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 In the rapidly evolving landscape of cybersecurity, robust network intrusion 

detection systems (NIDS) are crucial to countering increasingly 

sophisticated cyber threats, including zero-day attacks. Deep learning 

approaches in NIDS offer promising improvements in intrusion detection 

rates and reduction of false positives. However, the inherent opacity of deep 

learning models presents significant challenges, hindering the understanding 

and trust in their decision-making processes. This study explores the efficacy 

of explainable artificial intelligence (XAI) techniques, specifically Shapley 

additive explanations (SHAP) and local interpretable model-agnostic 

explanations (LIME), in enhancing the transparency and trustworthiness of 

NIDS systems. With the implementation of TabNet architecture on the 

AWID3 dataset, it is able to achieve a remarkable accuracy of 99.99%. 

Despite this high performance, concerns regarding the interpretability of the 

TabNet model's decisions persist. By employing SHAP and LIME, this 

study aims to elucidate the intricacies of model interpretability, focusing on 

both global and local aspects of the TabNet model's decision-making 

processes. Ultimately, this study underscores the pivotal role of XAI in 

improving understanding and fostering trust in deep learning -based NIDS 

systems. The robustness of the model is also being tested by adding the 

signal-to-noise ratio (SNR) to the datasets. 
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1. INTRODUCTION 

  As the use of the internet continues to grow, maintaining robust security measures becomes 

increasingly important. Moreover, the prevalence of zero-day attacks adds a layer of urgency on developing 

and implementing such measures [1]. As such, anomaly-based network intrusion detection system (NIDS) is 

introduced to effectively detect zero-day attacks throughout comparison of network traffic profiles, utilizing 

power of machine learning or deep learning approaches [2]. Deep learning approaches in NIDS model 

development had proven to be more effective as it often has a better performance in terms of producing a 

high detection rate while keeping the low positive rate [3]. Despite the effectiveness of deep learning-based 

approaches in NIDS, their decision-making processes often lack transparency and clarity [4]. The 

explainability of prediction and classification models is typically inversely proportional to their learning 

performance, especially for deep learning approaches which are often referred to as "black boxes" due to 

their complex structures and opaque decision-making processes [5], [6].  

This lack of interpretability poses significant challenges for network administrators who rely on 

these systems to identify and respond to abnormal network behaviors. Moreover, it is crucial to understand 

https://creativecommons.org/licenses/by-sa/4.0/
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the model’s behavior, as this understanding allows them to trust the system's alerts and take informed actions 

based on the model's output. Without this knowledge, administrators may struggle to distinguish between 

true threats and false positives, potentially leading to either unnecessary disruptions or missed attacks. As 

such, the emergence of explainable AI (XAI) has become vital in the realm of network intrusion detection, 

enhancing the transparency and interpretability of AI models. This study employs Shapley additive 

explanations (SHAP) and local interpretable model-agnostic explanations (LIME), which are well-regarded 

XAI techniques, to elucidate the decision-making processes of these models.  

The contributions of this paper are threefold: first, it develops a NIDS model using a deep learning 

approach that achieves a high intrusion detection rate with a low false positive rate. Secondly, it evaluates the 

robustness of the NIDS model in noisy environments. Lastly, it interprets the model's decision-making steps 

through the application of SHAP and LIME. The remaining part of the paper is structured as follows. Section 

2 discusses related work on deep learning-based NIDS and XAI approaches. Section 3 concentrates on the 

methodology of the experiment pipeline. Section 4 shows the experimental results and discussion, and finally 

section 5 concludes the contributions and future work of the study. 

 

 

2. RELATED WORK 

2.1.   Deep learning approaches in NIDS development 

Deep learning approaches in NIDS consist of deep neural network (DNN), convolution neural 

network (CNN) and long-short term memory (LSTM). In terms of DNN, Tang et al. [7] had developed a 

software-defined network-based NIDS using DNN and manage to hit an accuracy of 75.75% on NSL-KDD 

datasets. Similarly, Wang et al. [8] found out that DNN emerges in terms of intrusion detection for the CES-

CIC-IDS 2018 datasets after comparing the results with other five deep learning models and manage to hit 

the accuracy of 98.79% accuracy using five hidden layers with 256 nodes.  

