for gradient flow, pre-trained on 

ImageNet. 

− InceptionV3 [34]: A deep CNN with factorized convolutions and auxiliary classifiers for improved 

accuracy. 

b. Evaluation metrics: Performance was assessed using accuracy, precision, recall, F1-score, and standard 

deviation. 

c. Training configuration: Training employed the Adam optimizer [30] with a learning rate of 1 × 10−4  

batch size of 128, 50 epochs, and standard augmentations (random cropping, flipping, normalization). 

Experiments were performed on an NVIDIA Tesla V100 GPU (32 GB). 
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d. Proposed method setup: 

− Sample pruning: confident learning [35] identified and removed noisy samples based on label 

uncertainty. 

− Sample insertion: d GAN [32] generated synthetic samples for underrepresented classes using a 

standard GAN architecture with a 100-dimensional latent vector. Training consisted of 10,000 

iterations, with visual inspection of generated samples for quality assurance. 

e. Baseline comparison: 

− Original dataset: baseline models trained on unaltered CIFAR-10. 

− Pruned dataset: models trained on high-quality samples post-pruning. 

− Enhanced dataset: models trained on pruned samples augmented with GAN-generated instances. 

 

 

4. RESULTS AND DISCUSSION  

In this section, we present the outcomes of our experiments and analyses aimed at enhancing the 

training performance of small models using data-centric approaches [1], [2]. The focus is on two deep 

classification models, InceptionV3 and ResNet18, which serve as our baseline models. We detail the 

performance improvements achieved through various stages of data optimization, including pruning and 

augmentation with generated samples. The evaluation criteria used for assessing model performance include 

accuracy, precision, recall, F1-score, and standard deviation [3]. 

 

4.1.  Adopted models  

Generally, any mapping model f can be adopted as a baseline for testing our proposals for data-

centric enhancement. In this study, we used two models as baselines: InceptionV3 and ResNet18, which are 

recent examples of deep classification models [33], [34]. 

a. InceptionV3: This image recognition model has demonstrated accuracy greater than 78.1% on the 

ImageNet dataset. It integrates symmetric and asymmetric building blocks such as convolutions, average 

pooling, max pooling, concatenations, dropouts, and fully connected layers. Batch normalization is 

applied extensively throughout the model, enhancing its robustness, while loss computation is performed 

using Softmax [27]. 

b. ResNet18: A convolutional neural network that is 18 layers deep, ResNet-18 has been pre-trained on over 

a million images from the ImageNet database. It achieves classification across 1,000 categories, including 

various objects and animals, utilizing residual learning to enhance gradient flow through its layers [28]. 

 

4.2.  Dataset 

We adopted the public CIFAR-10 dataset to validate the optimization methods applied to these 

baseline models. The CIFAR-10 dataset consists of 60,000 32×32 color images divided into 10 mutually 

exclusive classes, each containing 6,000 images [9]. The dataset is further split into 50,000 training images 

and 10,000 test images. The dataset's classes are designed to be entirely distinct. For example, the 

“automobile” class includes sedans and SUVs, while the “truck” class exclusively covers large trucks, with 

no overlap [15]. Figure 3 highlights common label errors found in the dataset, which can adversely affect 

model training. These errors underscore the importance of data cleaning to ensure accurate and reliable 

learning outcomes [8]. Additionally, several images in the dataset suffer from poor resolution, further 

hampering effective learning by the models. Low-resolution images often lack the necessary detail for feature 

extraction, reducing the model's ability to distinguish between similar classes. Figure 4 illustrates such low-

resolution images, highlighting the importance of optimizing dataset quality through resolution enhancement 

techniques to achieve better performance [11]. 

