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 The rapid growth of industrialization and internet of things (IoT) driven 

advancements in Industry 5.0 necessitates efficient and user-friendly 

engineering solutions. Gas leakage incidents in coal mines, chemical 

enterprises, and households pose significant risks to ecosystems and human 

safety, emphasizing the need for automated and rapid gas-type detection. 

Traditional detection methods rely on single-source data and focus on 

isolated spatial or temporal features, limiting accuracy. This paper proposes 

a multimodal artificial intelligence (AI) fusion technique combining pre-

trained convolutional neural networks (CNNs), such as VGG16, with a deep 

neural network (DNN) model. The particle swarm optimization (PSO) 

algorithm optimizes CNN hyperparameters, outperforming traditional trial-

and-error methods. The system addresses challenges posed by gases being 

odorless, colorless, and tasteless, which limit conventional human detection 

methods. By leveraging sensor fusion, the late fusion technique integrates 

distinct network architectures for unified gas identification. Experimental 

results demonstrate 95% accuracy using DNN with gas sensor data, 96% 

with optimized VGG16 using thermal imaging, and 99.5% through 

multimodal late fusion. This IoT-enhanced solution outperforms single-

sensor approaches, offering a robust and reliable gas leakage detection 

system suitable for industrial and smart city applications. 

Keywords: 

Artificial intelligence  

Deep learning 

Internet of things  

Late fusion 

Multimodal data fusion 

Particle swarm optimization  

Transfer learning 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Mariam M. Abdellatif 

Faculty of Science, Al-Azhar University 

Cairo, Egypt 

Email: mariemmohammed974@gmail.com 

 

 

1. INTRODUCTION 

In the rapidly advancing internet of things (IoT) era, gas sensors have become crucial in various 

settings, from homes to healthcare facilities [1], [2]. These sensors are vital for detecting harmful gases and 

ensuring air quality, but face challenges like cross-sensitivity and limited selectivity [3]. To overcome these, 

smart gas sensing integrates sensor arrays, signal processing, and machine learning, enhancing precision and 

sensitivity. 

Despite technological advancements, gas leakage remains a significant risk, causing industrial 

disasters and environmental harm [4]. Efficient and automated gas leak detection systems are essential for 

safety. Recent innovations include metal oxide semiconductor (MOX) sensors in “electronic nose” (e-nose) 

setups, which use gas sensor arrays, signal processing modules, and pattern recognition systems [5]. Artificial 

https://creativecommons.org/licenses/by-sa/4.0/
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intelligence (AI) techniques have further improved gas detection, with applications in multiple industries  

[6]–[8]. AI enhances the e-nose's ability to accurately identify and classify gases, crucial for preventing 

accidents and health risks. Previous methods relied on single deep learning (DL) models, but combining 

multiple DL structures has improved detection accuracy [5]. Integrating spatial, spectral, and temporal data 

enhances performance, and reducing attribute sizes increases recognition accuracy [9]. An AI-driven 

approach using DL frameworks now integrates data from diverse sources, combining gas sensors and thermal 

imaging for effective gas detection. These advancements provide valuable insights into enhancing safety 

measures and developing robust gas-sensing solutions. In this approach, two independent models are first 

trained on their respective datasets. The gas sensors model processes the sequential data collected from 

various gas sensors over time, extracting valuable temporal patterns and trends related to gas concentrations. 

On the other hand, the thermal camera model analyzes the thermal images captured by the camera, detecting 

temperature variations that may indicate gas leaks or anomalies. After training, both models are used to make 

predictions on the same set of test samples or data instances. The gas sensors model provides predictions 

based on its sequence data analysis, while the thermal camera model generates predictions based on its 

interpretation of the thermal images. The predictions from both models are then combined or fused using a 

late fusion technique. Late fusion between gas sensors sequence data and thermal camera images data is 

particularly valuable in real-world scenarios where multiple sources of information are available, and the 

fusion of these diverse data sources can provide a more comprehensive and reliable gas leak detection 

solution. However, the effectiveness of the late fusion [10] approach relies on carefully designing the fusion 

strategy and ensuring that the models are well-trained on their respective datasets to capture relevant patterns 

and features specific to each modality. The significant contributions of this research are as follows: 

a. The particle swarm optimization (PSO) algorithm is utilized to fine-tune various hyperparameters associated 

with the VGG16 model.  

b. A pioneering AI-driven framework that integrates two distinct modalities is introduced to bolster the 

robustness and dependability of gas detection. 

c. The use of late fusion techniques for gas detection and the identification of leaked gases are demonstrated 

by leveraging the outputs of deep learning architectures VGG16 and deep neural network (DNN).  

d. More accurate and effective detection of gas is achieved based on the proposed approaches. 

The structure of this paper is organized as follows: section 2 provides a review of related research. 

Section 3 covers the fundamentals and background of DNN, convolutional neural networks (CNNs), and 

PSO. Section 4 describes the dataset used in the experiments. Section 5 presents the proposed approach for 

diagnosing plant diseases. Section 6 focuses on the analysis and discussion of experimental results. Lastly, 

section 7 offers the concluding remarks. 