In terms of CNN, Ahmad et al. [9] had proposed a CNN model using AWID3 datasets after 

encoding and converting the tabular data into images using Gramian angular field approach. The proposed 

model of the architecture 2D-CNN-1 layer achieved the best performance and managed to hit an accuracy of 

99.77%, with a precision of 99.59%, recall of 99.73% and F1-score of 99.66%. Moreover, an LSTM-based 

model for intrusion detection in in-vehicle CAN bus communications was employed by Hossain et al. [10], 

achieving an impressive accuracy of 99.995% using self-collected datasets. 

Hybrid-based approaches of CNN and LSTM have also commonly used in the development of 

NIDS. For instance, Deore and Bhosale [11] developed CNN-LSTM model by using the CNN architecture 

for feature extraction and using LSTM as its classifier, through integration with chimp chicken swarm 

optimization approach. The CNN-LSTM model manages to hit an accuracy of 93.97% for non-attack profile 

and 98.88% for the intrusions attempt in NSL-KDD dataset, while hitting an accuracy of 98.88% for non-

attack profile and 90.58% accuracy of attack profile in the BoT-IoT dataset. The same approach was 

customized in the work of [12], which managed to hit an accuracy of 99.84% for binary classification and 

99.80 accuracy for multiclass classification in X-IIoTID dataset. In addition, the customized architecture of 

CNN-LSTM also achieved an accuracy of 93.21% for binary classification and 92.9% for multiclass 

classification in UNSW-NB15 dataset. 

 

2.2.  Explainable AI approaches in NIDS 

Explainable AI (XAI) approach can basically be divided into two main categories, which are global 

interpretability and local interpretability [13]. Global interpretability refers to understanding the overall behavior 

and decision-making process of the entire model, providing insights into how the model makes predictions 

across all inputs. Local interpretability, on the other hand, focuses on explaining individual predictions, offering 

a detailed understanding of why the model made a specific decision for a particular input instance.  

For global interpretability, SHAP is normally used to access the overall behavior of NIDS model 

which are reported in various research works [14]–[18] using different approaches. For instance, [14], [16], 

[17] used the summary plot of SHAP to view the overall feature importance of data and show the features 

contribution to the corresponding labels in both binary classification and multiclass classification tasks. 

Meanwhile, study [18] utilized bee swarm plot to interpret the decision-making steps for binary class through 

different classifiers. Other methods that could be used to access the global interpretability of deep learning 

models such as, permutation importance (PI), contextual importance and utility (CIU) [14] and rule fit [15]. 

Moving onto the context of local interpretability, LIME is generally used as a tool for analyzing the 

interpretation of individual prediction. Common utilization of LIME is similar to the approach described in [17], 

where local probability predictions are displayed alongside with the features that contributed to those 

predictions. Meanwhile, study [18] uses LIME to plot the frequent features to analyze the most important 

features in the particular prediction. On the other hand, study [15] highlighted the features that often lead to 
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correct or wrong predictions by analyzing the local interpretability of positive and negative scenarios. SHAP 

can also be utilized for local interpretation purposes. For instance, studies [17], [19] used SHAP waterfall plot to 

illustrate the effect of features on a particular classification made based on the selected features relative to the 

index scores. 

 

 

3. METHOD 

 In the proposed pipeline for developing deep learning-based NIDS with XAI, AWID3 dataset is 

utilized, whereby it consists of 13 types of intrusions in WPA2 networks with a total sample of 30,387,099 

normal traffic and 6,526,404 malicious traffic [20]. Initially, data preprocessing is performed to clean and 

prepare the data for the latter stage. This is followed by the application of a feature selection algorithm to 

identify the most relevant features for the model. Subsequently, model development is conducted using the 

selected features to create a predictive model. The performance of this model is then evaluated to assess its 

effectiveness. Additionally, results are interpreted using XAI technique to show the transparency of the 

model's decision-making process.  
 

3.1.  Data preprocessing 

Among the 13 types of intrusions available in the AWID3 datasets, 7 specific intrusions relevant to 

the network access layer of the TCP/IP model have been selected. These intrusions include deauthentication 

attacks, disassociation attacks, (re)association attacks, Rogue access point (AP) attacks, Evil Twin attacks, 

KRACK attacks, and Kr00k attacks. The attack labels are categorized into three groups: denial-of-service 

(DoS) attacks, man-in-the-middle (MiTM) attacks, and traffic decryption attacks. The outcome of label 

mapping is illustrated in Table 1. Features with more than 80% missing values are excluded, and data 

imputation techniques are used to address the remaining missing values. Categorical data are pre-processed 

using ordinal encoding, while numerical data are processed using min-max scaling. 