 
 

  
 

Figure 3. Examples of label error samples. These types of errors emphasize the necessity of data cleaning to 

ensure accurate model training  



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Enhancing training performance for small models using data-centric approaches (Reda A. El-Khoribi) 

2957 

 
 

Figure 4. Examples of low-resolution images in the dataset. Addressing these issues through data cleaning 

and enhancement is crucial for improving model performance 

 

 

4.3.  Evaluation criteria 

To assess the performance of the models, several standard classification metrics were used. These 

metrics capture different aspects of model accuracy, robustness, and reliability, aligning with best practices in 

machine learning evaluation [20]–[28]. 

a. Accuracy: This metric measures the proportion of correctly classified instances out of the total number of 

instances. It is formally expressed as (15) [16]: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
     (15) 

 

b. Precision: Precision focuses on the accuracy of the positive predictions. It is defined as (16) [16]: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
      (16) 

 

c. Recall: Recall, also known as sensitivity, evaluates the model's ability to correctly identify all relevant 

instances. It is calculated as (17) [16]: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (17) 

 

d. F1-score: The F1-score combines precision and recall into a single harmonic mean, providing a balanced 

metric for evaluating performance on datasets with class imbalances [16]: 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ⋅
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
   (18) 

 

e. Significance test (t-test): A t-test was employed to compare performance metrics before and after 

applying the proposed data optimization techniques. The test assesses whether the observed differences 

are statistically significant. It is calculated using: 

 

𝑡𝑖
𝑎,𝑏 =

𝑚𝑖
𝑎 − 𝑚𝑖

𝑏

√𝑆2 (
1
𝑁

+
1
𝑁

)

, 

 

where (𝑎) and (𝑏) represent the two systems under comparison, (𝑖) denotes the performance metric, 

(𝑁) is the sample size, and (𝑆2) is the pooled variance [13]–[19]. 

f. Standard deviation: This metric measures the variability of the performance metrics across different 

classes, highlighting discrepancies or inconsistencies in classification results. Reducing standard 

deviation is crucial for ensuring balanced performance across all classes [2]–[4]. 
 

4.4.  ResNet18 performance evaluation  

The impact of data cleaning and optimization was analyzed using the ResNet18 and InceptionV3 

models as the baseline architectures. Figure 5 provides a comprehensive overview of the problematic samples 

within the dataset, including label errors and low-resolution images. These issues were addressed through 

rigorous data preprocessing [4]–[8], [10]–[17], [18]–[20]. 
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Figure 5. Examples of label errors and low-resolution images in the dataset. Addressing these issues was 

critical for optimizing model performance [4]–[8], [10]–[17], [18]–[21] 

 

 

The performance metrics, including precision, recall, F1-score, and accuracy, were measured at 

different stages of the optimization process. Tables 1, 2, 3, and 4 summarize the results for ResNet18. The 

first column represents the model's baseline performance on the original dataset, while the second column 

reflects the performance after data cleaning. The final column demonstrates the enhancements achieved by 

incorporating generated samples using a GAN [28], [29]. 

Table 1 highlights the improvements in precision observed after each stage of dataset optimization. 

While pruning initially reduces the number of training samples, it helps eliminate noisy data, resulting in 

better precision for some classes. Incorporating generated samples further enhances precision, particularly for 

underrepresented or misclassified classes, such as “cat” and “dog” [28], [29]. 

 

 

Table 1. Precision comparison (ResNet18). This table compares the precision of ResNet18 across different 

stages: baseline, after pruning, and after incorporating generated samples 
Class Baseline After Pruning With GAN 

Airplane 0.869 0.887 0.822 

Automobile 0.929 0.984 0.919 

Bird 0.942 0.950 0.856 
Cat 0.786 0.659 0.843 

Deer 0.819 0.954 0.877 

Dog 0.870 0.627 0.876 
Frog 0.877 0.861 0.899 

Horse 0.917 0.843 0.963 

Ship 0.923 0.941 0.974 

Truck 0.979 0.747 0.955 

Average 0.891 0.845 0.898 

Std Dev 0.059 0.127 0.053 

 

 

Table 2 demonstrates how recall improves after data augmentation with GAN. While pruning 

occasionally reduces recall due to a smaller dataset size, the addition of generated samples helps recover and 

even enhance recall by balancing class representation and resolving annotation inconsistencies [21]–[30]. 