 

 

2. RELATED WORKS 

Numerous studies have investigated the integration of chemical and substance-detecting sensors into 

IoT platforms. For example, Venkatasubramanian et al. [11] enhances detection and management of 

breakdowns in industrial IoT (IIoT) devices using real-time sensor data for decision-making, addressing 

challenges like denoising and missing data with preprocessing and data fusion techniques. Models like 

PropensityNet, DNN, and CNN long short-term memory (CNN-LSTM) are used, proving effective with Case 

Western Reserve University (CWRU) data for fault detection. In [12], the focus is on hazardous gas leakage, 

emphasizing safety in chemical industries. The study proposes an IoT-based strategy using an Arduino UNO R3 

and sensors to monitor gases like NO2 and carbon monoxide. Machine learning enhances data accuracy, and 

hybrid hidden Markov and AI models improve error detection. Studies also combine gas sensors and thermal 

imaging for gas detection. For instance, Peng et al. [13] uses CNN to categorize gases using eight sensors, while 

[14] employs various DL models, including CNN, LSTM, and autoencoders for gas leak detection, achieving 

notable accuracy. Researches like in [15] and [16] utilize CNN and LSTM for extracting spatial-temporal 

information from sparse data. Researches like [17] and [18] explore machine learning techniques for analyzing 

infrared (IR) thermal images in gas detection. Bin et al. [19] introduces a tensor-based leakage detection method 

with ResNet50 for gas identification, and Liu et al. [20] uses an IR thermal imaging system with diverse 

machine learning algorithms for detecting flammable gas leaks. In [21], pattern recognition techniques like 

random forest, support vector machine (SVM), and shallow multi-layer perceptron algorithms identify gases at 

low concentrations using a SnO2 gas sensor, with artificial neural networks achieving high effectiveness. 

Related studies [22] and [23] use pattern recognition methods for classifying gravitational search algorithm 

(GSA) data. Moreover, Nikolopoulos et al. [24] investigates thermal imaging for gas leakage detection, using 

VGG-16 and k-NN for classifying gases with high accuracy, depending on the specific application and trade-

offs between computational cost and performance. These studies illustrate the synergy between advanced sensor 

technology and analytical techniques for enhancing industrial safety and gas detection capabilities. 
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3. BASICS AND BACKGROUND 

3.1.  Internet of things 

The internet of things (IoT) connects devices and systems, enabling seamless communication, data 

exchange, and intelligent decision-making by linking physical objects with sensors and actuators to the 

internet. In terms of architecture, IoT consists of several interconnected components [25]. At the foundation 

are sensors and actuators, which capture data such as temperature and motion, and enable physical actions 

based on this data. These devices rely on connectivity mechanisms like Wi-Fi, Bluetooth, or cellular 

networks to communicate and transmit data efficiently. Once transmitted, cloud computing platforms store 

and process this data, providing the computational power necessary for real-time insights. Data analytics 

plays a crucial role at this stage, where machine learning techniques are employed to extract meaningful 

patterns and support predictive actions. The final layer involves user interfaces, such as applications and 

dashboards, which facilitate remote monitoring and management of IoT systems. IoT applications span a 

wide range of industries, including smart cities—where they support traffic management and energy 

optimization—and healthcare, enabling real-time health monitoring and improved patient outcomes. This 

work builds upon these capabilities by utilizing multimodal data for gas detection. Through the application of 

fusion techniques, discussed in the following section, the system aims to enhance detection accuracy and 

reliability in safety-critical environments. 

 

3.2.  Multimodal data fusion approaches 

Fusion strategies in multimodal machine learning can be either model-based or model-agnostic. 

Model-agnostic fusion mixes modalities, such as thermal imaging and sensor data, employing early, late, or 

intermediate fusion techniques. Early fusion incorporates raw data during the initial processing stage, 

capturing interactions between modalities, whereas late fusion, or decision-level fusion, merges independent 

predictions using methods such as majority voting. Intermediate fusion mixes features from different 

modalities at higher abstraction levels, resulting in improved performance. Model-based fusion, also known 

as multitask fusion, trains models on many tasks at the same time while sharing representations across 

modalities to promote generalization. The next section discusses deep learning models for gas detection [26]. 

 

3.3.  Deep learning models 

Deep learning, a key subset of machine learning, excels in processing complex data. Two essential 

models are DNNs and CNNs, often enhanced by transfer learning techniques [27]. The following subsections 

provide a brief overview of DNNs, CNNs, and the role of transfer learning in enhancing their performance. 

 

3.3.1. Deep neural networks  

DNNs are advanced artificial neural networks with multiple hidden layers that automatically learn 

complex patterns from raw data. They excel in tasks such as image recognition, speech processing, and 

recommendation systems. Despite requiring significant computational resources, advancements in hardware 

and algorithms have enabled their widespread adoption [28]. 