 
 

Table 1. Label mapping of AWID3 dataset 
Original intrusion Normal traffic Malicious traffic Label mapping 

Deauthentication 1,587,527 38,942 Denial-of-service (DoS) 
Disassociation 1,938,585 75,131 

(Re)association 1,838,430 5,502 

Rogue AP 1,971,875 1310 Man-in-the-Middle (MiTM) 
Evil Twin 3,673,854 104,827 

KRACK 1,388,498 49,990 Traffic decryption 

Kr00k 2,708,637 186,173 

 

 

3.2.  Feature selection 

In order to obtain the optimal feature sets, feature selection algorithm named phi-K is being utilized 

as it is able to compute the correlation between categorical data and numerical data [21]. The phi-K matrix 

scores and their corresponding significance values are computed. The top 15 features with the highest phi-K 

scores and significant values are selected to reduce the dimensionality of data. These selected features with 

the associated values and description are presented in Table 2. 
 

3.3.  Model development 

TabNet is employed in the development of the NIDS model due to its robust capabilities in handling 

tabular data [22]. TabNet is a deep learning architecture designed specifically for tabular data, utilizing 

gradient descent-based optimization to enable flexible end-to-end learning, which consists of feature and 

attentive transformers and fully connected layers. Before fitting the data into the models, it is split into three 

sets: 75% for training, 15% for validation, and 15% for testing.  The parameters and model architecture of 

TabNet are listed in Table 3. Note that the parameter weight in TabNet is set to 1 in order to automatically 

distribute the weights among the classes to solve the class imbalanced issue. 
 

3.4.  Performance and robustness evaluation 

The performance of the model is evaluated using a confusion matrix, accuracy, recall, precision, and 

F1-score. Subsequently, the model's performance is compared with four state-of-the-art (SOTA) models to 

benchmark its effectiveness. To assess the robustness of the model, the same performance evaluation metrics 

are applied to the AWID3 dataset with the addition of signal-to-noise ratio (SNR) from the range of 15 to 30. 

The inclusion of SNR is intended to simulate the level of desired signal relative to background noise, 

providing a realistic scenario to test the model's ability to handle noisy data in a real time environment. The 

SNR values are computed based on (1) as referenced in source [23]. 
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𝑆𝑁𝑅𝐷𝐵 =  10 log10 (
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
)  (1) 

 

 

Table 2. Label mapping of AWID3 dataset 

 

 

Table 3. Model architecture and parameters of TabNet 
Parameter Value 

n_steps 3 

optimizer_fn Adam 

optimizer_params dict(lr=0.005) 
n_d 14 

n_a 14 

scheduler_params {"step_size": 3, "gamma": 0.7} 
scheduler_fn torch.optim.lt_scheduler.StepLR 

weight 1 

 

 

3.5.  Interpreting model prediction with explainable AI 

To achieve a comprehensive understanding of the model's predictions, both global and local 

interpretation methods are employed. For global interpretation, the SHAP Kernel explainer is utilized. SHAP 

values provide a consistent measure of feature importance by quantifying the contribution of each feature to 

the model's predictions, thus offering transparency into the model's overall behavior. For local interpretation, 

LIME is used to construct interpretable local models around each prediction. This approach enables the 

explanation of individual prediction by approximating the model locally with a simpler and more 

interpretable model. 

 

 

4. EXPERIMENT RESULTS AND DISCUSSION 

 To comprehensively evaluate the TabNet model on the AWID3 datasets, three experiments were 

conducted. Firstly, the model's performance metrics, including accuracy, precision, recall, F1-score, 

undetected intrusions, and false alarm rates, were assessed and compared to SOTA models to benchmark its 

effectiveness in detecting network intrusions. Secondly, the model's robustness was tested under varying 

SNR conditions to ensure high detection accuracy and low false positives in noisy environments. Lastly, 

interpretability was examined using SHAP and LIME techniques. SHAP provided insights into the global 

feature importance for different attack types, while LIME offered local interpretations of individual 

predictions, highlighting feature contributions to correct and incorrect classifications. 