This process ensures that the model can better identify relevant patterns, particularly in previously 

underrepresented classes. Table 3 further highlights the balanced improvements in the F1-score achieved 

through the proposed optimization techniques. The addition of high-quality GAN-generated samples 

mitigates the trade-off between precision and recall by providing more diverse and representative training 

data. As a result, the model demonstrates consistent performance gains across classes, reinforcing the 

effectiveness of the data-centric approach in improving model reliability [9], [32]. 

Table 4 summarizes the accuracy improvements of ResNet18 across different stages of dataset 

optimization. While pruning reduces accuracy in some classes due to data loss, the incorporation of GAN-

generated samples restores and enhances overall accuracy by balancing class representation and improving 

model robustness [29]–[31]. As shown in Figure 6, the GAN-generated samples exhibit high fidelity and 

variety, effectively addressing issues like class imbalance and poor-quality original data. These high-quality 

samples enhance model generalization and improve class-specific accuracy by providing more diverse and 

representative training data [9], [32]. 
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Table 2. Recall comparison (ResNet18). This table compares the recall of ResNet18 at each stage of 

optimization: baseline, pruning, and data augmentation with GAN 
Class Baseline After Pruning With GAN 

Airplane 0.929 0.843 0.945 

Automobile 0.962 0.812 0.959 

Bird 0.727 0.573 0.873 

Cat 0.850 0.737 0.789 

Deer 0.935 0.719 0.914 

Dog 0.788 0.884 0.856 
Frog 0.953 0.929 0.957 

Horse 0.933 0.884 0.906 

Ship 0.945 0.850 0.860 
Truck 0.847 0.978 0.901 

Average 0.887 0.821 0.896 

Std Dev 0.080 0.118 0.053 

 

 

Table 3. F1-score comparison ((ResNet18). This table illustrates the combined effects of precision and recall 

improvements on the F1-score at different optimization stages 
Class Baseline After Pruning With GAN 

Airplane 0.898 0.865 0.879 
Automobile 0.945 0.89 0.939 

Bird 0.821 0.715 0.864 

Cat 0.817 0.696 0.815 
Deer 0.873 0.82 0.895 

Dog 0.827 0.734 0.866 

Frog 0.913 0.894 0.927 

Horse 0.925 0.863 0.934 

Ship 0.934 0.893 0.913 

Truck 0.908 0.847 0.927 

Average 0.886 0.822 0.896 

0.04 Std Dev 0.049 0.077 

 

 

Table 4. Accuracy comparison (ResNet18). This table highlights the accuracy of ResNet18 at different 

optimization stages: baseline, after pruning, and after incorporating GAN-generated samples 
Class Baseline After Pruning With GAN 

Airplane 0.905 0.824 0.963 

Automobile 0.898 0.787 0.94 

Bird 0.87 0.607 0.843 
Cat 0.641 0.715 0.82 

Deer 0.892 0.809 0.918 

Dog 0.842 0.848 0.847 
Frog 0.929 0.878 0.925 

Horse 0.873 0.952 0.919 

Ship 0.965 0.75 0.952 
Truck 0.951 0.986 0.903 

Average 0.877 0.816 0.903 

Std Dev 0.086 0.106 0.047 

 

 

 
 

Figure 1. Examples of GAN-generated samples used for augmenting the dataset. These high-quality samples 

enhance the diversity and representation of underrepresented classes, significantly contributing to improved  

classification performance 
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The performance of ResNet18 demonstrates that the proposed data-centric approach, which involves 

pruning and augmentation, consistently improves key evaluation metrics. These findings validate the 

effectiveness of prioritizing dataset quality over model complexity. Particularly when enhancing the 

performance of smaller models [2]. 