 

3.3.2. Transfer learning with CNNs 

CNNs consist of convolutional, pooling, and fully connected layers, each serving distinct roles in 

image processing. Transfer learning leverages pre-trained models like VGG16, known for its success in tasks 

such as ImageNet classification. By reusing VGG16's convolutional layers, transfer learning enables 

effective feature extraction or fine-tuning for new tasks with limited data. The next section addresses 

hyperparameter optimization for these models using particle swarm optimization [29]. 

 

3.4.  Particle swarm optimization algorithm 

PSO simulates the behavior of bird and fish groups, with particles distributed in a search space and 

evaluated based on an objective. Each particle adjusts its position using its current location, best-known 

position, and neighbors' positions. This iterative process continues until the desired outcome is achieved [30]. 

The velocity and position updates for each particle at iteration t+1are given by: 

 

vt+1 = ω × vt + c1× r1 × (p(best)t - xt) + c2× r2 × (G(best)t-xt)   (1) 

 

xt+1 = xt + vt+1 (2) 

 

Where, t is the iteration number, ω (omega) is the weight, 𝑐1 and 𝑐2 are cognitive and social parameters, and 

𝑟1, 𝑟2 are random numbers between 0 and 1. For this research, the cost function is the mean square error 

(MSE) of a neural network with one hidden layer and 10 neurons. The PSO algorithm systematically 
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minimizes this cost by refining inputs, starting with a random subset of features and gradually achieving 

optimal results, as shown in Figure 1.  

 

 

 
 

Figure 1. Flowchart of PSO algorithm 

 

 

4. DATASET DESCRIPTION 

The multimodal gas data is a comprehensive dataset that amalgamates vital information from seven 

distinct gas sensors and thermal images captured using a thermal camera. The dataset encompasses 

measurements of two different gases, creating four well-defined classes: Perfume, NoGas, Smoke, and 

Mixture of perfume and Smoke. The data collection process involved utilizing seven metal oxide gas sensors, 

MQ2, MQ5, MQ3, MQ8, MQ6, MQ7, and MQ135, along with a sophisticated thermal imaging camera. This 

multimodal approach enabled the simultaneous acquisition of numerical values from the gas sensors and 

thermal images, providing a diverse and informative dataset [31]. The comprehensive details of the dataset 

are elaborated in subsequent sections. 

 

4.1.  Gas sensors 

Gas sensors detect gases by converting chemical data into electrical signals, with MOX sensors 

interfaced to a microcontroller for processing and data communication. Analog-to-digital converters (ADCs) 

transform analog outputs into digital data, while wired or wireless communication transmits the data for 

storage and analysis. The dataset includes seven MOX sensors (MQ2, MQ3, MQ5, MQ6, MQ7, MQ8, and 

MQ135) integrated into an IoT system for automated data collection, as shown in Figure 2. These sensors are 

compact, durable, and responsive to gases like CO, methane, LPG, and alcohol as shown in Table 1, with 

sensitivity, selectivity, and response time critical to their performance. During data collection, the sensors 

were placed 1 mm apart. 

The objective function 
meets the criteria. 
 

Determine the new direction for the search 

Randomly set the in statistical PSO parameters 

 

NO 

Adjust the velocity and collective position of the swarm by applying the updated PSO velocity to 

each particle 

 

Compute the objective function for the initial population 

 

Assess the objective function for each individual particle 

 

Set the velocities and positions of the swarm to their initial values 

 

Compare the particle's personal best (pbest) with the global best (gbest) 

Retrieve the global solution 

 

Start 

Iter=iter+1 

Stop 
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Figure 2. IoT-enabled the process of gathering data 

 

 

Table 1. Sensing gases and gas sensors 
Sensor Sensitivity gas 

MQ2 Propane, Butane, Methane, LPG, Smoke 

MQ8 Hydrogen gas 
MQ3 Smoke, Ethanol, Alcohol 

MQ135 Air Quality (Benzene, Smoke) 

MQ6 Butane gas, LPG 
MQ5 Natural gas, LPG 

MQ7 Carbon Monoxide 

 

 

4.2.  Thermal camera images 

The dataset uses a thermal camera that captures temperature fluctuations via infrared light, with 

each pixel acting as an infrared temperature sensor. Images are output in RGB format, enabling visualization 

irrespective of lighting conditions. The Seek thermal camera, with a 206×156 sensor, a -40 °C to 330 °C 

range, and 32,136 pixels, was used. Gas sensors and the thermal camera collected data simultaneously, as no 

public dataset combining thermal images and gas sensor data existed. Data was gathered by positioning seven 

gas sensors 1 mm apart, monitoring gases from perfumes and incense at intervals over 1.5 hours. Three 

classes—NoGas, Perfume, and Smoke—were sampled, with 6,400 total samples (1,600 per class). Sensor 

outputs were converted into 10-bit digital values for analysis, as shown in Table 2. 