 

Features Phik 
matrix 

Phik 
significance 

Description 

radiotap.length 0.130962 716.129378 The length of the radiotap header, which provides metadata about the 

wireless packet. 

frame.len 0.140262 597.823233 The total length of the frame, including headers and payload. 
radiotap.channel.flags.cck 0.161951 211.391586 Indicates whether the complementary code keying (CCK) modulation 

is used in the channel. 
wlan_radio.phy 0.180651 785.503059 Specifies the physical layer type used for the wireless transmission, 

such as 802.11a, b, g, n, or ac. 

radiotap.present.tsft 0.241758 629.869990 A flag indicating the presence of the time synchronization function 
timer (TSFT) field in the radiotap header. 

wlan.fc.ds 0.241886 693.658164 The distribution system (DS) status field in the 802.11 frame control 

field, indicating the direction of the frame relative to the distribution 
system. 

wlan.fc.protected 0.253686 670.374653 Indicates whether the frame is protected by encryption. 

radiotap.timestamp.ts 0.269606 950.682039 The timestamp of when the frame was captured, provided by the 
radiotap header. 

frame.time_relative 0.298154 1,041.196104 The relative time from the beginning of the capture to when the frame 

was captured, typically measured in seconds. 
wlan_radio.channel 0.323927 680.270172 The radio channel on which the frame was transmitted. 

wlan.fc.type 0.437673 1,375.656433 The type of frame, such as management, control, or data frame. 

wlan_radio.data_rate 0.472091 1,374.488746 The data rate at which the frame was transmitted. 
wlan_radio.signal_dbm 0.580638 1,070.573341 The signal strength of the frame in decibels-milliwatts (dBm). 

radiotap.dbm_antsignal 0.737401 1,463.181892 The signal strength received by the antenna in decibels-milliwatts (dBm). 

wlan.fc.subtype 0.756285 1,529.576742 The subtype of the frame, providing more specific information about 
the frame's purpose, such as association request, data and 

acknowledgment. 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 A comparative study of deep learning-based network intrusion detection … (Tan Juan Kai) 

4113 

4.1.  Performance evaluation of TabNet model 

The confusion metrics of the TabNet model are being shown in Figure 1. Notably, the model 

exhibits commendable effectiveness in detecting network intrusion, with only 4 intrusion attempts going 

undetected across the entire testing datasets. Furthermore, the TabNet model demonstrates proficiency in 

addressing the prevalent issue of high false alarm rates, as shown by the generation of only 213 false alarms 

out of 2,336,237 testing samples. 

The performance metrics listed in Table 4 are used to evaluate the comparison between TabNet with 

other SOTA models. Compared with other SOTA results, it is evident that TabNet outperforms other 

methods while utilizing more comprehensive datasets. In terms of intrusion detection, TabNet achieved a 

remarkable indicator, demonstrated by its 99.99% precision. Notably, the low false alarm rate, indicated by 

its recall, matches the high precision, showcasing the model's reliability and accuracy. This performance 

suggests that TabNet is exceptionally effective in identifying and mitigating various types of attacks, 

including deauthentication, disassociation, reassociation, Rogue AP, Krack, Kr00k, and Evil Twin. The 

balanced high scores across all metrics highlight TabNet's superiority in maintaining security and accurately 

detecting intrusions, making it a robust choice for intrusion detection systems. 

 

 

 
 

Figure 1. Confusion matrix of TabNet on AWID3 datasets 

 

 

Table 4. Performance evaluation with other SOTA on AWID3 datasets 
Model used Utilization of datasets Performance metrics (%) 

Bagging classifier [24] Botnet, Malware, SSH, SQL injection, SSDP 

amplification, and Website spoofing 

Accuracy: 96.70 

Recall     : 95.03 

Precision: 96.84 

F1-score : 88.07 

K-nearest neighbors K-NN [25] Around 1 million subsets taken from the dataset 
(15% of datasets) 

Accuracy: 99.00 
Recall     : N/A 

Precision: N/A 
F1-score : N/A 

2D-CNN-1 layer [9] 20% of Deauthentication, Disassociation, 

Reassociation, Rogue AP, Krack, Kr00k, and Evil 
Twin data 

Accuracy: 99.77 

Recall     : 99.73 

Precision: 99.59 

F1-score : 99.66 

Extra tree [26] Deauthentication, Disassociation, Reassociation, 

Rogue AP, Krack, Kr00k, and Evil Twin 

Accuracy: 99.96 

Recall     : 99.28 

Precision: 99.75 

F1-score : 99.52 
TabNet Deauthentication, Disassociation, Reassociation, 

Rogue AP, Krack, Kr00k, and Evil Twin 

Accuracy: 99.99 

Recall     : 99.99 

Precision: 99.99 

F1-score : 99.99 

 