 

4.5.  InceptionV3 performance evaluation 

We replicated the dataset optimization experiments using the InceptionV3 architecture to evaluate 

the generalizability of the proposed approach across different models. Tables 5 to 8 present the results for 

precision, recall, F1-score, and accuracy, demonstrating consistent performance improvements similar to 

those observed with ResNet18. Table 5 indicates a similar trend in precision improvement for InceptionV3 as 

seen in ResNet18, confirming the effectiveness of the data-centric approach across multiple architectures [9], 

[20]–[26], [28], [29]. As presented in Table 6 the recall values show consistent improvements with GAN-

augmented samples, particularly for underrepresented classes like bird and cat. These results emphasize the 

ability of the optimized dataset to improve model sensitivity to relevant instances [30], [31]. 

Table 7 demonstrates the combined improvements in precision and recall through the F1-score 

metric. GAN-based augmentation significantly enhances F1-scores, particularly for classes like "dog" and 

"cat" that previously suffered from low recall or precision. This improvement reinforces the effectiveness of 

balanced data augmentation strategies in improving model performance [30]–[32]. 

As shown in Table 8, the overall accuracy of InceptionV3 improves significantly after GAN 

augmentation. This improvement validates the generalizability of the proposed data-centric optimization 

approach across different model architectures. The consistent accuracy gains demonstrate the method's 

effectiveness beyond ResNet18, highlighting its potential for broader applications in deep learning [28], [29]. 

 

 

Table 5. Precision comparison (InceptionV3). This table compares the precision of InceptionV3  

at different stages: baseline, after pruning, and with GAN-generated samples 
Class Baseline After Pruning With GAN 

Airplane 0.909 0.779 0.891 

Automobile 0.949 0.942 0.956 

Bird 0.913 0.74 0.907 

Cat 0.925 0.862 0.859 

Deer 0.926 0.95 0.963 

Dog 0.859 0.929 0.875 
Frog 0.886 0.937 0.944 

Horse 0.876 0.909 0.959 

Ship 0.955 0.974 0.916 
Truck 0.894 0.956 0.918 

Average 0.909 0.898 0.919 

Std Dev 0.031 0.08 0.036 

 

 

Table 6. Recall comparison (InceptionV3). This table highlights the recall values of InceptionV3  

at different optimization stages: baseline, after pruning, and with GAN-generated samples 
Class Baseline After Pruning With GAN 

Airplane 0.931 0.963 0.935 
Automobile 0.961 0.976 0.973 

Bird 0.870 0.921 0.866 

Cat 0.737 0.782 0.830 

Deer 0.894 0.883 0.883 

Dog 0.857 0.781 0.875 

Frog 0.967 0.940 0.956 
Horse 0.976 0.945 0.953 

Ship 0.920 0.786 0.965 

Truck 0.966 0.914 0.949 
Average 0.908 0.889 0.918 

Std Dev 0.073 0.078 0.050 

 

 

4.6.  Performance analysis of the mod 

The impact of data-centric optimization was analyzed across all classes, focusing on the baseline, 

pruned, and GAN-augmented stages. This evaluation highlights performance differences resulting from data 

cleaning and augmentation. Figures 3 and 5, along with tables in sections 1 through 8, present the 

performance metrics for ResNet18 and InceptionV3. The results demonstrate the consistent improvements 

achieved through the proposed optimization approach. 
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Table 7. F1-score comparison (InceptionV3). This table compares the F1-scores of  

InceptionV3 across baseline, pruning, and GAN-augmented stages 
Class Baseline After Pruning With GAN 

Airplane 0.920 0.861 0.913 

Automobile 0.955 0.959 0.964 

Bird 0.891 0.820 0.886 
Cat 0.820 0.820 0.844 

Deer 0.910 0.916 0.921 

Dog 0.858 0.848 0.875 

Frog 0.924 0.939 0.950 

Horse 0.923 0.926 0.956 

Ship 0.937 0.870 0.940 

Truck 0.928 0.935 0.933 

Average 0.907 0.889 0.918 

Std Dev 0.040 0.051 0.039 

 

 

Table 8. Accuracy comparison (InceptionV3). This table highlights the overall accuracy  

improvements of InceptionV3 through different optimization stages 
Class Baseline After Pruning With GAN 