 

 

Table 2. Examples of the data for the thermal images and the related gas array readings 
Class type Gas Thermal image Gas Thermal image 

     

NoGas [733,530,405,414,589,628,456] 

  

[559,516,374,335,664,448,415] 

 

     

Perfume [738,529,394,395,566,577,442] 

  

[794,518,494,447,686,658,490] 

 

     

Smoke [682,428,299,333,592,596,335] 

  

[686,429,299,333,591,598,335] 

 

     

Mixture [632,443,444,405,401,309,430] 

 

[506,392,344,311,395,222,302] 

  
     

 

5. THE PROPOSED THERMAL-GAS FUSION DETECTION MODEL  
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The thermal-gas fusion detection model combines gas sensors and a thermal camera for accurate gas 

detection, with a block diagram as shown in Figure 3 and three scenarios detailing the data collection and 

training process. The following subsections outline the system architecture, data collection scenarios, and the 

training methodology used in the proposed model. This integrated approach is designed to improve detection 

accuracy and robustness across varying environmental conditions. 

 

 

 
 

Figure 3. The schematic diagram represents the proposed approach 

 

 

5.1.  Gas sensors of scenario I 

5.1.1. Preprocessing phase for gas sensors 

In the preprocessing phase of the proposed approach, several crucial data preparation steps are 

performed to effectively prepare the dataset for training the machine learning model. Initially, the dataset is 

divided into feature vectors and their corresponding targets. Subsequently, feature selection is performed 

using the SelectKBest algorithm with the 𝑓_𝑐𝑙𝑎𝑠𝑠𝑖𝑓 scoring function, which selects the top 6 most significant 

features from the original feature set based on their relevance to the target variable. After that, label encoder 

is employed to convert the categorical labels of the target variable into numerical representations. Further 

enhancing the data, the encoded target variable is transformed into binary vectors using one-hot encoding, 

resulting in a binary matrix representing the classes. To ensure consistency and uniformity in feature scales, 

the numerical columns of the feature matrix are scaled using MinMaxScaler, rescaling their values between 0 

and 1. Finally, the preprocessed data is split into training and testing sets, with 20% reserved for testing, 

while maintaining reproducibility by setting a random state of 0. These meticulous preprocessing steps 
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optimally equip the data for training and evaluating the deep learning model in the subsequent stages of the 

proposed approach. 

 

5.1.2. Learning phase 

In this phase, given the sequential nature of sensor measurements, a suitable choice for a sequence 

model is the deep neural network (DNN). In the learning phase of the proposed approach, the DNN model 

consists of multiple layers: input, hidden, and output. The input layer is defined using the 'Dense' function 

with 1,500 neurons and a ReLU activation function, ensuring non-linearity and effective feature 

representation. The input shape of (6) indicates that the input data has six features. Subsequently, two hidden 

layers are added with 1,500 and 1,000 neurons, respectively, employing ReLU activation functions to 

enhance feature extraction further and introduce non-linearity. Batch Normalization layers are integrated 

after each hidden layer to normalize the output, avoiding overfitting and improving convergence. Dropout 

layers are incorporated after the first two hidden layers to mitigate overfitting during training, with dropout 

rates of 0.7 and 0.1, respectively, randomly deactivating neurons during training. This regularization 

technique improves the generalization capabilities of the model and prevents it from becoming overly 

dependent on specific neurons. After the last hidden layer, the output layer is added with four neurons, 

representing the four classes, and utilizes the SoftMax activation function, enabling probabilistic predictions. 

The model is then compiled using the Adam optimizer with a learning rate 1e-4 and categorical cross-entropy 

as the loss function to optimize the model's performance. 

 

5.2.  Thermal images of scenario II 

5.2.1. Data preparation phase for thermal image 

The thermal camera is a non-invasive instrument for assessing temperature variations by detecting 

infrared light. Its image sensor's pixels serve as infrared temperature sensors, simultaneously recording 

temperatures in several places. Images representing the outcome are shown in RGB format, correlating with 

temperature data. The thermal camera has a substantial advantage over traditional cameras in that it can 

operate efficiently in various situations, regardless of their shape or roughness. The choice of the Seek 

thermal camera for this study was based on its compact size, a thermal sensor resolution of 206×156 pixels, a 

wide 36-degree field of view, temperature measurement capabilities ranging from -40 °C to 330 °C, a 

framerate of below 9 Hz, and a high thermal pixel count of 32,136, which allows for smooth visualization of 

thermal images. A validation set was created to ensure precise monitoring of the models' performance during 

the training phase by randomly assigning 20% of the samples from the original training set. The data set was 

split into three subsets: the training, validation, and test sets. Table 3 presents the number of samples in each 

category, along with the total count of samples in both the training and validation sets after the split. This 

division facilitates practical training and evaluation of the models, enabling them to learn from diverse data 

while allowing for unbiased assessment of their accuracy and generalization capabilities. Various data 

augmentation methods were applied to the training samples to prevent overfitting and improve 

generalization. These techniques include rotation, width adjustment, height adjustment, shear, zoom, and 

horizontal flipping. Subsequently, both the validation and test datasets were resized to a resolution of 256 x 

256 and normalized by dividing the color value of each pixel by 255, ensuring that all pixel values fall within 

the range of [0, 1]. During the training phase, the augmentation settings involve rescaling the pixel values to 

the desired range of 0 to 1, rotating images by up to 30 degrees, shifting the height and width by 20%, 

applying shear transformations, horizontal flipping, and zooming the images by 30%. The ′𝑓𝑖𝑙𝑙_𝑚𝑜𝑑𝑒′ 
parameter is also set to 'nearest' to handle any potential missing pixels after the transformations. In contrast, 

the test data underwent rescaling from 0 to 1. 