 

4.2.  Robustness evaluation  

SNR serves as a metric to assess the efficacy of the NIDS in managing noise within real-time 

wireless networks. By quantifying the ratio of signal power to background noise power, SNR facilitates an 

understanding of the system's capability to detect intrusions amidst varying levels of interference. The lower 

the SNR values being utilized, the more the noise overwhelms the signal. SNR values ranging from 15 to 30 

are employed throughout the second experiment to encompass weak to strong signal conditions. Figure 2 

presents a visual depiction of TabNet performance across different SNR levels, shedding light on its behavior 

under varying noise intensities.  
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Across the range of SNR, the recall metric, which is represented by the gray bars, consistently 

maintains a stable pattern. This consistency proved the capability of TabNet to accurately identify genuine 

intrusions remains unaffected by the fluctuations of signal quality. This resilience in recall underscores the 

model's effectiveness in detecting intrusions, using true positives as indicators, irrespective of noise levels.  

 Conversely, precision, indicated by the orange bars, exhibits noticeable variability across different 

SNR values. Particularly evident at lower SNR levels, such as SNR 10, precision tends to be lower relative to 

higher SNR values. This indicates that there is a greater likelihood of affected network packet content being 

misclassified as anomalies when the environment consists of a higher level of noise. As a result, the model 

tends to produce more false positives in the situation of poorer signal quality, leading to a decrease in 

precision. 

 

 

 
 

Figure 2. Performance visualization in AWID3 with different SNR values 

 

 

4.3.  Global interpretation of TabNet model using SHAP 

SHAP summary plots in Figure 3 to 5 provide a comprehensive visualization of the impact of each 

feature on the model's output. The features are listed along the y-axis, ordered by their overall influence on 

the prediction. Each point represents a SHAP value for a feature in a particular instance, with the color 

indicating the feature value, where blue signifies low and red signifies high. This ordering helps to quickly 

identify which features are the most influential in determining the model's predictions. 

SHAP feature value distribution in Figure 3 sheds light on MiTM attacks. Notably, features like 

wlan.fc.type, wlan.fc.subtype, and frame.len exhibit higher values, which are consistently shown in red plots. 

Wlan.fc.type signifies the general category of transmitted frames, while wlan.fc.subtype provides more 

specific details within that category. Rogue APs and Evil Twins, aiming to impersonate legitimate AP, often 

use beacon frames to lure users. These beacon frames generate subtype 8 packets, categorized as data frames, 

with wlan.fc.type numbers corresponding to 2. Additionally, for differentiation, the author filters Rogue AP 

attacks based on frame.len being less than 264 and Evil Twin attacks with frame.len less than 242. Moreover, 

an extra filter is applied to Evil Twin attacks, involving deauthentication frames to disconnect devices from 

the original AP, facilitating their connection to the malicious one. 

Moving onto the SHAP subplot in DoS attacks illustrated in Figure 4, shows that the feature 

wlan.fc.subtype has several red points. This positioning suggests that higher values of this feature are closely 

linked to an increased likelihood of a DoS attack occurrence. Consequently, it implies a strong association 

between specific frame types and heightened risks of DoS attacks. For instance, the NIDS model scrutinizes 

network packets to detect potential flooding of certain frame types. Going deep into the features, 

deauthentication attacks correspond to subtype 10, disassociation attacks to subtype 12, and reassociation 

attacks to subtypes 0, 2, and 8 as per filter applied by the authors [20]. As a result, this implies that the 

TabNet model classifies DoS attacks in a manner that closely resembles how network administrators evaluate 

such attacks in real-world environments.  

Moreover, Figure 5 shows the SHAP summary subplots on traffic decryption attacks. Based on the 

SHAP distribution, it can be observed that the feature wlan.fc.subtype has the highest impact value, followed 

by wlan_radio.channel. This scenario may happen due to the methodology of the author in collecting the 

AWID3 datasets on the KRACK and Kr00k attacks. Specifically, the significant impact of the 

wlan.fc.subtype feature aligns with the dataset authors' method of filtering and labeling network packets. 