Airplane 0.829 0.972 0.891 
Automobile 0.935 0.978 0.949 

Bird 0.930 0.889 0.872 

Cat 0.777 0.865 0.919 

Deer 0.911 0.909 0.925 

Dog 0.819 0.759 0.792 

Frog 0.900 0.907 0.956 

Horse 0.887 0.894 0.889 

Ship 0.975 0.822 0.957 

Truck 0.871 0.871 0.966 

Average 0.883 0.887 0.912 

Std Dev 0.063 0.062 0.050 

 

 

4.6.1. Airplane 

In this section, discusses the classification performance of airplane images using different models. 

We assess how pruning and GAN-augmentation affect precision, recall, and F1-scores. 

a. Baseline model: High precision, recall, and F1-scores indicate effective classification of airplane 

images. 

b. Pruned model: A slight decrease in performance metrics suggests pruning removed critical samples, 

impacting discriminative learning [7], [8], [10]–[16], [17]–[25], [26]–[29]. 

c. GAN-augmented model: Precision and recall improved due to high-quality sample generation, 

demonstrating GANs’ potential to mitigate data imbalance [32]. 

 

4.6.2. Automobile 

In this section, evaluates the automobile image classification models, focusing on how pruning and 

GAN augmentation influence model performance and resilience. 

a. Baseline model: Achieved near-perfect precision, recall, and F1-scores for automobile, reflecting strong 

initial performance. 

b. Pruned model: Marginal reductions in metrics suggest resilience to data pruning due to inherent class 

diversity [4]. 

c. GAN-augmented model: Metrics remained high, with slight improvements validating GANs' robustness 

for enhancing balanced datasets [9]. 

 

4.6.3. Other classes (bird, cat, deer, dog, frog, horse, ship, and truck) 

This section highlights the model performance across various object classes. We explore the impact 

of pruning and GAN-augmentation, especially in classes affected by label noise and image quality. 

a. Baseline model: Performance varied across classes; challenges were noted for bird and cat due to label 

noise and low-quality images [10]. 

b. Pruned model: Classes with lower-quality labels (dog, cat) saw significant declines in metrics after 

pruning, highlighting the necessity of robust annotation [7]. 

c. GAN-augmented model: Metrics improved for most classes, particularly bird, cat, and dog, addressing 

challenges of data scarcity and quality [16]–[25], [26]–[32]. 
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4.7.  Summary of findings 

GAN-augmented data led to consistent improvements across most classes, addressing challenges 

identified during baseline and pruned stages. The optimized datasets showed decreased variance in metrics as 

shown in Table 8 confirming the model's enhanced robustness [2]–[4]. Statistical significance tests (t-test) 

further validated the performance gains across metrics [20]–[29], [30], [31]. 

 

 

5. CONCLUSION 

In this work, we proposed a system for enhancing the performance of classification models through 

data-centric principles. Our system optimizes datasets using simple operators such as the deletion of poor-

quality samples and the generation of new high-quality samples. We benchmarked the proposed system 

across different classification models and datasets, evaluating its performance with various criteria. The 

results consistently showed improved classification performance, demonstrating the effectiveness of our data-

centric approach. One outstanding question is the scalability of these methods to extremely large datasets, 

which could be explored in future research. 

Potential applications of this research include improving the performance of machine learning 

models in fields such as healthcare, finance, and autonomous driving, where high-quality data is crucial. 

Future research could explore the integration of more sophisticated data augmentation techniques and the 

application of our methods to other types of data, such as text and time-series data. Additionally, extending 

this work to semi-supervised or unsupervised learning scenarios could provide further insights and benefits. 

The significance of our findings lies in demonstrating that focusing on data quality can significantly 

enhance model performance, a principle that is often overshadowed by the emphasis on model architecture. 

Our research contributes to the growing body of evidence that data-centric AI is a crucial component of 

effective machine learning practice. This work underscores the importance of high-quality data and provides 

a framework for other researchers and practitioners to optimize their datasets for better performance. 
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