 

 

Table 3. The counts of samples for each category and the total combined samples in both the training and 

validation sets are provided 
Crop category Training set images Validation set images 

NoGas 1,280 160 

Mixture 1,280 160 
Perfume 1,280 160 

Smoke 1,280 160 

Total 5,120 640 

 

 

5.2.2. Optimization phase for thermal image  

The use of pre-trained CNN architectures places several restrictions on the optimization phase. The 

majority of these architectures' hyperparameters are fixed. Still, a few important ones need to be adjusted, 

including the 𝑚𝑖𝑛𝑖_𝑏𝑎𝑡𝑐ℎ size, learning rate, quantity of units in dense layers, and dropout rate. To overcome 
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this, the study uses the optimized linear particle swarm optimization (OLPSO) algorithm to tune the 

hyperparameter. According to Table 4, the OLPSO algorithm uses two coordinates as particles to indicate the 

batch size and learning rate of the Adam optimizer. Random initialization creates the initial swarm particles. 

In particular, the initialization uses integer values from 25 to 128 and decimal values from 0.0 to 1.0. The 

OLPSO algorithm finds the best values for these hyperparameters through iterative optimization, ultimately 

improving the performance and accuracy of the proposed approach. 

Table 4 details the use of the OLPSO algorithm for tuning hyperparameters in a thermal image 

analysis model using pre-trained CNN architectures. Specifically, it shows that OLPSO uses two coordinates 

as particles: one for batch size (P1) ranging from 25 to 128, and another for learning rate (P2) ranging from 

0.0 to 1.0. Through iterative optimization, OLPSO identifies the best values for these hyperparameters, 

enhancing the performance and accuracy of the model. 

 

 

Table 4. Particle specification for hyperparameter optimization in the proposed methodology 
Particle (p) Batch size Learning rate 

P1 25 to 128 Not Applicable 

P2 Not Applicable 0.0 to 1.0 

 

 

5.2.3. Learning phase 

This phase proposed the classification of gas samples in this investigation using the optimized 

VGG16 model. A deep learning model is constructed to perform image classification using transfer 

learning. The model is based on the VGG16 architecture, a pre-trained CNN mentioned in section 3.3.2. 

The model architecture consists of a pre-trained VGG16 model as the base, followed by additional layers. 

The VGG16 base is frozen (non-trainable) to retain its pre-trained weights and features. A dense layer with 

256 units and ReLU activation is added, followed by dropout and batch normalization layers to prevent 

overfitting. The output layer comprises four units with a SoftMax activation function for multiclass 

classification. The model is optimized using the Adam optimizer with a learning rate 2e-5 and categorical 

cross-entropy as the loss function. The model checkpoint and early stopping callbacks are employed to 

improve model performance and prevent overfitting. During the training phase, the model was trained 

using the training set and validated using the validation set. Batches of augmented images were used for 

both training and validation. The model underwent training for 100 epochs, and the best model weights 

were saved for future use and evaluation after these pre-trained models had finished their training. 

 

5.2.4. Evaluation phase for gas sensors and thermal images 

During this phase, the predictive capabilities of the proposed approach were assessed using five 

commonly employed evaluation metrics in classification problems: the confusion matrix, accuracy, precision, 

F1-score, and recall. Accuracy quantifies the ratio of correct predictions to all predictions made and is 

typically expressed as a percentage, calculated using (3). Precision assesses the model's ability to predict 

values for specific categories accurately; its calculation is detailed in (4). Recall [31] gauges the proportion of 

correctly classified positive patterns and (5) outlines its derivation. The F1-score represents the weighted 

average of precision and recall, as computed in (6). Both macro and micro averages were employed to 

evaluate performance, excluding the confusion matrix comprehensively. The confusion matrix, a widely used 

tabular representation, illustrates the classification model's performance on the test set. It enables a 

comparison between predicted and actual outcomes, offering valuable insights into the model's accuracy in 

correctly identifying values. By aligning predicted and actual outcomes, the confusion matrix aids in 

assessing the overall performance of the model and identifying any misclassifications or errors that may have 

occurred during the classification process. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

Total prediction
  (3) 

 

Precision = 
Correct Prediction s  for a Particular Category  

Total Prediction s  for that Category 
 (4) 

 

Recall = 
Correctly Predicted Instances of a Category

Total Instances of that Category
 (5) 

 

F-Measure = 
2×Precision×Recall

Precision+Recall
 (6) 