They labeled packets where the feature wlan.fc.type_subtype is equivalent to 10 as Kr00k attacks. Next, the 
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feature of wlan_radio.channel which indicates the network channel of the network packet is located. 

KRACK attacks primarily conducted on channels 2 and 13 according to the authors [20], which is 

contradicted to the normal packet profile and other intrusions that are initially collected on channel 36. As a 

result, the model tends to classify the network packet allocated to channel outside of channel 36, specifically 

channel 2 and channel 13 as KRACK attack attempts. Moreover, wlan.fc.protected is the only feature that has 

a high feature value (mixed with red color) as compared to Figures 3 and 4 which have only low feature 

value (entirely blue color). It is due to the nature of traffic decryption attacks which causes the encryption 

key of the network packet content to be reset to an all-zero value which mean no encryption protection is 

available. This assertion is demonstrated by the authors using a Wireshark filter, specifically by setting 

wlan.fc.protected to zero, to identify and label the Kr00k attacks. 

 In conclusion, the global interpretation of SHAP values provides valuable insights into the 

alignment between the NIDS model's comprehension of overall results and the author's data filtering 

methodology alongside the intrinsic characteristics of the attacks. The discernible correspondence between 

the SHAP values and the applied data filtering approach highlights not only the efficacy of the feature 

selection process but also contributes to a deeper understanding of the decision-making framework employed 

by the model and hence increases the trustworthiness of the intrusion detections made among the network 

administrators. This concordance between the model's interpretation and the observed attack patterns serves. 

 

 

 
 

Figure 3. SHAP subplots for MiTM attacks 

 
 

Figure 4. SHAP subplots for DoS attacks 

 

 

 
 

Figure 5. SHAP subplots for traffic decryption attacks 
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4.4.  Local interpretation of TabNet model using LIME 

The LIME interpretation figures provided in this study consist of three parts. The left table shows 

the prediction probabilities of the model interpretation which also indicates the confidence score of the model 

making the predictions. The right two-sided bar chart shows the detailed breakdown of the contribution of 

various features to prediction results, whereby the red bar at the left side shows the negative indicator to the 

predictions while green bar at the right side shows the positive indicator to the predictions. These magnitude 

levels shown in the right two-sided bar are the indicator of contributions on how the TabNet model make the 

classification results, whereby a positive magnitude level contributes to the classification made, and a 

negative magnitude level is opposing the classification results made. 

Figure 6 illustrates a local interpretation using LIME for a model prediction marked as a DoS attack. 

The interpretation highlights accurately classified intrusion attempts of DoS attacks in the left table. The 

prediction probabilities indicate 100% confidence that the network packet is a DoS attack, with zero 

probabilities for other classes, including traffic decryption attacks, MiTM, and normal. 

The right two-sided bar chart of a DoS attack uses the length of the bars to represent the magnitude 

of each feature's contribution to the prediction, with longer bars indicating a stronger influence. Green bars 

represent features that support the DoS classification, including frame.time_relative with a magnitude level 

more than 0.008, wlan.fc.subtype with a magnitude level around 0.006, wlan.fc.protected  and 

radiotap.timestamp.ts with magnitude level of slightly less than 0.006, radiotap.dbm_antsignal, 

radiotap.channel.flags.ckk with a value of 0.0035 and lastly wlan_radio.data_rate with magnitude level of 

0.002. Conversely, red bars indicate features that oppose to the prediction, such as radiotap.present.tsft with 

magnitrude level of -0.006 and wlan_radio.phy with magnitude level around -0.0035. Based on the 

contributions of the magnitude level as per indicated in the right bar chart, it could be observed that most of 

the magnitude votings is towards the positive side in DoS classification and hence, TabNet model is able 

correctly classify the particular network packet as a DoS attempt. 

Looking into the specific contributions of each feature, the local interpretation aligns with 

established principles in network security, as well as the global interpretation derived from SHAP values for 

DoS attack classification. In network security, certain features such as wlan.fc.protected being 0, indicating 

unprotected frames, and wlan_radio.phy being 1, indicating the utilization of physical radio settings, are 

crucial features indicators of potential DoS activity. Additionally, as previously discussed in the global 

interpretation of DoS attacks, the accurate classification of DoS attacks involves recognizing wlan.fc.subtype 

as a pivotal indicator. Furthermore, the positive direction on the bar of radiotap.dbm_antsignal shown in 

Figure 6 reinforces this classification, as this feature shows signal strength condition in real-time 

environment, which means that the model is capable to detect the abnormal signal strength occurred.  