5.3.  Fusion phase in scenario III 
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In this phase, the primary objective is to make precise decisions by amalgamating features derived 

from thermal images and gas sensor measurements. The designs of the models for fusing image and sequence 

data are depicted in Figure 1. The central aim is constructing a unified classifier that adeptly merges 

information from thermal images and the gas sensor sequence array. The outputs of the DNN and VGG16 

models must be in the same feature space for the fusion to be effective. A Late Fusion model that uses 

decision-level fusion is also used to accomplish this. The individual predictions of the DNN and VGG16 

models are obtained first. The final result of fusion, known as average fusion, is then considered the 

arithmetic average of each model prediction during the late fusion process. The available dataset is used to 

develop and validate the late fusion model. The performance of the fusion models is presented in the 

following section. The fusion process aims to make the most of the advantages of both thermal pictures and 

gas sensor data, enhancing classification precision for gas sample analysis. 

 

 

6. RESULT AND DISCUSSION 

This section presents and analyzes the outcomes of the proposed approach applied to three distinct 

gas detection scenarios. Leveraging the Keras library, a Python-based high-level API renowned for building 

and implementing deep learning architectures. The framework of the approach is seamlessly constructed and 

integrated with powerful numerical computational libraries like TensorFlow. A DNN is trained in scenario I 

using only the sequence gas sensor modality. In scenario II, VGG16 is utilized to process thermal images of 

gas sensors. Finally, late fusion is employed in scenario III, by combining features from the DNN and 

VGG16 models through decision-level fusion. In this approach, individual predictions are obtained from the 

DNN and VGG16 models before performing the late fusion to achieve gas detection objectives. 

 

6.1.  Gas sequences result of scenario I 

The outcomes derived from this scenario are not just showcased, but meticulously examined through 

a comprehensive analysis conducted in three distinct and crucial phases. The subsequent subsections detail 

the three key phases of analysis: preprocessing, learning, and evaluation of the DNN model. 

 

6.1.1. Preprocessing phase 

In the paper's feature selection and scaling section, the authors utilized the scikit-learn library to 

perform these preprocessing steps on the dataset. First, the feature selection was applied using the 

SelectKBest method from scikit-learn's feature selection module. This method utilizes the ANOVA F-value 

(𝑓_𝑐𝑙𝑎𝑠𝑠𝑖𝑓) to evaluate the importance of features and select the top ′𝑘′ features. In this case, ′𝑘′ was set to 6, 

indicating that the algorithm will select the six most relevant features for further analysis. The selected 

features were then obtained by calling 𝑓𝑖𝑡_𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚() on the data matrix ′𝑋′ and the corresponding target 

′𝑦′. Next, to handle the target variable ′𝑦′, the authors used Label Encoder from scikit-learn's preprocessing 

module to convert categorical class labels into numerical representations. This step is essential for certain 

machine learning algorithms that require numerical inputs. After converting class labels to numerical 

representations, the authors applied one-hot encoding. Moving on to feature scaling, the authors employed 

MinMaxScaler from scikit-learn's preprocessing module. Feature scaling is essential to ensure that all 

features are on the same scale, which helps prevent certain features from dominating the learning process 

during model training. In this code, the numerical features in ′𝑋′ were scaled between 0 and 1 using Min-Max 

scaling, making the dataset suitable for various machine learning algorithms. 

 

6.1.2. Learning phase 

The model is designed as a Sequential stack of layers, featuring dense layers with ReLU activation 

for hidden layers and SoftMax for the output layer. Batch normalization layers are added for training 

stability, and dropout layers are utilized for regularization and overfitting prevention. The model is compiled 

with categorical cross-entropy loss and accuracy metrics for multi-class classification. During training, three 

callbacks are employed: model checkpoint saves the best model weights based on validation loss, early 

stopping halts training if validation loss stagnates, and reduce LROnPlateau adjusts the learning rate when 

validation loss plateaus. The model is trained for 300 epochs using the Adam optimizer with a learning rate 

of 1e-4. After thorough testing, it was found that the models had reached their optimal validation results. 

 

6.1.3. Evaluation of DNN model 

To assess its effectiveness, the DNN model was evaluated on the test set using the five performance 

indicators. A detailed comparison of these results is provided in Table 5. As shown, the model utilizing the 

Adam optimizer achieved an impressive accuracy of 95%. 

Figure 4 presents the provided confusion matrix as a 4x4 matrix that evaluates the performance of a 

classifier in a multi-class classification problem with four classes: 'NoGas,' 'Perfume,' 'Smoke,' and 'Mixture.' 
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The diagonal elements (1, 1), (2, 2), (3, 3), and (4, 4) represent the number of instances correctly classified 

for each respective class. Precisely, 185 instances of 'NoGas,' 133 instances of 'Perfume,' 145 instances of 

'Smoke,' and 148 instances of 'Mixture' were correctly predicted.  

The off-diagonal elements (2,3) and (3,2) represent misclassifications between the 'Perfume' and 

'Smoke' classes, where 10 instances of 'Perfume' were incorrectly classified as 'Smoke,' and 19 instances of 

'Smoke' were incorrectly classified as 'Perfume.' However, no misclassifications were observed between the 

other classes. 

 

 

Table 5. The performance metrics (precision, recall, and F1-score) for the optimized DNN  

(Training Accuracy: 0.97, Testing Accuracy: 0.95) after Adam optimizer 
Class Precision Recall F-Score 

NoGas 1.00 1.00 1.00 

Perfume 0.88 0.93 0.90 
Smoke 0.94 0.88 0.91 

Mixture 1.00 1.00 1.00 

 

 

 
 

Figure 4. The confusion matrix of the DNN model 

 

 

6.2.  Thermal images results of scenario II 

The results obtained from this scenario are presented and analyzed in three structured phases. These 

include the data augmentation process, the optimization of the model, and the evaluation of the optimized 

VGG16 model. Each phase plays a critical role in enhancing the model's performance and ensuring the 

reliability of the detection system. 

 

6.2.1. Data augmentation  

The image data generator function from the Keras library is utilized to implement data augmentation 

and to resize and rescale the samples. Table 6 provides a summary of the data augmentation techniques used, 

along with their corresponding values. Additionally, Figure 5 presents visual examples of the augmentation 

process. It includes two parts: Figure 5(a) in which the original image of a common rust-affected sample. 

Figure 5(b), augmented versions of the same image generated using the specified data augmentation 

techniques, demonstrating the diverse transformations applied. These data augmentation techniques are 

applied during the training process to enhance the training dataset's diversity and size, which helps improve 

the generalization capability of the deep learning model. 

Table 6. Data augmentation methods and their associated parameters 
Data augmentation method Associated parameter 
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Rescale 1./255 

Rotation range 30 degrees 
Height shift range 0.2 

Width shift range 0.2 

Shear range 0.1 
Horizontal flip True 

Zoom range 0.3 

Fill mode 'nearest' 

 

 

  
(a) (b) 

 

Figure 5. Examples of the augmentation process (a) original common rust image and (b) augmented images 

using data augmentation techniques 

 

 

6.2.2. Optimization phase 

In the optimization phase, hyperparameter tuning was performed to enhance the performance of the 

proposed model. Hyperparameter optimization is crucial in fine-tuning the model's architecture and 

parameters, enabling us to achieve better accuracy and generalization. The parameters of the PSO algorithm 

for each pre-trained model are configured based on Table 7. 

 

 

Table 7. The parameter settings employed in the PSO algorithm 
Parameter Value 

Swarm size 400 
Iteration count 50 

 

 

The PSO algorithm aims to find the best number of neurons in the hidden layer of the model that 

minimizes the validation loss. The PSO consists of a swarm of particles, each representing a candidate 

solution (a possible number of neurons). The PSO algorithm iterates over a fixed number of iterations. Each 

particle's velocity and position are updated in each iteration based on the cognitive and social components. 

For each PSO iteration, the model is trained using the number of neurons specified by the particle for a total 

of six epochs, and the validation loss is used to compute the particle's fitness. Once PSO terminates, the best 

hyperparameters, including optimal values for parameters like w, c1, c2, and the best number of neurons, are 

presented in Table 8, providing insights into the optimized VGG16 model achieved by PSO. 

 

 

Table 8. Hyper-parameter values used in the PSO algorithm 
Pre-trained model Batch size Learning rate 

VGG16 32 0.00002 (2e-5) 

 

 

6.2.3. The evaluation of the optimized VGG16 model 

The pre-trained model was evaluated on the test set using the five indicators discussed in section 

4.1.3. This evaluation aimed to assess the effectiveness of the optimization process. The results presented in 

Table 9 indicate that the optimized VGG16 model achieved an accuracy of 96%. 

Figure 6 displays the confusion matrix obtained from the optimized VGG16 model. Class 0: There 

are 160 samples of NoGas, and all of them are correctly classified into class 0. There are no 

misclassifications into other classes; perfume: There are 146 samples of the Perfume class, and all of them 

are correctly classified into the Perfume class. However, there are 14 misclassifications in the Smoke class. 

Smoke class: There are 150 samples of the Smoke class, and all are correctly classified into the Smoke class. 
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There are no misclassifications into other classes. Mixture class: There are 158 samples of the Smoke class, 

and all are correctly classified into the Mixture class. There are no misclassifications into other classes. 

 

 

Table 9. The performance metrics (precision, recall, and F1-score) for the fine-tuned VGG16  

(training accuracy: 0.99, testing accuracy: 0.96) after PSO optimization 
Class Precision Recall F-Score 

NoGas 1.00 1.00 1.00 

Perfume 0.92 0.91 0.92 
Smoke 0.91 0.94 0.93 

Mixture 1.00 0.99 0.99 

 

 

 
 

Figure 6. The confusion matrix of the optimized VGG16 
 

 

6.3.  Outcomes of late fusion in scenario III 

This scenario shows the outcomes of the late fusion between the DNN model and the VGG16 

model. Late fusion is a powerful technique used to combine the predictions of multiple models and harness 

their complementary strengths. In this study, the synergistic effect of combining the DNN model and the 

VGG16 model to enhance the overall classification performance is explored. The late fusion process involves 

aggregating the individual prediction probabilities from both models and creating an ensemble prediction. By 

leveraging the distinctive features learned by each model, the main aim is to achieve improved accuracy and 

robustness in our classification task. The experimental findings demonstrate that the late fusion approach 

significantly enhances the overall performance compared to using each model individually, as shown in 

Table 10. The fusion model's ability to capture diverse patterns and representations from different 

architectures contributes to better generalization and discriminative capabilities across the other classes in the 

problem domain accuracy obtained from the late fusion technique. 
 