In contrast, Figure 7 for a false alarm scenario where a normal network packet is incorrectly 

classified as a DoS attack. The prediction probabilities show a 98% likelihood for the DoS class, with very 

low probabilities for other classes, despite the true label being 'Normal'. This misclassification highlights the 

model's error. The right-side two-sided bar chart shows that certain features negatively impact the 

classification of the packet as a DoS attack, suggesting it should be correctly classified as a normal packet. 

Specifically, the features wlan.fc.subtype with a magnitude slighlty lower than -0.006, wlan_radio.phy with 

magnitude of approximately -0.006, radiotap.present.tsft with magnitude around -0.004, and 

radiotap.dbm_antsignal with magnitude around -0.002 contribute negatively to the DoS classification. 

However, the majority voting of the remaining features and magnitude are more towards to the positive 

direction, causing a false alarm scenario, whereby the normal packet is being misclassified as a DoS attempt. 

Moving on to the perspective of the network security field, the NIDS model has identified key 

factors for correctly classifying the network packet as a normal packet. This scenario could be found in the 

feature wlan.fc.subtype and radiotap.dbm.ant_signal whereby the negative side in the right bar chart 

indicates that the model realizes that these features oppose the classification of the particular network packet 

as a DoS attack. To be more specific, the feature wlan.fc.subtype shows that a normal type of network packet 

is being transmitted, while the feature radiotap.dbm.ant_signal indicates that the signal strength of the 

network is actually normal. However, the NIDS model gets confused when certain features create ambiguity, 

such as wlan.fc.protected and radiotap.channel.flags.cck. 

In the feature wlan.fc.protected, this confusion arises when unencrypted frames are transmitted, 

which does not necessarily indicate an intrusion attempt. For instance, during the transmission of probe 

requests, the frames are unencrypted as part of normal network operations. Moreover, the feature 

radiotap.channel.flags.cck indicates the presence of certain modulation schemes, which are common in both 

normal and attack scenarios. This overlap can lead the model to misinterpret normal modulation as a 

potential threat. Consequently, the model's challenge lies in disentangling these ambiguous signals to make a 

correct classification. 
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Figure 6. LIME interpretation for correct prediction in DoS attacks 

 

 

 
 

Figure 7. LIME interpretation for false alarm in DoS attacks 

 

 

5. CONCLUSION 

This paper presents a comprehensive study analyzing the performance of TabNet in NIDS model 

development. Using feature sets obtained through the phi-K method, the model achieved impressive 

accuracy, recall, and precision of 99.99%, surpassing the performance of four existing works. These results 

demonstrate that the TabNet model is highly effective in intrusion detection. Additionally, it successfully 

mitigates the risk of alarm fatigue, which is often caused by a large volume of false alarms. 

The robustness of the model is evaluated by introducing SNR values ranging from 15 to 30. The 

model's consistent performance in terms of precision has demonstrated that the TabNet model can detect 

intrusions regardless of the noise level in the wireless channel. However, it is notable that the noise level can 

cause normal profiles to be misclassified as intrusion attempts. This is evident from the decrease in recall 

when the SNR value is lower, indicating that high noise level is present in the network profile. 

Finally, the decision-making steps of the NIDS model are interpretated through the XAI approaches, 

particularly using SHAP and LIME. By examining both the global and local interpretations of the model, key 

features that significantly influence the model's predictions are identified. These insights help in 

understanding how the model differentiates between normal and malicious activities, thereby enhancing the 

transparency and trustworthiness of the intrusion detection process. From the perspective of NIDS 

interpretation, its method of determining abnormal traffic closely aligns with the way security experts 

identify abnormal traffic in real life. This demonstrates that it is reliable and effective in accurately detecting 

security threats.  

As such, this study has investigated the reliability of NIDS through the comprehensive model and 

robustness evaluation, effective feature selection, and the integration of interpretability approaches. These 

contributions proven the capability of the TabNet model in enhancing network security by accurately 

identifying and mitigating various threats. Future work is suggested to focus on minimizing false alarms in 

noisy environments by using hybrid approaches. Specifically, rule-based methods should be integrated into 

the model to reduce false alarms across different noise levels. 
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