 

Table 10. The performance metrics (precision, recall, and F1-score) for the late fusion model  

(training accuracy: 0.997, testing accuracy: 0.99) 
Class Precision Recall F-Score 

NoGas 1.00 1.00 1.00 

Perfume 0.97 0.98 0.97 
Smoke 0.98 0.98 0.98 

Mixture 1.00 1.00 1.00 

Figure 7 displays the confusion matrix and provides a detailed analysis of the model's performance 

for each class. In the dataset, the first row corresponds to instances belonging to the “NoGas” class, with 185 
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cases correctly classified as “NoGas” (true positives) and no instances wrongly predicted as other classes 

(false positives). The second row represents “Perfume” class instances, with 139 true positives and 4 false 

positives, misclassified as “Smoke.” Similarly, the third row corresponds to “Smoke” class instances, with 

161 true positives and 3 false positives, misclassified as “Perfume.” Finally, the fourth row corresponds to 

“Mixture” class instances, with 148 true positives and no false positives, demonstrating accurate predictions. 

 

 

 
 

Figure 7. The confusion matrix of late fusion model 

 

 

Figure 8 and Table 11 show that the DNN model achieved 94.9% accuracy, the optimized VGG16 

model reached 95.9%, and the late fusion model outperformed both with 99.4% accuracy. These results 

highlight the superior performance of the late fusion model in gas leakage detection, demonstrating its 

robustness and efficiency for smart cities and industrial applications. The combination of IoT data and deep 

learning enhances detection accuracy, making the approach a valuable tool for safety and environmental 

protection in various scenarios. 

 

 

 
 

Figure 8. The comparison of accuracy among different models 

 

Table 11. The overall accuracy of both the individual models and the fused model proposed in this study 
Model Accuracy (%) 

93%

94%

95%

96%

97%

98%

99%

100%

DNN Optimized VGG16 Late Fusion

A
cc

u
ra

cy
 (

%
) 

Model

Comparison of Accuracy 
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DNN 94.9 

Optimized VGG16 95.9 
Late fusion model 99.4 

 

 

6.4.  Comparison 

To show the proposed approach's competitive capabilities. Table 12 displays the outcomes of this 

comparison. The table showcases the performance results for each fusion technique. The early fusion 

approach achieves an accuracy of 0.960. For the intermediate fusion and multitask fusion approaches, only 

accuracy is reported (0.945 and 0.969, respectively). Finally, the proposed DNN+ optimized VGG16 late 

fusion outperforms the other methods, achieving a high accuracy of 0.99. These results demonstrate the 

effectiveness of the proposed late fusion technique in significantly improving the overall performance of the 

gas leakage detection system. 

 

 

Table 12. A comparative analysis of the proposed approach with previous relevant studies using the same 

multimodal dataset 
Fusion approach Accuracy Sensitivity Precision F1-score 

Early fusion [32] 0.960 0.963 0.963 0.963 

Intermediate fusion [33] 0.945 - - - 
Multitask fusion [33] 0.969 - - - 

The proposed Thermal-Gas Fusion detection model 0.99 0.99 0.99 0.99 

 

 

7. CONCLUSION AND FUTURE WORK 

This paper presents an innovative approach to assess the reliability of intelligent multimodal data, 

including IoT-based data, for gas leakage detection. The late fusion method was evaluated against individual 

data modalities using pre-trained CNNs (VGG16) and a DNN model with gas sensor readings and thermal 

images. The DNN achieved 94.9% accuracy, while the optimized VGG16 reached 95.9%. However, the late 

fusion model excelled with 99.4% accuracy, highlighting the effectiveness of IoT-driven data fusion. To 

optimize CNN hyperparameters, the PSO algorithm was employed, outperforming traditional manual 

methods. The proposed multimodal IoT-based fusion method significantly enhanced gas detection accuracy, 

proving superior to single-sensor techniques and offering a reliable solution for industrial applications. 

However, the system requires substantial, diverse data samples during training to ensure network robustness. 

Furthermore, to achieve efficient and streamlined operations, a dedicated hardware processing module is 

essential. In the future, our emphasis will be on the accumulation of datasets containing a multitude of gases 

and their various combinations across a wide range of environmental conditions, harnessing the potential of 

data generated by the IoT. By doing so, we aim to enhance the system's performance further and broaden its 

applicability across a broader range of scenarios. 
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